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The purpose of this paper is to construct a nonlinear
semi-group determined by a given (multi-valued) nonlinear
operator A in a Banach space X, and to investigate the dif-
ferentiability of this semi-group. The semi-group treated in
this paper is the semigroup {T(t); t ^ 0} of nonlinear
operators in X such that for each τ > 0, {T(t); O^t^τ} is
equi-Lipschitz continuous on bounded sets. In order that an
operator A in X determine such a semi-group {T(t); £ Ξ> 0}
o n D(A) w i t h (d/dt)T(t)xeAT(t)x f o r a l m o s t a l l t ^ O a n d
xeD(A), it is required that X have a uniformly convex
dual, A be dissipative in a local sense, I-λA, λ positive and
small, satisfy a range condition and an injectiveness condi-
tion, and finally the family of operators (J—XA)~~n

9 n =
1, 2, 3, be locally equi-bounded.

Let X be a Banach space and S a subset of X, and let {T(t);
t ^[0} be a family of nonlinear operators from S into itself satisfying
the following conditions:

( i ) Γ(0) = /( the identity) and T(t + s) = T(t)T(s) on S for ί,

(iij,) For xeS, T(t)x is strongly continuous in t ^ 0.
Then the family {T(t); t i> 0} is called a semi-group on S. The
infinitesimal generator Ao of the semi-group {T(t)\ t ^ 0} is defined
by Aox — \\mh_++Qhrι{T{h)x — x) and the weak infinitesimal generator
A! by A'x = w-lim^+oh"1 {T{h)x — x}, if the right sides exist, the
notation "w-lim" means the weak limit in X.

An operator A in X is called a D-operator if for every bounded
set B in X there exists a number ωB >̂ 0 such that

re <xf - y', f > ^ ωB \\ x - y ||2 for x, y e B Γ\ D(A), x' e Ax, y' e Ay

and some feF(x — y), where F denotes the duality mapping of X.
Our discussion requires that X have a uniformly convex duaL

Then, if A is a D-operator satisfying some additional conditions, we
obtain a semi-group {T(t); t !Ξ> 0} on D(A) such that

(A) T(t)x = lim (I - \A)-ίtlλ]x , x e D(A)

and the convergence is uniform with respect to t in every finite
interval;
(B) for every bounded set B in D(A) and τ > 0, there exists a number
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ω B , τ ^ 0 s u c h t h a t || T(t)x - T(t)y || ^ eωB,r* \\x - y\\ f o r x , y e B a n d
t e [ O , T ] .

The additional conditions on A are stated roughly as follows:
(1) The operator (I — XA)"1 must exist as a single-valued oper-

ator with domain R(I — XA), the range of J — XA, for X small; this
is condition (I) of the paper.

(2) In order that the iterations of (/ — XA)"1 be meaningful on
D(A), it is required that the range of I — XA contain D(A); this is
condition (R).

(3) The operators (/ — XA)~k, k = 1, 2, 3, must map bounded
sets into bounded sets; this is the idea behind condition (E).

We note that if A is a dissipative operator, i.e., ωB = 0 for
every bounded set B in X, then (1) and (3) are satisfied.

Concerning the differentiability of the semi-group constructed we
obtain, among other results, the following. If A is a Z)-operator
satisfying (I), (R) and (E) and is maximal on D(A) in the sense
explained in § 1, then there exists a uniquely determined semi-group
{T(t);t^O} on ~D{AJ such that for each xe D(A) (d/dt)T(t)xe AT{t)x
at almost all t ^ 0.

Finally, we remark that for the Cauchy problem

(d/dt)u(t) e Au(t), u(0) = x ,

where A is a Z)-operator in X satisfying (/), (R) and (E), we can
construct the semi-group solution using the convergence (A). And
conversely, in a reflexive Banach space, if Ao is the infinitesimal
generator of a semi-group {T(t); t ^ 0} satisfying (B), then Aΰ is a
iλ operator in X and for xeD(A0), T{t)x is a solution of the Cauchy
problem formulated for the operator Ao.

Section 1 deals with the notion of a .D-operator and some of its
properties. Section 2 concerns the abstract Cauchy problem. Section 3
contains the construction of the semi-group determined by the
D-operator A. Finally, in Section 4, the question of the differentia-
bility of the constructed semi-group is discussed.

The authors want to express their deep gratitude to Professor I.
Miyadera for his many valuable suggestions.

O Preliminaries* In this section we introduce some of the basic
notions which are used in this paper.

Throughout this paper X denotes a Banach space. Let A be a
multi-valued operator in X, that is, A assigns to each xe X a subset
Ax of X. Ax may be empty for some xe X. The domain of A,
D(A), is the set of all x e X such that Ax Φ 0 ; the range of A, R{A),
is the set \Jxex Ax. We write AS (or A(S)) for (JUs Ax, S c X.
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Note that a single-valued operator is a special case of a multi-valued
operator in which Ax, xeD(A), denotes the value of A at x or the
singleton set consisting of this element, and Ax is the empty set if
xϊD(A).

For subsets Su S2 c X, Sί + S2 denotes the set {x+y; xeSί9ye S2}
where S, + S2 = 0 if S, = 0 or S2 = 0 . For a scalar λ and S c l ,
λS denotes the set {Xx; xe S}, and we write y + £> for {?/} + S.

Accordingly, for two operators A and I? in X, we define the sum
A + B in X by (A + £)# = Az + #£, D(A + B) = D(A) Γ) D(B); the
scalar multiplication λA in X by (λA)& = XAx, D(XA) — -D(A); and
the product AB in X by (AB)x = A(Bx), D(AB)czD(B). We
write 7+λA for the operator τ/+λA, where / denotes the identity
operator in X. For any positive integer k, we define the iteration
Ak in X by AH = A(Afc-^), where A0 = I and D(A&) c D(A).

Let A, A be two operators in X. A is an extension of A, and
A is a restriction of A (denoted ΆZDA, A c A), if AcccAx for each
xeX, thus D(A)cZ>(A). If S c l , then by a restriction of A to S,
A I s, we mean the operator such that D(A \ s) = D (A) Π S and A\sx =
Ax if a? G S.

If S c l , we denote the closure of S in X by S. Let A be an
operator in X, then 5 is called the closure of A, if G(i?) = Cr(A),
where G( ) denotes the graph of the operator. We write B = A.

Let X* be the dual space of X. We denote by (x, /)> the
pairing between xeX and / e l * . The duality mapping F of X is
the mapping from X into X* defined by

F(x) = {feX*; re<>, /> - | | x | | 2 = ||/||2}

for x e X. If X* is uniformly convex, then i*7 is single-valued and
uniformly continuous on bounded sets [4; Lemma 1.2].

