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The index of an irreflexive binary relation R is the
smallest cardinal number a(JEt) such that R equals the union
of σ(R) partial orders. With s(ri) the largest index for an
R defined on n points, it is shown that s(n)/log2 w —»1 as
n->ooφ The index function is examined for symmetric R's
and almost transitive R's, and a characterization for
σ(R) ^ 2 is presented. It is shown also that

inf {n: s(ri)>3} ^ 13 ,

but the exact value of inf {n:s(ri) > 3} is presently unknown.

1* Introduction* A binary relation on a set X is a subset of

ordered pairs xy in X x X. A directed graph (hereafter digraph1)
G = (X, R) is a nonempty set X and an irreflexive (xx £ R) binary
relation Jϊ on X. If ^ c Γ g l then G \ Y is the digraph obtained
from G = (X, R) by deleting all points in X-Y.

A partial order P on X is an irreflexive and transitive {xy e P &
yzeP=>xzeP) binary relation on X. A digraph G = (X, R) is
resolved by a set of partial orders on X if and only if R equals the
union of the partial orders in the set. Since {xy} is a partial order
when xy e R, every G is resolved by some set of partial orders.

The index2 of a digraph G = (X, R) is the smallest cardinal
number σ(R) such that R is resolved by σ(R) partial orders on X.
Clearly σ(R) = 1 if and only if R is a partial order. σ({ab, ba}) = 2,
and σ(R) = 3 for the cyclic triangle R = {ab, be, ca). The smallest X
that we know of that admits an R with σ(R) = 4 has 13 points. (See
Figure 1.) In connection with a later characterization of σ ^ 2 we
present an R with σ(R) = 2 where R cannot be the union of two
disjoint partial orders.

Our definition of σ(R) is motivated by Dushnik and Miller's de-
finition [2] of the dimension of a partial order P on X as the smal-
lest cardinal number D(P) such that P equals the intersection of D(P)
linear orders on X. A linear order L on X is a complete
(x Φ y=*xy e L or yxe L) partial order, and a chain in X is a linear

1 We shall sometimes refer to a binary relation as a digraph, omitting explicit
mention of the set on which the relation is defined.

2 It is tempting to use "dimension" instead of "index," but since the former
term is used for a number of other concepts in the theory of binary relations we
favor the latter here. It would be proper to write σ(G) instead of σ(R), but since
<r(R) = o(R') if R is isomorphic to R' the specific omission of X will cause no problems.
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order on a subset of X. A number of facts about D(P) are sum-
marized in [1], which gives other references.

This paper examines the index function σ for digraphs. The
next section focuses on large values for σ{R). Our first theorem,
based on a theorem in Folkman [4], shows that σ{R) can be arbitrarily
large for both symmetric (xy e R=^yxe R) and asymmetric (xyeR=>
yx $ R) digraphs. The second theorem examines the behavior of σ
in the following way. Let

s(n) = sup{σ(R): R is an irreflexive binary relation on n points} ,

the largest σ for a digraph with n points. When u is a real-valued
function on {1,2, •••} and u(n) remains bounded as n gets large, we
write u = 0(1) according to popular convention. Theorem 2 states
that

1 S
log2n — — log2log2w + 0(1) ^ s(n) ^ log2n log2log2w - 0(1) .

2 2
This gives another proof that σ can be arbitrarily large, and shows

that s(ri)/log2(n) approaches 1 as n gets large.
The rest of the paper is mostly concerned with small values of

σ. Section 3 presents an (X, R) with \X\ = 13 and σ(R) = 4. We
do not presently know the smallest X that admits an R with
σ(R) = 4.

Symmetric digraphs (X, S) are examined in § 4, where we give
a necessary and sufficient condition for σ(S) ^ 2. Suppose that P is
a partial order on X and

S = {xy: xyeXxX&x^y & xy $ P & yxg P} .

Then S is a symmetric digraph. We note that when S is defined in
this way, then D(P) ^ 2 if and only if σ(S) ^ 2, and

D{P) ^n^ σ(S) ^ 2(n - 1) .