We now state some standard definitions and collect some well-
known results.

DEFINITION 1. An operator A in X is said to be dissipative if
for each x, yeD(A) and x'e Ax, y'eAy, there exists an feF(x — y)
such that re ζxf — y*, /)> ̂  0. A is said to be an m-dissipative oper-
ator in X, if it is a dissipative operator in X and R(I — λ0A) = X
for some λ0 > 0. Let S c X and A be a dissipative operator in X,
if every dissipative extension of A coincides on S with A, then A is
said to be a maximal dissipative operator on S.

An m-dissipative operator A is maximal dissipative on D(A). If
X* is strictly convex and A is a maximal dissipative opetator on S,
then Ax is closed and convex for xe S. If A is an m-dissipative
operator, then R(I — λA) = X for all λ > 0 ([9; Lemma 4]).
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DEFINITION 2. An operator A in X is said to be demί-closed if
the following condition holds: if {xn} aD(A), xn—+xeX (strong con-
vergence) and if yn e Axn, such that yn-^yeX (weak convergence)
implies that x e D(A) and y e Ax.

A demi-closed operator is closed. If X* is uniformly convex and

A is maximal dissipative on D(A), then A is demi-closed ([5; Lemma

3.7]).

DEFINITION 3. Let A be an operator in X. The operator A0

defined by A°x = {yeAx; \\y\\ = inί[\\u\\;ueAx]} is called t h e

canonical restriction of A.

If X* is uniformly convex and A is an m-dissipative operator,
then D(A°) = D(A) and A°x is a non-empty closed convex set for
xeD(A). If X and X* are uniformly convex and Ax is closed and
convex for xeX, then A° is single-valued and D(A°) — D(A) ([5;
Lemma 3.10]).

Finally, we list some notations which are used in this paper.

(1) Let {xn} be a sequence in X, then " xn —> x ", means that xn

converges to x in the norm topology, whereas, " xn —* x ", means that
xn converges to x in the weak topology.

(2) Let G be a single-valued operator in X and Ba X, then by
l|(?llLip<JB>> we mean the smallest Lipschitz constant for G on Bf]D(G).

(3) We write Jλ for the resolvent (/ — \A)~ι if it is well-defined
and Rλ for the range R{I — XA) = {x — Xy; x e D{A), y e Ax}.

(4) Let KczX. Then coK denotes the convex hull of K and
σδK, the convex closure of K.

(5) For any nonempty set S c X, we write

Thus for any operator A, | | |A&|| | is defined for xeD(A)

1* D-operators* In this section we introduce the notion of a D-
operator and establish some of its properties.

Let X be a Banach space and A an operator in X. If for every
bounded set Ba X there exists a nonnegative number o)B such that

re<x' -y',f> ^ωB\\x- y||2
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for x, yeBf] D(A), %' e Ax, yf e Ay and for some / eF(x — y), then
A is called a D-operator.

Put Bn = {x G X; || a? || < w}, w = 1, 2, 3, If there exists a se-
quence {ωn} of nonnegative numbers such that

re<x' - y>, f> ^ ωn\\x - y\\*

for a?, yeBnΠD (A), xr e Ax, yf e Ay and for some / e F(x — y), n =
1, 2, 3, •••, then A is a £>-operator. If such a sequence is identically
zero, then A is a dissipative operator. Note that if A is a .D-opera-
tor, then (A — ωn) \ B% is a dissipative operator on J5n.

The next lemma by Kato [4; Lemma 1.1] gives a basic property
of dissipative operators.

PROPOSITION 1.1. (Kato) Let x,yeX. Then there is a λ0 > 0
such that || x \\ ̂  || x — Xy \\ for λe (0, λ0) if and only if there is an
f e F(x) such that re ζy, /> ^ 0.

Let A be a D-operator in X, then for every bounded set Ba D(A),
we have that (/ — \A)x Π (/ — XA)y = 0 for x, y e B, if x Φ y and
λ € (0, l/o)B). In fact, for xf e Ax, y' e Ay, and some / e F(x — y) we
have that

\\{x - Xx') - (y - Xy')\\ || x - y \\ ̂  re<(x - Xx') - (y - Xy'), / >
^ ( 1 -XωB)\\x-y\\\

H e n c e , w e h a v e || (x — Xx') — (y — Xy') || ^ (1 — Xo)B) \\x — y\\, so,
(/ — XA) I B has a Lipschitz continuous inverse and

||(J - XA \ ̂ W^u-iAm ^ (1 - λω^)-1 for λ e (0, l/ωB) .

However, in general, (/ — XAy1 is not a single-valued operator. For
example, take X to be the real line and Ax, the function x sin x. A
is a i)-operator, in fact, for the bounded set [ — ikf, M] we may take
o)^M>M1 to be 1 + M. And

| | ( I - XA Ic-^])-1
 IILIPUZ- UΪC-*,*] ^ (1 - λ(l + ilί))-1 for λ e (0,1/(1 + M)).

But R(I — XA) = X for λ > 0, and (/ — λA)"1 can not defined as a
single-valued operator on X, no matter how small we restrict λ > 0.

Hence, we make an additional assumption on the operator A:

(I) (I - XA)x Π (/ - XA)y = 0 for x, 2/ e X if x Φ y and λ e (0, λ0) .

Condition (I) guarantees the existence of the resolvent Jλ = (I—
for λe (0, λ0) as a single-valued operator with D(Jλ) = R(I — XA). (I)
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corresponds to the assumption that I — XA is injective, if we are
considering single-valued operators.

DEFINITION 1.1. Let G be an operator in X. G is said to be
locally bounded if G maps bounded sets into bounded sets.

DEFINITION 1.2. Let {Gγ}, T G Γ , be a family of operators in X.
{Gr}, yeΓ, is said to be locally equi-bounded, if for every bounded
set B, UrerGr(B) is a bounded set.

PROPOSITION 1.2. Let A be a D-operator in X satisfying (I).
If {Jx; λ e (0, λ0)} is locally equibounded, then for every bounded set
B c X there exists a number ώB ^ 0 such that

II Jx ||LIP(*, ^ (1 - λώ^)-1 for λ e (o, min{λ 0 , -A-J) .

Proof. Let B be any bounded set in X, then BY = \Jλe(0 χG)Jλ(B)
is a bounded set and Bx aD(A). Hence, there exists a number ώB^> 0
such t h a t (1 — XώB) \\ x — y || <£ ||(a? — λa?') — (2/ — λ?/')ll for a?, y e B19

xf G Ax, y' e A /̂ and λ e (0, min {λ0, l/ώB}). Thus, if w, 1; e B Π i2 ;, then
Jλu, Jλv e Bx and

(1 — XώB)\\Jλu — Jλv \\ ^\\u — v\\ for λ e f 0, m i n i λ0, -z—\)

In the next proposition we impose two additional conditions on
the operator A, which are essential to the construction of the semi-
group in this paper.

PROPOSITION 1.3. Let A be a D-operator in X satisfying (I). //

(R) R (I - XA) Z) D(A) for X e (0, λ0) ,

and

(E) {J?; λe(O,λo), %λe[0,τ]}

is locally equi-bounded for any τ > 0, then for every bounded set
B c X and τ > 0, there exists a number coB,τ ^ 0 such that

WJϊlUtB) ^ (i - λ Λ ) ^ ) -

for X e (0, min {λ0, l/ωB>τ}) and nX e [0, τ ] .

Proof. Let B be any bounded set in X and τ > 0. Set 5X =
, then J5X (j J3 is a bounded set and so there exists a

o
?Ue[0,r]
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number coB r ^ 0 such that

^ (1 - λω^)" 1 for λe(θ, min|λ0, — } )

Thus, if u, v e B Π i2;, then J?- 1 w, JΓ1 veBx{jB, provided nX e [0, τ\. So
that \\J?u - J?v || £ (1 - λ ω ^ ) - 1 H J r 1 ^ - JΓ" 1* II ̂  (1 - XωB,τ)-n\\u- v\\
for λ G (0, min {λ0, l/α>5.r}).

The next proposition gives some sufficient conditions for (E).

PROPOSITION 1.4. Let A be a D-operator satisfying (I).

(a) // there exist nonnegative numbers M and N such that

\\Jλx || ^ (1 + λilf) || x || + λiV for Xe (0, λ0) and x e Rλ ,

then (E) holds.

(b) // A is single-valued and sup {\\Ax\\; x e D(A)} < + °°, then
(E) holds.

Proof, (a) Let B be any bounded set in X and xe B f) Rχ,
λe(0, λ0). Then, it is easy to see that

HJ ̂ H ^ (l + MX)n(\\x\\ + n\N) ^ e ^ ( s u p | | ^ | | + nXN) ,

which is bounded for λ e (0, λ0) and nXe [0, τ\.
(b) Take x e Rλ, then || Jλx \\ ^ || x \\ + λ || A Λx 11. Put

N = sup 11 Ace 11 ,
xeD(A)

then lle/aa; || ^ \\x || + λΛΓ. Now apply (a), note that in this case
M= 0.

We now wish to introduce a notion of maximal D-operator. Given
a sequence of nondecreasing nonnegative numbers {ωn}, we consider
the family of D-operators, .β^{(0n}, consisting of all D- operators A
in X such that there exist numbers o)Bn(A) ^ ωn, n = 1, 2, 3,
with

re<x' -y',fysωBn{A)\\x-y\\>

for x,ye D(A) Π J?%, x' e Ax, yf e Ay and some / 6 F(x — y), n = 1, 2,

3, . Recall that Bn denotes the open ball with radius n and center
0 in X. Note that if A is a D-operator, then there exists a sequence
{ωn} such that

DEFINITION 1.3. If Ae^~{ω%}, then A is called a (D, {α>Λ})-o
αίor. Let Scz X and A be a (Z>, {ωJ)-operator in X. If every
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(D, {ωn})-extension of A coincides on S with A, then A is said to be
a maximal (D, (ωj)-operator on S.

PROPOSITION 1.5. If A is a (D, {ωn})-operator in X and SczX,
then there exists a maximal (D, {ωn})-operator Ά on S such that
A\8Z>A\g.

Proof. Apply Horn's Lemma.

We now show that if A is a maximal (D, {ω%})-operator on D(A)
and furthermore if X* is uniformly convex, then A is demi-closed
and Ax is closed and convex. The uniform convexity of X* gives
the above properties which are essential in establishing the facts
concerning the differentiability of the semi-groups constructed in this
paper.

PROPOSITION 1.6. Let X* be uniformly convex. If A is a

maximal (D, (ωn)}-operator on D(A), then
(a) A is demi-closed,
(b) Ax is closed convex.

Proof, (a) Let {xk} be a sequence such that {xk}aD(A), xk—*xQeX
and Axk 3 yk -* y. We must show that x0 e D (A) and y e Ax0.
Define Άw = Aw if w Φ x0 and Aw U {y} iϊ w = x0. Then A z> A and
D{Ά)(zD(A). It is easy to see that Ά is a (D, (ωj)-operator, Hence,
by the maximality of A, A = A and so x0 e D(A) with y e Ax0.

(b) The same type of argument as in (a) easily establishes (b).
The next proposition states some basic properties of a demi-closed

operator.

PROPOSITION 1.7. Let X be a reflexive Banach space and A be a
demi-closed operator in X. Let {xn} aD(A), xn-^xoz X, and let {yn}
be a sequence in X such that yn e Axn for each n. Then:

(a) if {yn} is bounded and V is the set of all weak cluster points
of {yn}> then xoeD(A), V Φ 0 , and V a Ax0; if in particular, A is
single-valued, then yn—^Ax0;

(b) if furthermore, X and X * are uniformly convex, the canoni-
cal restriction A0 is single-valued and if lim sup \\yn\\ ^ ||| AxQ || |, then
xoeD (A0) and yn —> A°x0.

Proof, (a) First, the reflexivity of X and the boundedness
of {yn} imply that V Φ 0 . Let Y be the closed linear manifold
determined by {yn}. Then 7 is a reflexive Banach space and F * is
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separable. Hence, for each y e V a subsequence {yn.} can be found
such that yn. —* y in Y. Now, any x* e X* determines a y* e Y*
such that (x, x*y = <(#, #*> for α e Y; thus, since ^ e ϊ", ζyn., #*>—•
<#, #*> for x* e X*, and #n < -^ y in X. Since #%. —> &0, 2/n4 e AxH, yn. -» y
and since A is demi-closed, we have that xQeD(A) and ί / e i ^ . This
means that VaAx0. If in particular, A is single-valued, then y =
Ax0; hence all weak limits of subsequences of {yn} are same and equal
to Ax0. Therefore, it follows that yn -* Ax0.

(b) Since {yn} is bounded and A is demi-closed, there is a sub-
sequence {yΛ<} and a ye Ax0 such that yn. —*#. Thus, by assumption,
we have

HI Aα0 HI 5̂ 11 y || ^ Km i n f | | ^ || £ lim sup || yni\\ ^ \\\ Ax0 \\\ .