The question of whether σ(S) ^ n => D(P) ^ f(n) for some function
/ is presently open.

A binary relation R is almost transitive3 if and only if (abeR
& bee R & a Φ c) ̂ ace R. Section 5 proves that σ(R) ^ 2 when R
is an almost transitive digraph.

Section 6 then gives a general characterization of σ(R) <g 2 that
is stated in terms of a partition of the subset of R whose elements

3 Harary, Norman and Cartwright [7, p. 7] call this transitivity, but we use the
modifier to distinguish it from the more common use of "transitivity" in which a, b
and c do not have to be distinct.
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are involved in nontransitive adjacent pairs such as xy, yze R &

2. Digraphs with large indices*

THEOREM 1. If n is a positive integer then there are asymmetric
and symmetric digraphs whose indices exceed n.

Our proof is based on a specialization of Theorem 2 in Folkman
[4]. A graph (X, E) is a nonempty set X and a set E of unordered
pairs {x, y) with x, y e X and x Φ y. A triangle of (X, E) is a set
{{α, &}, {6, c}, {a, c}} g E. A partition of X is a set of mutually dis-
joint subsets of X whose union equals X.

LEMMA 1 (Folkman). Let m be a positive integer. Then there is
a graph (X, E) that includes no triangles, and every partition
{Cu , Ck) of X with k ^ m contains a d such that a, b e d for
some {α, 6} e E.

Proof of Theorem 1. Let (X, E) be such a graph for m = 2*. Let
(X, R) be any digraph for which xyeRoryxeRiί and only if {x, y) e E.
Suppose that R is the union of partial orders Pu •••, Pn on X. Since
E has no triangles, any subset of a P< is a partial order and hence
we can assume P< Π P5 = 0 when i ^ i. Letting A(x) — {i: for some
y e X, xy e Pi}, partition X so that x and # are in the same element
of the partition if and only if A(x) = A{y). The number of elements
in the partition does not exceed 2n. Thus, by Lemma 1, the partition
contains an element Y with x, y e Y and {x, y) e E. Then A(x) =
A(y). Since xyeRoryxe R, take xy e P3 for definiteness with j e A(x).
Since j e A(y) also, there is a ^ e l such that yz e Pό. Transitivity
then implies that xz e Pά and hence that E includes a triangle,
which contradicts our initial hypothesis. Therefore o(R) > n. By
the definition of R it can be taken to be either asymmetric or sym-
metric (or neither).

Henceforth in this section all logarithms are to base 2 unless
indicated otherwise. [r] = (largest integer <̂  r) and {r} = (smallest
integer >̂ r).

THEOREM 2. log n - 1/2 log logw + 0(1) >̂ s(n) ̂ \ogn~ 3/2 log log n
-0(1).

We show first the upper bound, using two preparatory lemmas.
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LEMMA 2. In any digraph G = (H, R) with \ H | = m there exists
D^H such that \D\^ {log4m} = {1/2 log m) and σ(G\D) ^ 2.

Proof. We use induction on m, the lemma being obvious for
small values of m. Fix x e H. Split H* — H — {x} into four parts:

T, = {ye H*: xyίR & yx£R) S, = 0

T2= {ye H*: xyeR & yx$R} S2= {x} x A

T3 = {v e H*: xyZR & yxeR} S3 = A x M

T4= {ye H*: xyeR & yxeR} SI = M x A ,

sr= A x M .
Some I Ti \ ̂  {(m-l)/4} By induction find A S ϊ7* with

I A I ̂  {log41 T, |} ^ {log4 {(m-l)/4}} - {log4m} - 1

and G\ A = Pi U P 2 Then set i) = A U W G\D = (P.U Si)U(P2ΌSi)
except for i = 4 when G | D = (Pi U SI) U (P2 U SΓ)

LEMMA 3. /^ απ?/ digraph G = (X, 2?) with \X\ = n there is a
partition {A, , A} o/ X such that t < 3^/log n and σ(G \Di) ^2
for each i.

Proof. Given G, by Lemma 2 find A such that

I A I = χi ^

By induction find A such that

From elementary calculus we can show Σ- = ] xt ^ n for

We now show the upper bound for Theorem 2 Let G — (X, R)
with \X\ = n. Take A , •••, A as in Lemma 3. Let {Af, Bf) be a
partition of {1, , t) for i = 1, , s such that for all 1 ̂  j Φ k ̂  ί
there exists i, 1 ̂  i ^ s, such that j e Af & A: e Bf. By Spencer [12]
we may take

s = log t + 1/2 log log ί + 0(1) ^ log n - 1/2 log log n + 0(1) .

{A*, Bf} induces a partition {Aiy BJ of X with

i ^ U A , A = U A
jeA? jeB?
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Then set

Pi = {%V- x e Ai & y e Bi & xy e R} for i = 1, , s .

Since σ(G | A) ^ 2, G | A = PI U P". Set

Pf = U Pό P" = U P"

Then i2 = P' (J P " U Pi U U P s, giving the upper bound of Theorem
2.

We turn to the lower bound of the theorem, again using two
preliminary lemmas. A complete asymmetric digraph is a tournament.4

We shall show that a " random " tournament T — (X, R) with | X | = n
has 6r(Γ) ^ logw — 3/2 log log w — 0(1). Intuitively speaking, we show
that all P gΞ T are essentially bipartite.

Let T" be the set of tournaments with X= {1,2, « ,w}. We
say that T = (X, i?) e Tw has property a if and only if there are A,
B g l with | A \ = | B \ ̂  3 log n and i x S g β . Γ has property β
if and only if there is an 4 g l and a linear order L on A such
that IA I ̂  (log w)2 and

LEMMA 4. For n sufficiently large there exists T e Tn satisfying
neither property a nor property β.

Proof. If TeTn has property a, there are i , B g I with
IA I = I B I - [3 log n] and A x B s .K. Set £ = [3 log w]. For fixed
A and 5, 2~ί2 is the proportion of T eTn that satisfy this condition.
There are less than n2t choices of A and B, so less than nu2~~t<λ of
the Te Tn satisfy a. n2t2~t2-+0 as w-> oo.

If TeTn has property /3, there exists 4 g l and L on A such
that IA I = [(log w)2] and (*) holds. There are less than ?^(log n)2 choices
of A and then [(log rif]! choices of L. Given A and L, the propor-
tion of T eTn satisfying (*) is the probability of at most (£)/3 heads
in (2) flips of a fair coin where t — A ~ (log rif. This probability is
approximately p~{^ where p = 31/3 (3/2)2/3 > 1. Thus the proportion
of T e Tn satisfying β is less than

n
( l o s n)2 [(log ri)2]! p-Φ, which >0 as

Thus for n sufficiently large some TeTn can satisfy neither a
nor β.

4 See Moon [9] for extensive discussion of tournaments. See also [3, 10, 11] for
resulted to the present paper.



154 PETER C. FISHBURN AND JOEL H. SPENCER

LEMMA 5. // Tu •••, Tn s {1, •••, s} then there are n/(s%) T{

which are mutually comparable.6

Proof. We use a technique due to Lubell [8]. There are s !
maximal chains of subsets of {1, •••,§} under the ordering of c .
If I Γ< I = a then Tt is in α ! (s-a)\ ^ (s/2)!2 = s!/(s

s

/2) maximal
chains. Thus some maximal chain must contain n[sl/(s%)]/sl T{.

In the following proof of the lower bound of Theorem 2 we use

the fact that 1/Q2) ~ Vπβ V~s 2~s.
Let G = (X, R) be a tournament that satisfies neither a nor β

(Lemma 4). Suppose that R = P1 U U Ps- Define

W{ = {x e X: \{y eX:xyePi}\>S log n)

Li = {xe X: \{y eXiyxeP^yS log n}

R{ =X- Wi-Li

for 1 ̂  i ^ s. (We split X into winners, losers, and the rest.) By-
Lemma 4, Wi Π I/i = 0 . For a? e X set

Γ β = { i i α e T ^ U Λ J e t l , « , s } .