Since A0 is single-valued, 7/ = A°x0 and lim| |2/n 4 | | = || A°#o||. But, X
is uniformly convex; thus yn.—>A°x0. Therefore, all strong limits of
subsequences are same and equal to A°x0, and it follows that
yn -* A°x0.

PROPOSITION 1.8. Let X and X* be uniformly convex. Let A be
a closed D-operator in X satisfying (I), (3.9) (stated in Remark 3.1)
and (E). If A is a maximal ((D, {ωn})-extension of A on D(A) such that

D(A) a{ze D(A); \\Jxz- z\\= 0(λ) as λ [ 0} ,

then A° = Ά°.

Proof. First, note that Ά is demi-closed, Ax is closed and con-
vex, and so, A0 is single-valued with D(Ά°) — D(Ά). Take a sequence
ηk I 0 and set Jk = JV]c and Ak — ηΰ1 [Λ — /]• Let x e D(A), then, since
D(Ak) Z)D(Ά), w e s e e t h a t || Akx \\ = ητ1 II J& - Jk(x - VuV) II S III Ax |||/
(1 — coB7]k) for y e Ά°x, where ωB is a constant associated with the
c l o s u r e B of {x — ηky; ye Ax, \\ y\\ — \\\ Άx\\\, k s u f f i c i e n t l y l a r g e }
through the D-operator A. Since AkxeAJkx for k, Akx—>A°x as
k-+ +oo by Proposition 1.7 (b), for each x e D(A). Now take ^ e D(Ά).
Since i2(J — λA) Z)D(A) for λ e ( 0 , λ0) by assumption and since
D(A) z)D(A), we see that s e JR(I — ^A) for A; sufficiently large.
Hence, there exist xk e D{A) and τ/Λ e Axk such that

^ = %k VkVk

But, xk = Jkz—*z as /c —> + oo hence, by the closedness of A, 2 e D(A)
and A°2 e Az. But A^ c Άz, so that A°s e A°z. Also, 111 A°z \ \ \ ̂  11 Ά°z \ \.
Therefore, v e A°z c Άz implies that v = A°z because A0 is single-
valued. So, A0 is also single-valued.
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REMARK 1.1. Brezis and Pazy [1; Theorem 2.1] give the follow-
ing result. Let X be a Hubert space and A be a closed dissipative
operator such that RλZ)~cδD(A) for all λ > 0 , then A has a unique
extension to a maximal dissipative operator A satisfying D(Ά)czD(A),
and, in fact, D(A) = D(A) and Ά° = A0.

2. Abstract Caucy problem* In this section we discuss the
relationship between the abstract Cauchy problem formulated for a
D-operator and the semi-group generated by such an operator.

The abstract Cauchy problem may be stated as follows:
Given an operator A in X and an element x e X, find a X-valued

function u(t; x) on [0, oo) such that
( i ) u(t; x) is strongly absolutely continuous on every finite

interval;
(ii) u(0; x) = x and (d/dt)u(t;x) e Au(t; x) for almost all t.
We call this the abstract Cauchy problem, ACP, formulated to A.

PROPOSITION 2.1. Let A be a D-operator in X. Then there is
at most one solution of the ACP formulated to A with the initial
value xeD(A).

Proof. For xeD(A), suppose that u(t; x) and v(t; x) are solutions
of the ACP formulated to A. By Kato's lemma [4; Lemma 1.3] we
have that

II u(t; x) ~ v(t; x)\\2 = 2 J re((^}u(s; x) - (-£-)*(*; &), f(s))ds

^ 2ωXtr Γ || u(s; x) - v(s; x)\\2 ds ,

Jo

where ωXyT is a constant associated with the bounded set

B = {u(t; x), v(t; x); te[O, τ]}

through the D-operator A and f(s)eF(u(s;x) — v(s;x)), and also,
note that (d/ds)u(s; x) e Au(s; x) and (d/ds)v(s; x) e Av(s; x) for almost
all s. Hence, u(t; x) = v(t; x) for ί e [ 0 , τ ] . Since τ is arbitrary,

u(t; x) Ξ v(t; x) for all t ^ 0.

PROPOSITION 2.2. If A is a D-operator in X such that for each
xeD(A), there is a solution u(t; x) to the ACP formulated to A satis-
fying the condition that for any sequentially compact set KaD(A)
and τ > 0, {u(t; x); t e [0, τ], xeK} is bounded, then there is a semi-
group {T{ty, t^0} defined onD(A) and such that T(t)x = u(t; x), x e D(A)
and t e [0, τ]. Conversely, if X is reflexive and Ao is the infinitesimal
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generator of a semi- group {T(t); t ^ 0} satisfying the condition that
for every τ > 0 and bounded set B there is a constant ωB,τ ̂  0 such
that || T(t) || Lip (5) ̂  exp (coB,τt), t e [0, τ], tfAew Ao is α D-operator in
X and for each xeD(A0), T(t)x is a solution of the ACP formulated
to Ao.

Proof. Take xeD(A) and τ > 0, and put T(t)x = u(t; x),
te[0,τ]. Since u(t;x)eD(A) for almost all £e[0, r] and u(t; x) is
strongly continuous, w(i; a?) eD(A), i.e., Γ(ί)a? e J9(A) for all ίe[0, τ].

Hencβ) Γ(ί) maps D(A) into D(A). By Kato's lemma, for x, yeK,
a compact set, we have that

T(t)x - T(t)y \\2-\\x~y ||2 - 2 J Vβ ^( A

where ω^,r is a number associated with the bounded set

{T(t)x; te[0,τ],xeK}

and f(s)eF(T(s)x - T(s)y), and also, note that (d/ds)T(s)xe AT(s)x
and (d/ds)T(s)y e AT(s)y for almost all s. Therefore,

- T(t)y\\ ^exv(ωK9Vt)\\x-y\\, x , yeK, ί e [ 0 , τ ] •

Now, take zeD(A), then there exists a sequence {a;ft}cΰ(A) such
t h a t xn—>z, and so, || T(t)xn — T(t)xm\\ ^ exp (ωKtVt) \\xn — xm\\ where

K = {xn}. Hence, define T(t)z = lim^^ T(t)xn, thus T(t) maps
into itself. The semi-group property follows from the uniqueness of
the solution of the ACP. Conversely, take any bounded set B in
D(A0), then for x, y e B

re<hr\T{h)x-x) - h~\T(h)y-y), /> ̂  /^(exp (ωB,τh)-l)\\x-y |

where he[0, τ\ and f e F(x — y). Letting h—>+0, we have that

re(Aox - Aoy, /> ̂  ^ , r || a; - y ||2 ,

so Ao is a D-operator. Let x e D(A0), then

sup {h-1

and || T(t + fe)» - T(£)α || ^ Meίcp {ωBJ)h for ί e [0, r], he (0,1] and
J5 = {T(h)x; he(0, 1]}. Thus, T(t)x is strongly absolutely continuous
on every finite interval. Since x is reflexive, T(t)x is strongly dif-
ferentiable for almost all t e [0, τ] and (djdt)T(t) = A0T(t)x for almost
all £e[0, r]. Therefore, T(t)x is a solution of the ACP formulated
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to Ao.

Combining the properties mentioned above we have the following:

PROPOSITION 2.3. Let A be a D-operator in x. Then there is at
most one semi-group {T(t); t^O} on D{A) such that for each xeD(A),
T(t)x is a solution of the ACP formulated to A.

3* Construction of the semi-groups* In this section, we con-
struct the semigroup determined by a D-operator A which satisfies
conditions (I), (R) and (E).

Throughout, it is assumed that X has a uniformly convex dual.

LEMMA 3.1. Let A be a D-operator in X satisfying (I), (R) and
(E). If xe D(A) and τ > 0, then

(3.1) y(t; x) = lim (J - \A)~ίtlλ]x
λλ-++Q

exists uniformly for t e [0, τ].

Proof. Set Jλ = (I - λA)"1 and Aλ = X~ι(Jλ - I ) , λ e (0, λ0). Let
x e D(A) and τ > 0. Set

Bx>τ = {J^x; h e (0, λ0), mh e [0, τ]} u {x-hy; h e (0, λ0), y e Ax, \\ y \\

then BX>T is a bounded set by (E). Let coBχ>τ be a number associated
with this bounded set in the sense of Proposition 1.3. Then we have
that

|| AJΓιx II = h-11| JΓx - JΓιx II = h-1 \\JΓx - Jΐ(x - hy) \\

for ye Ax with \\y\\ <; ||| Ax\\\ + 1. Hence, a positive number CX,T

can be found such that

(3.2) || AhJΓιx II ^ (1 - hωBχχ™ \\\Ax\\\<, Cx,τ ,

for h sufficiently small and mhe[0, r] Now, assume that Xn ^ h
and hm ^ τ, where h e (0, λ0) and m, n are integers. And let k^m.
Since

J 'nkn, Tn(k—1)™ \ χ~»

we have
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(Jfx - JVk~ι)χ) - (J£χ - Jk~n%)

= λ Σ {Axjy
k~ι)+*x - AkJ£-ιx} + (»λ - h)AhJ£~'x .

Thus, we can write

fx - Jί(fe-Uίc) - (J£x - Jt'x), F{J?kx - JZx)>

Σ,ζ-1)+px - AhJ£~%
ί>=0

+ xΣtζAxJt^-v+'x - AhJt% F(J?kx - J£x)

- F(Jϊι*-1)+p+1x - J£x)>

+ (nX - h) <AhJt% F(J?kx - J£x)> = I, + It + I3 .

We now estimate each term. Since A is a Z>-operator and Bx,τ is a
bounded set, It ^ λ Σ?=J ωBχ,τ || J?t*-1)+J>+1» - Jf* IΓ Since

^ λ " Σ II AλJix || ^ λ ( l - λ ω - ) ~ n k + 1 n \\\Ax\\\
j = n(k-l)+l

^ CXtTn\ ^ CXtTh ,

we have

I, ^ ω5jPfΓfe || J Γ ^ - J ^ ||2 + const (x, τ)h ,

by using (3.2). Also, we have

I* ύ 2C,,rλ Σ II F(Jϊhx ~ Jtx) - F(Jrk~ι)+p+1x - Jh

kx) || .
0

Employing the uniform continuity of F on bounded sets, we can find
a function &(h) = ξ?(h; x, τ) such that i?(Λ)->0 as h->0+ and
such that

sup II F{Jfx - Jix)

Note that || Ji"
ι*-»+»+1αj - J?*»|| ^ C.,Λ Also,

7, ̂  Inλ - λ I || 4 t Ji"ic II II Jχ"x ~ Jix II

Consequently,
m

|l Γ w w ^ Γ m ^ | | 2 _ 'SΠ f|| Tnk^ Tkv\\2 II Tn{k~ι) V T^-l™ 1121

^ Σ 2reζ(J?"x - J£x) - {Jfik~l)x - J£~ιx), F{Jfx - J?ίc)>
Λ = l

^ 2ωSχ>τh Σ II J ? * « - Λ * s II2 + ̂ ( λ , A) ,
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where φ(\ h) ΞΞ const(x, r) (h + &(h) + m\Xn — h|) and note^that

2re<x - y, F(x)> ^ 2 || x ||2 - 2 || x || || y ||

= II * I ! 2 - l i a / I I 2 + ( I I x II - I I i / I I ) 2 ^ 1 1 * I I 2 - I I 2 / I I 2 -

Hence, for each ί e [0, τ], we can wri te

I J^x _ jγMx\\*d8 + φ(\, h) .

This is a Gronwall type inequality, and so, we have that

|| Jn\tihiχ _ Jltlhiχ ||2 <g ψ^ jψ e χ p (2θ)5a. j rί) .

Therefore, we have

(3.3) " ntm"~ Π ί M U "
- jrίtihlχ\\ + Vψ(\

First, take λ = eμ = 2"^, h = ev = 2~v, m = [ί/εj and ^ = 2^~v. In

this case ^(ε^, εv) = const (x, τ) (εv + ^(ε^)) —> 0 as v —• co, and

[ [ί/εj - 2μ~v [t/εu] [ ^ 2μ~\ So, we see that (by (3.2))

y Jε f1 x — Jε

 v v x — u ί ε v ) ,

and hence

; J μ, ev)

This means that {Jl^^x} is a Cauchy sequence. We then set

(3.4) y(t; x) = Km /ί^^a? , ί e [0, τ] ,

Finally, we show that the existence of the limit is independent of
the sequence chosen. Let 0 ^ t < τ, and 0 < λ <g A, < min {λ0, τ — ί}.
Taking, this time m = [t/h] + 1 and n = [[ί/λΊ/[ί/A] +1] we observe
that

/Q pjv ί mfe ^ ί + h, nX ^ fe, 11 — %λm | ^ 2λ + τλ/fe,

11 [t/X] — ^ m I X <; 3λ + τλ/fe, m\nX - h\ <,2h + 2X + τX/h .