By Lemma 5 find F g X such that \V\^n i/τr/2 l / T 2"-s and Tx g Γ^
or Γ^ g T^ whenever x, 7/ e V. Induce a linear order L on F by set-
ting X I / G L if TxczTy: when Tx = Ty, L is defined in any fixed
manner.

Now assume s < log n - 3/2 log log n -1. Then | F | ^ 27 i/i/2
(log nf. Set

Given xyeZi9 TxξΞ: Ty so that we cannot have # e W{ & y e L{. And
since Wi Π L^ = 0 we cannot have xeL^ & 2/e TΓi Therefore

Zi = {xyeZiix or ye R{} [J {xye Z{: x,ye Wi} U {xy e Z{: x, y e L J .

There are a t most 6 logw | V\, 3 l o g ^ \V\ and 3 l o g ^ \V\ ordered
pairs in the first, second and third p a r t s respectively of this decom-
position of Zi. Thus \Zi\^ 12 logn \V\. Since G does not have
property β it follows t h a t

and hence that | F | ^ 72 (log n)2 + 1. Since this contradicts | F | ^ 27

l/τr/2 (log n)2 it must be true that s ^ log ^ — 3/2 log log n — 0(1).

5 Ti and Tj are mutually comparable if and only if TiQTj or Tj^
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This completes the proof of Theorem 2.
If a sufficiently good bound could be placed on

{xy e Pi. x or ye R{ or x, y e W{ or x, y e LJ

then one could prove s(n) = logn- 1/2 log log n + 0 (log log n). One
might even show that s(n) = \ogn- 1/2 log log n + 0(1).

3. A digraph with σ = 4 and | X \ = 13. Although the
theorems of the preceding section show that there are digraphs with
large indices, they are of little use in attempting to discover the
smallest X that admits an R for which σ(R) = n. Figure 1 shows
the smallest X that we know of for which σ(R) = 4.

FIGURE 1

Assume that σ(R) = 3 for Figure 1, with A, B and C three partial
orders whose union equals R. Then one of A, B and C must contain
exactly one of aβ, βy, yδ, δμ and μa and the other two must each
contain exactly two of these ordered pairs in alternating fashion.
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Suppose for example that aβ eA,βye B, yδ eC, δμe B, μa e C. Then
yet, δβ, μy, aδ, and βμ must be respectively in C, A, A, A, and B.
Then ybeC and δf, fμ e B. Since ybeC and fμ eB, bfe A. Since
bfeA and δfeB, feeC. By the cyclic triangle {fe,eδ,δf}, eδ
must be in A. But since δβ e A this implies eβ e A, which is false.
A similar contradiction to σ = 3 is obtained when any alternative
assignment is made for aβ, βy, , μcc.

4. Indices of symmetric digraphs* In this section we consider
symmetric (xyeS=>yxe S) digraphs (X, S). For any binary relation
R, iϋ* = {xy: yxe R}, the converse or dual of R.

A graph (X, E) is a comparability graph if and only if there is
a partial order P on X such that {#, y) e E if and only if αψ e P U P*.
Ghouila-Houri [5] and Gilmore and Hoffman [6] provide characteriza-
tions of comparability graphs. When (X, S) is a symmetric digraph,
(X, JS'(S)) will denote the graph in which {x, y) e E(S) if and only if
xyeS.

THEOREM 3. Suppose that (X, S) is a symmetric digraph. Then
σ(S) ^ 2 if and only if (X, E(S)) is a comparability graph.

Proof. If (X, E(S)) is a comparability graph then S = P U P* for
a partial order P, and thus σ(S) ^ 2. Conversely, if S = Pi U P2

with Pi and P2 partial orders, then P2 = Pf.
In [1] it is shown that if (X, P) is a transitive digraph (so that

P is a partial order) and if S= {xy: xΦy & xygPuP*} then
D(P) ^ 2 if and only if (X, E(S)) is a comparability graph. Hence,
as a corollary to Theorem 3 we have D(P) ^ 2 if and only if σ(S) ^ 2.
Our next theorem extends this in one direction.