Similarly, as above, tak ing X = εu, then let t ing v —> oo, W e see using

(3.4) and (3.5) t h a t

|| y(t; x) - Jψ"x || ^ const (a?, τ) i/3Λ + e(Λ) .

LEMMA 3.2. Let A be a D-operator in X satisfying (I), (R) and
(E).

(a) For every bounded set B in D(A) and τ > 0, there exists a
number ωBjT Ξ> 0 such that
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II y(t; x,) - y(t; xj\\^ exp(α>5,rί) || χλ - x21|

for t e [0, τ] and xu x2 e B.

(b) For every x e D(A) and τ 0 > 0, there exists a number cox>τ >̂ 0

such that

|| y(t; x) - y(t'; x)\\^\t-t'\ exp(ω x , r τ) | | | Ax \\\

for t, ί 'e[O,rJ.

Proof, (a) Let B be a bounded set in D{A) and r0 > 0. Take
x19x2e B, then by Proposition 1.3 we have that

for some ωBfT ^ 0 and h sufficiently small. Now letting h-++0, we
obtain (a).

(b) Let x e D(A), τ > 0 and set

BX,Γ = {J?x; h e (0, λ0), mh e [0, τ]}

U {x - h y ; h e ( 0 , λ 0 ) , y e Ax, \ \ y \ \ ^ \\\ A x | | | + 1} .

Then, BXfT is a bounded set by (E). Now, let ωXfT be a constant
associated with this bounded set in the sense of Proposition 1.3 and
let 0 £ V < t ^ τ. Then, by (3.2),

[ί/fc]-l
II 7"^+1τ — 7"^ II < /? VV

/
- [t'/h] I M l ~ to,)7)-[ίM] n i e l l i .

Letting h—> +0, we have (b).
Consequently, we have the following main theorem:

THEOREM 3.1 If A is a D-operator in X satisfying (/), (R) and

(E). Then there exists a semi-group {T(t)} on D(A) such that

(3.7) T{t)x = lim (/ - XA)~[tlλ]x for t^0 and x e D(A) ,

and the convergence is uniform with respect to t in every finite in-
terval.

Proof. In view of Lemma 3.1, set T(t)x = y(t; x) for t ^ 0 and

x e D(A). First, by using Lemma 3.2 (a), we can obtain a unique

extension of T(t) to D(A) by continuity, we denote this extension by

the same symbol T(t). Then each T(t) maps D(A) into itself, and

also for every bounded set B in D(A) and τ > 0 there exists a

number ωBτ Ξ> 0 such that
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(3.8) || Γ(ί) | |L l p ( B ) £ exp (ωBJ) , t e [0, τ] .

To establish the semi-group property, first take x e D(A) and t, s ^ 0
with t + s <̂  τ. Let i?β,r be the bounded set defined in the proof of
Lemma 3.1 and N(T{s)x) be a bounded neighborhood of T(s)x (small),
and then consider the bounded set Bx,τ U N(T(s)x). Now using
Proposition 1.3 and (3.8), it is seen that || T(t + s)x — T(t)T{s)x\\ can
be made arbitrarily small. (3.7) was established in Lemma 3.1.

REMARK 3.1. In Theorem 3.1, (3.7) holds for xeD(A), if either
of the following conditions is satisfied:

(3.9) R(I - XA) z> D(A) for λ e (0, λ0), or

(3.10) A is closed.

In fact, if (3.9) holds, then by Proposition 1.3 {J^1^} is equi-Lipschitz
continuous on bounded sets in D(A). Hence, Lemma 3.1 implies the
convergence (3.7) for all xeD(A). Next, assume that A is closed.
Let xeD(A), ίe[0, r], and then choose a sequence {xn}czD(A) with
xn —> x. Let B = {αjj, then by Proposition 1.2, we see that there is
a number λ̂  such that if λe(0, XB), then yn(X) = Jλxn—*vλeX.
Hence, Ayn(X) 9 λ-^^λ) — xn) —> λ""1^ — x). This means that

λ Γ 1 ^ — x)e Avλ, i.e., x e (I — XA)vλ c R(I — XA) .

Therefore, Proposition 1.3 implies that {J[tιn} is equi-Lipschitz con-
tinuous on B, and so, Lemma 3.1 implies the convergence (3.7) for
the x.

4* Differentiability of the Constructed Semi-Groups* The dif-
ferentiability of the semi-group obtained by Theorem 3.1 is investi-
gated in this section. The central part of the arguments is based
on the results of Kato [4] and [5]. Throughout this section X is
assumed to have a uniformly convex dual.

Let A be a Z)-operator in X satisfying (/), (R) and (E). Set
en = 2~n and Ir = [0, r] for r = 1, 2, 3, and define Jn = {I-εnA)-1

and An = ε"1 [Jn — I] for n with εn e (0, λ0).
In view of (3.2), we note that for each r,

xW <ί ( 1 - e%ωBmtr)-™^ \\\Ax\\\ ,

n sufficiently large and te[0, r], for the bounded set

Bx>r = {Jitlε^x; te[0,r],n s u f f i c i e n t l y l a r g e }

U {x - eny; n l a r g e , y e Ax, \\y\\^ \\\ Ax \\\ + 1} .
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Since

(1 - e - β O - 1 = 1 + ωβχtrεn(l - enωBβtr)~ι

^ exp(ωBa§ren(l - enωBχtr)-1)

for n sufficiently large and te[0, r]. Hence,

II AJl^x || ^ exv(ωBχJr + en)(l - ε%ωBmtΨ)-*) \\\ Ax \\\

for n sufficiently large and t e [0, r]. Therefore, if we set fn(t; x) =
^x for t ^ 0 and a e D(A), then /,(*; &) e Ajw^x, and

(4.1) for every r, ||/»(ί; α?)|| is uniformly bounded with respect to
sufficiently large and te[0, r].

Also, since

we have

(4.2) || [Jl'i^ - I]Jnx - \'fn(s; x)ds\\ = O(εn) .
JO

The main result of this section is the following:

THEOREM 4.1. Let A be a demi-closed D-operator satisfying (I),
(R) and (E), and {T(t)} be the semi-group on D(A) obtained by
Theorem 3.1. Then for x e D(A),

( i ) T(t)xeD(A) for t ^ 0,
(ii) there exists a function f(Λ',x) on [0, °o) such that

f(t;x)eAT{t)x

for almost all t^O, where Ax = {yecδAx; \\y\\ <̂  | | | Aa?|||}, and

(4.3) T(t)x - x = (' f(s; x)ds t ^ 0 .
Jo

Proof. Take x e D{A) and p with 1 < p < + oo. Set fn(t; x) =
^-^</ew:l^> then by (4.1) {/n( a?) | J r ; % sufficiently large} forms a
bounded set of Lp(Ir; X) for integer r. Thus by moving r and using
the diagonal process, we find a subsequence {q} c {n} and a function
/ ( x) on [0, oo) such that fq( ;x)\ Ir converges weakly to / ( ;x)\ Iτ

in Lp(Ir; X) for each integer r. Hence,

β* I fq{s\ x)ds >α?* 1 f(s;x)ds
Jo Jo

for all x* e X* and ί ^ 0. Thus (4.3) follows from (4.2). Write V(t)
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for the set of all weak cluster points of {fn(t; x); n} for t ^ 0, then
Lemma 3.1 and Proposition 1.7 (a) imply that T(t)xeD(A), V(f)Φβ),
and V(t) c AT(t)x for t ^ 0. Hence, by the same argument as in
Kato [5; Lemma 8.2] we see that f(t;x)ecδ AT(t)x for almost all
t ^ 0. And, in a similar way to Kato [5; Lemma 6.2], \\f(t; x)\\ ^
HI AT(t)x HI for almost all t ^ 0. Thus, it follows that f(t; x) e AT{t)x
for almost all t ^ 0.

REMARK 4.1. Let A be a demi-closed D-operator in X satisfying
(7), (R) and (E), and {T(t)} be the semi-group obtained by Theorem
3.1, then {T(t)\DU); t ^ 0} forms a semi-group on D(A) by the above
theorem. By (4.3), we see that the infinitesimal generator Ao of
{T(t)\DU)} is densely defined in D(A).

In view of these results and Proposition 1.6, we have the fol-
lowing.

THEOREM 4.2. Let A be a maximal (D, {α)J)-operator on D{A)
satisfying (/), (R) and (E). Then there is a uniquely determined
semi-group {T(t)} on D(A) such that for each xeD(A),

(d/dt)T(t)x e A°T(t)x for almost all t^0 .

THEOREM 4.3. If A is a single-valued, demi-closed D-operator in
X satisfying (I), (R) and (E). Then there is a uniquely determined
semi-group {T(t)} on D(A) such that

(a) for xeD(A), AT(t)x is. weakly continuous in t Ξ> 0 and

(4.4) T(t)x - x = [ AT(s)x ds fort^O,
Jo

(b) A is the weak infinitesimal generator and the infinitesimal
generator Ao is densely defined in D(A).

Proof. Using the notation in the proof of Theorem 4.1, we have
that V(t) is a singleton, since A is single-valued. And thus, by
Proposition 1.7, w-\im fn(t; x) = AT(t)x for t i> 0. The strong con-
tinuity of T(t)x and the boundedness of AT(t)x give that AT(t)x
is weakly continuous in t ^ 0. Finally (4.4) follows directly from
(4.2).

COROLLARY 4.1. If A is a demi-closed D-operator in X satisfying
(I), (R) and (E), and A0 is single-valued, then there exists a unique
semi-group {T(t)} on D(A) such that for xzD{A), (d/dt)T(t)x = A°T(t)x
for almost all t ^ 0.
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Proof. In this case, note that we have that A = A0, where A is
defined in Theorem 4.1 by Ax = {yecdAx; \\y\\ == |||Aα?|||}.

COROLLARY 4.2. If A is a demi-closed D-operator in X satisfy-

ing (I) and (R) and \\ Jλx|| ^ (1 + MX)\\x\\ + NX for Xe (0, λ0), xe Rλ,

where M and N are nonnegative, then there is a semi-group {T(t)}

on D(A) such that (d/dt)T(t)xecδAT(t)x for almost all t^O and

II T(t)x | | ^ eMt(\\ x II + Nt) for t ^ 0.

Proof. By Proposition 1.4, A satisfies condition (E) and also we
have that || J? / ; π£| | ^ (1 + ikfλ)[ί/; ](|| x 11 + Nt), hence using Theorem
4.1 we have the assertion.

COROLLARY 4.3. If A is a single-valued, demi-closed D-operator
in X satisfying (I) and (R) and sup || Ax || = N < + ©o, then A is the
weak infinitesimal generator of a semi-group {T(t)} on D{A) such
that || T(t)x || ^ || a; || + Nt for t^O and x e D(A) and

sup {|| AT(t)x \\;t^0,xe D(A)} ^ N.

Proof. Employ Proposition 1.4.
In the remainder of this section, we consider the case in which

X is uniformly convex.

LEMMA 4.1. Let A be a demi-closed D-operator in X satisfying
(I), (R) and (E) such that A0 is a single-valued operator with
D(A°) = D(A). Then if {T(t)} is the semi-group on D(A) obtained by
Theorem 4.1, we have for xeD(A),

(a) HI AT(t)x HI is of bounded variation on every finite interval
and has no positive jumps,

(b) the right derivative D+T(t)x exists and is strongly right-
continuous in t, and D+T(t)x = A°T(t)x for t ^ 0,

(c) A°T(t)x is strongly continuous except possibly at a c count-
able number of points t.

Proof, (a) Take xeD(A). Then by the same argument as in
Kato [5; Lemma 6.6] we obtain that

e-ωB,S HI AT(t)x HI ^ e-** fr* ||| AT(r)x \\\

for all r and t with 0 ^ r ^ t ^ r. Thus, ||| AT(t)x ||| is of bounded
variation.

(b) Take x e D(A) and t ^ 0. Choose a sequence tk { t. Then by
the proof of Kato [5; Theorem 7.5] we see that {A°T(tk)x} contains a sub-
sequence which converges strongly to A°T(t)x. So, A°T(t)x is strongly
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right-continuous in t. But, since T(t)x — x = 1 A°T(s)xds by
Theorem 4.1, it follows that D+T(t)x = A°T(t)x for each t.

(c) By (a) \\A°T(t)x\\ = \\\AT(t)x\\\ is continuous except for a
countable number of points t. In order to show that A°T(t)x is con-
tinuous except for those points, it suffices to repeat the same argu-
ment as in (b) with tk \ t. But the continuity at t of || A°T(t)x\\ as-
sures that limfc || A°T(tk)x || = || A°T(t)x \\. Thus the uniform convexity
implies that A°T(t)x is strongly continuous at the t.