THEOREM 4. Suppose that P on X is a partial order and let
S = {xy: xΦy & xygPU P*}. Then D{P) ^n=* σ(S) ^ 2(^-1) for
n > 1.

Proof. The theorem is true for n — 2. Using induction, assume
it's true for all n < m and suppose D(P) = m with P = OΓ-̂ * where
each Li is a linear order. Let P ' = ΠΓ^; and

S' = {£7/: ^ | / & ^ ί P ' U (P')*}

Since JD(P') ^ m — 1, the induction hypothesis gives σ(S') ^ 2(m —2).
Clearly S r g S a n d S - S ' - (P' n L*) U ((P')* Π Lx). Since P ' n Lf
is a partial order (the intersection of two partial orders) and (P ' )*nl i
is a partial order, σ(S) ^ σ(S') + 2 ^ 2(m-2) + 2 = 2(m-l).
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5* Almost transitive digraphs* The proof of the next theorem
has several similarities to Szpilrajn's proof [13] of the theorem that
any partial order P on X can be extended to a linear order L with
P s L. We recall that R is almost transitive if and only if (ab e R
& bceR & aΦ c)=>aeeR.

THEOREM 5. σ(R) ^ 2 if (X, R) is an almost transitive digraph.

Proof. Assume that (X, R) is an almost transitive digraph. Let
A = {ab: abeR & ba£R), the asymmetric part of R. Let A+ =
{ab: ab e A or {aau α^, , anb} g A for distinct au , an in X that
are different from a and 6}, the almost transitive closure of A.
Clearly A+ g R and A+ is almost transitive.

To show that A+ is a partial order it suffices to show that it is
asymmetric. To the contrary suppose that xy e A+ and yxe A+.
Then from the definition of A+ and almost transitivity for R it fol-
lows easily that there is a c e X for which ex e A and xe e R, which
contradicts the definition of A. Hence A+ is a partial order.

Let & = {P: P is a partial order on J & 4 + g P g i ? } . It fol-
lows easily from Zorn's lemma that there is a P * e ^ such that
P * c P for no Pe&>. Letting P* be maximal in this sense we now
prove that

ab, baeR=>abeP* or ba e P* .

To the contrary suppose that each of ab and ba is in R and neither
is in P*. Then let

W = {&#: x =£ y & (xa e P* or x = α) & (6τ/ e P* or $/ = b)} ,

and let V= P* U TΓ, so that P* c F. We show that F is a partial order
(clearly A+ £ V g i ί ) , thus contradicting the maximality of P*. F
is irreflexive since P* and W are irreflexive. For transitivity take
xy, yze V. If both xy and 2/2 are in P* then xzeP* by the transi-
tivity of P*.

Suppose next that xy e P* and yz e W. The latter gives (ya e P*
or y = α), from which xaeP* follows, and it gives also (bzeP* or
2 — 6), from which xze V follows unless x — z. But if x = z we have
xαeP* and (6xeP* or x = 6), which give όαeP*, contradicting the
hypothesis that bagP*. Hence xyeP* & yze W=>xze V. Similarly,
xyeW & yzeP* => xz e V.

The final case for transitivity is xy, yze W. Then (xaeP* or
x = a) and (bze P * or 2 = b) so that xzeW unless x — z. But if
x = z then [(#α e P * or a? = α) & (bx e P * or x = b)] => (&α e P * or 6 = α),
which is false. Hence F is a partial order, a contradiction to the



158 PETER C. FISHBURN AND JOEL H. SPENCER

maximality of P*, and therefore

αδ, baeR = * ab e P* or baeP* .

Finally, let Q = R - P* so that # = P* U Q. Q is irreflexive
since ϋ! is irreflexive. Suppose that xy, yz e Q. Then, since both xy
and yz are in R but not A, yx and 23/ are in R and must be in P*
by the preceding analysis. Therefore zxeP* and z ^ £. Then, by
almost transitivity of i2, xzeR and thus #2βζ) since P* is asym-
metric.

Thus R = P * U Q, the union of two partial orders.

6* A partition characterization for σ <£ 2* Given a digraph
(X, JR) let K be the set of all ordered pairs of pairs in R that deny
transitivity, so that

xyKyz if and only if xy e R & yze R & xz$ R ,

and let V be the subset of R involved in these intransitivities so
that

V = {xy: xyKyz or zxKxy for some ^ e l } .

Suppose that σ(R) <£ 2. If xyKyz then XT/ and 7/2 must be in different
resolving partial orders, so that the digraph (F, K) must be bipartite
or 2-colorable. Moreover, if xy and yz are in V and in the same
resolving partial order and if xze V also, then transitivity requires
that xz be in this partial order. These two necessary conditions for
σ(R) ^ 2 are reflected in Al and A2 of Theorem 6. Their insufficiency
for σ(R) ^ 2 is noted later. (Note that σ(R) = 1 if and only if
V= 0.)

THEOREM 6. Suppose that (X, R) is a digraph and V Φ 0 . Then
a(R) = 2 if and only if V can be partitioned into VΊ and V2 so that

Al. xyKyz => xy and yz are in different VΊ ,
A2. xy, yze Vi & xze V =>xze F« ,
A3. xyeR — V=>(1) and (2) do not hold simultaneously:

(1) (yze V2& xze Vt) or (zx e V2& zye VΊ), for some ze X ,

(2) (yw e V1 & xw e V2) or (wx e F : & wye V2), for some w e X .

If R = Px U P 2 then Vi = Pi Π F for ΐ = 1, 2 are easily seen to
satisfy Al through A3, and V1Γ\V2=0.

Before proving sufficiency we show that Al and A2 are not suf-
ficient for σ = 2. All directed edges in the 13-point asymmetric
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FIGURE 2

digraph of Figure 2 are in V except for xy, rs and tv, and Al and
A2 hold. Labels 1 and 2 for Pι and P2 are assigned to the edges in
V in the only way consistent with Al and A2, beginning with Pί in
the upper left corner. For σ(R) = 2 we require rs and tv in both P1

and P2, but xy violates A3 and cannot be assigned either

Pί [rx eP.&ryί PJ or P2 [tx eP2&ty£ P2] .

By deleting the edge xy from Figure 2 we obtain an R with
σ(R) = 2 where R is not the union of two disjoint partial orders.

Sufficiency Proof for Theorem 6. With V Φ 0 let Al, A2 and
A3 hold. For i = 1, 2 let

Si = {xy: xyeR - V & (i) holds} .

Let R° = R - V - S, - S2 and for ϊ = 1, 2 define Pi by

Pi = ^ U Si U i2° .

Since P^ gΞ i?, it is irreflexive. We now prove that P1 is transitive.
The proof for P 2 is similar.
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Assume that xy, yz e Px. Then xz e R, for if both xy and yz are
in Fi then xzeR by Al, and if one of xy and yz is in & (J -B0 then
xze R by the definitions. Thus #2e Pi unless ^ e F 2 U S2. XZ e V2 is
contradicted in all cases:

1. xy, yzeV1=*xz$ V2, by A2;
2. xyeV1 & yzeS, =>xzg V2J by A3;
3. xyeV, & yzeR°=>xz£ V2, by A3;
4. xy, yzeSiU R°. Then axeR=>ayeR=>azeR and

za e R => ya e R => xa e R. Hence neither axKxz nor xzKza can hold.
It remains to show that #2 g S2. Assume #2 e S2 to the contrary and
for definiteness take zw e V1 and xwe V2 (Figure 3). We note first

R-V

FIGURE 3

that yw ί F2, for yw £ V2=*yze S2. Moreover, yw $ V19 for yw e V1

& xyeV1 contradict A2, and yw e VΊ & xyeS^R0 contradict the
definition of S2 along with A3. Hence yw e R — V. Now if
2ixeV1 then ayeR and hence (since yweR—V) aweR; and if
wae VΊ then zae R and hence (since xze R—V) xae R. Since xw e V2

requires either axKxw with ax e Vγ or xwKwa with wa e Vly and
since ax e V1 contradicts axKxw (since aw e R) and wae V1 contradicts
xwKwa (since xaeR), the proof is complete.
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