Consequently, we have the following:

THEOREM 4.4. Let X be uniformly convex. If A is a demi-
closed D-operator in X satisfying (/), (R) and (E) such that A0 is a
single-valued operator with D(A°) = D(A), then A0 is the infinitesimal
generator of a unigue semi-group {T(t)} on D{A) such that for
xeD(A), D+T(t)x = A°T(t)x for t ^ 0, and D+T(t) is strongly right-
continuous in t ^ 0.

The following results are the direct consequences of the above
theorem.

COROLLARY 4.4. Let X be uniformly convex. If A satisfies the
assumptions of Theorem 4.2, then A0 is the infinitesimal generator
of a unique semi-group {T(t)} on D{A) such that for xe D(A), T(t)x is
strongly right-continuously differentiable in t and D+T(t)x — A°T(t)x
for t ^ 0.

COROLLARY 4.5. Let X be uniformly convex. If A is a single-
valued, demi-closed D-operator in X satisfying (I), (R) and (E), then
A is the infinitesimal generator of a unique semi-group {T(t)} on
D(A) such that for xeD(A), T(t)x is strongly right-differentiable
in t and D+T(t)x = AT(t)x for each t :> 0.

REMARK 4.2. Let X be uniformly convex. If A is a closed dis-
sipative operator in X satisfying (R), then A0 is the infinitesimal
generator of a unique semi-group {T(t)} of contractions on D{A) such
that for xeD(A), T(t)x is strongly right-continuously differentiable
in t and D+T(t)x = A°T(t)x for t ^ 0. For details, see [10].

APPENDIX

A.I. After this paper was submitted for publication, Crandall
and Liggett gave (in " Generation of semigroups of nonlinear trans-
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formations on general Banach spaces ", to appear) a new method for
constructing a semigroup of nonlinear contractions in a general
Banach space. The main results in their paper can be extended
straightforwardly to our case. As was stated in § 1, Propositions 1.2
and 1.3 are valid for general Banach spaces. Using these propositions
in a similar way to their proof, we can obtain the assertion of
Theorem 3.1, without assuming that X* is uniformly convex. Also,
we can obtain a similar result to theirs on the differentiability of
semigroups of nonlinear contractions. For details, we shall publish
elsewhere.

A.2. We did not give in the body of this paper any examples
of D-operator satisfying conditions (/), (R) and (E). We state here
a simple example of a .D-operator which is not necessarily a dis-
sipative operator.

Let Ω be a bounded domain with smooth boundary in RN and let
us consider the Cauchy problem

%γ — ΔUi + Φu2 ,

(A.I)
(d/dt)u2 = Au2

with the initial condition

u /Q g\ _ u ίg\

u2(0, s) = u2(s) ,

over the Hubert space H = L2(Ω) x L2(Ω) with the inner product

\uj' \v2i

It is well-known that the operator A with domain H2(Ω) f] Hi(Ω) is m-
dissipative. We then assume that the operator Φ is locally bounded
on X and Lipschitz continuous on bounded sets.

Now, let us define an operator A in H by the relation

I An, + Φuλ ( luλ )
An = I for ueD(A) = \u = Ί; uu u2eH\Ω) n fl?(fl) .

Then the problem (A.I) is understood as the ACP for A in the space
H.

In the following, we demonstrate that A so defined is a demi-
closed D-operator satisfying conditions (I), (R) and (2£).

(a) Let B be any bounded set in H and w, v e ΰ n D{A). Then
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(An — Av, u — vy

- v2), u2 - v2y

v J l ϊ - | | ^ 2 - v 2 | | ί + \ \ Φ u 2 - Φ v « | | l l ^ i - v J I

v2 II II uγ - v1 II ^ ΊBj2 (II u, - v, ||2 + || u2 - v2

where ΎB is the smallest Lipschitz constant of Φ on the bounded set
B. Hence, A is a D-operator.

(b) Let ve X, λ > 0 and let us consider the equation

(A.2) u — XAu = v ,

or equivalently,

((I -

1
Since z/ is m-dissipative, we obtain a unique solution

(A.4)

of the second equation of (A.3). Substituting this into the first equa-
tion and using the m-dissipativity of A, we get

(A.5) uλ = (I- λz/)-1 [vx + XΦ(I -

Therefore, u = (Ul) is the unique solution of (A.2) and since λ > 0

and v e X were arbitrary, we see that I — λA is injective and
R(I - XA) = H for all λ > 0. Hence, A satisfies (J) and (R).

(c) From (A.4) and (A.5) it follows that

" I I 2 = 1 1 ^ 1 I I 2 + 11 u2 I I 2

v, ||2 + 2λ || Vι || II Φ(I - \Δ)~'v2 \\ + λ2

v II2 + 2λ || v || || Φ(I - \A)"v2 \\ + λ2

or
\\J\\^ \\v\

where u = Jλv, λ > 0 and v e X. Now, let v e H, τ > 0, λ > 0, and
let nXe [0, τ], then

^ \\JΓ2V ιι + λ {iι Φ(J - λj)-1 μ r 2 ^ ] 2 II + II Φ(I - ^rvriv\* in

and inductively,
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where [J!v]2 means the second component of J\v. But, since [Jχv]2 =
(I-λj)-^2,

i — 1

^ || v || + τ sup || Φ(I - \Δ)~% || .

Let B be any bounded set in H. Since (/ — λj)" 1 is a contraction on
H, the set {(/ — λj)~%2; veB, 0 ^ iλ <̂  τ} is bounded in L2(J2). On
the other hand, Φ maps bounded sets into bounded sets by assump-
tion, and hence

sup {|| Φ((I - \j)~% W veB, 0 ^ iλ ^ τ) = MB,τ < +

Consequently,

\\Jiv\\ ^ sup {|| v ||; v e ΰ }

for v e 5 , λ > 0 and riλ,e[0,τ], which means that A satisfies condi-
tion (E).

(d) Finally, we show that A is demi-closed. Assume that
u{n) G D(A), uin) -> u and that Au{n) -^ v in H. Then, n\%) ->ui9 i = 1,
2, Φu{

2

n) —>Φu2, and z/^w) —̂  v2 in L2(Ω). Since the closed linear operator
4 is demi-closed, we have that v2 = ju 2 . Also, j ^ w ) —̂  vx — Φ^2;
hence, ^ — Φu2 = z/^. Consequently, v = A^. This means that A is
demi-closed.

From the above, it can be seen that other D-operators can be
exhibited by replacing the operator A by any m-dissipative operator
satisfying the assumption of Proposition 1.4 (a). Also, we can con-
sider unbounded operators Φ by restricting the Hubert space
H = ίZi x H2 so that Φ is a locally bounded, locally Lipschitz con-
tinuous operator on a Hubert space Hx into another Hubert space H2.
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