GENERATORS OF THE MAXIMAL IDEALS OF $A(\bar{D})$

NILS ÖVRELIĐ
Let $A = A(\overline{D})$ be the sup norm algebra of functions continuous in \overline{D} and holomorphic in D, where D is a bounded, strictly pseudoconvex domain in \mathbb{C}^n. This paper gives necessary and sufficient local conditions that a subfamily of A generates the maximal ideal $\mathcal{M}_w(\overline{D})$ of functions in A vanishing at $w \in \overline{D}$. In particular, it shows that $\mathcal{M}_w(\overline{D})$ is generated by $z_1 - w_1, \ldots, z_n - w_n$ when $w \in D$.

In [3], Gleason shows that if m is an (algebraically) finitely generated maximal ideal of a commutative Banach algebra A, the maximal ideal space \mathcal{M}_A can be given an analytic structure near m, in terms of which the Gelfand transforms of the elements of A are holomorphic functions.

In a sense, the results of this paper go in the opposite direction. We consider a bounded domain D in \mathbb{C}^n, with C^2 strictly pseudoconvex boundary, and study the algebra $A = A(\overline{D})$ of functions continuous on D and holomorphic in D. By a recent result, Henkin [4], Kerzman [7], Lieb [9], A equals the closure in $C(\overline{D})$ of the algebra $O(\overline{D})$ of functions holomorphic in some neighbourhood of \overline{D}, from which it follows that $\mathcal{M}_A \approx \overline{D}$.

We first fix the notation. If $w \in \overline{D}$, \mathcal{M}_w denotes the maximal ideal of the ring O_w of germs of holomorphic functions at w, while $\mathcal{M}_w(\overline{D})$ is the maximal ideal in A of functions vanishing at w. If f is a function on some neighbourhood of w, f_w denotes the germ of f at w.

Theorem 1. Let $w \in D$, and $f_1, \ldots, f_N \in A$. Then f_1, \ldots, f_N generate $\mathcal{M}_w(\overline{D})$ if and only if

1. $f_{1,w}, \ldots, f_{N,w}$ generate \mathcal{M}_w, and
2. w is the only common zero of f_1, \ldots, f_N in \overline{D}.

Corollary. If $w \in D$, $z_1 - w_1, \ldots, z_n - w_n$ generate $\mathcal{M}_w(\overline{D})$.

Below we give the more general theorem 2, which also gives a similar characterization of generators of $\mathcal{M}_w(\overline{D})$ when $w \in \partial D$. When $n = 2$, Kerzman and Nagel [8] have shown that $z_1 - w_1$ and $z_2 - w_2$ generate $\mathcal{M}_w(\overline{D})$ when $w \in D$, as well as similar results for algebras with Hölder norms. I want to thank Dr. Kerzman for sending me a copy of his thesis [7], where these results are stated.

The main tool in the proof is the following result, which is proved in [11]:
Lemma 1. Suppose $u \in C^{(0,q)}(D)$ is bounded, with $\bar{\partial}u = 0$, $q \geq 1$. Then there exists a $v \in C^{(0,q-1)}(D)$ with $\bar{\partial}v = u$, such that v has a continuous extension to \bar{D}.

A closely related result is given in Lieb [10], while a stronger result for $(0,1)$-forms, involving Hölder estimates, is given in Kerzman [7].

It is convenient to prove first a more general result. If U is open in \bar{D}, let $H(U)$ denote functions in $C(U)$ that are holomorphic in $D \cap U$. When $w \in \bar{D}$, we define $H_w = \lim_{U \ni w} H(U)$, so H_w is the space of germs at w of continuous functions on \bar{D} that are holomorphic in D. It is easy to see that H is the sheaf of A-holomorphic functions in the sense of [2].

Proposition 1. Let D be as above, $w \in \bar{D}$, and suppose f_1, \ldots, f_N have w as their only common zero. We let I denote the ideal in A generated by f_1, \ldots, f_N, and I_w the ideal in H_w generated by f_1w, \ldots, f_Nw. If $f \in A$ and $f_w \in I_w$, then $f \in I$.

Proof. By assumption, we may write $f = \sum_{i=1}^N g_i \cdot f_i$ on a neighbourhood U of w in \bar{D}, with $g_i, \ldots, g_N \in H(U)$. We want to write $f = \sum_{i=1}^N h_i \cdot f_i$, with $h_i, \ldots, h_N \in A$, and shall first solve the problem differentiably. As the sets $N_i = \{z \in \bar{D} \setminus \{w\}: f_i(z) = 0\}$, $i = 1, \ldots, N$, are closed in $\mathbb{C}^n \setminus \{w\}$, it is well known how to construct $\bar{\varphi}_1, \ldots, \bar{\varphi}_N$ with $\bar{\varphi}_i = 0$ on a neighbourhood of N_i, $i = 1, \ldots, N$, that form a C^∞ partition of unity on $\mathbb{C}^n \setminus \{w\}$. Choose $\varphi_0 \in C^\infty_0(U')$, where $U' \cap \bar{D} = U$, with $\varphi_0 = 1$ on a neighbourhood U_i of w, and define $\varphi_i = (1 - \varphi_0) \varphi_i$, $i = 1, \ldots, N$.

If we define

$$g'_i = \varphi_0 \cdot g_i + \frac{\varphi_i \cdot f}{f_i}, \text{ clearly } \sum_{i=1}^N g'_i \cdot f_i = f \text{ on } \bar{D}.$$

The $g'_i \in C^\infty(D) \cap C(\bar{D})$, and are holomorphic in $U_i \cap D$.

We want to use Lemma 1 to modify the g'_is to get h_is in A. To handle the combinatorial difficulties, we apply the homological argument of [6].

Notation. $L_r = \{u \in C^{(0,r)}(D), u \text{ and } \bar{\partial}u \text{ have bounded coefficients}\}$, while $L^*_r = L_r \otimes \Lambda^r \mathbb{C}^N$, $0 \leq r, s$.

If we choose a basis e_1, \ldots, e_N in \mathbb{C}^N, the elements in L^*_r may be written uniquely as $\sum_{|I|=r} u_I \otimes e^I$, where $u_I \in L_r$, $e^I = e_{i_1} \wedge \cdots \wedge e_{i_r}$, and we sum over strictly increasing sequences $I = (i_1, \ldots, i_r)$. We define $\bar{\partial}$ on L^*_r by $\bar{\partial}(u \otimes \omega) = (\bar{\partial}u) \otimes \omega$ and linearity. Clearly
\[\delta L_r^* \subset L_{r+1}^*, \text{and lemma 1 gives:} \]

Lemma 1'. If \(k \in L_r^* \) and \(\delta k = 0 \), \(r \geq 1 \), there exists a \(k' \in L_{r-1}^* \), such that \(\delta k' = k \), and \(k' \) has a continuous extension to \(\bar{D} \).

The product determined by \((u \otimes \omega) \cdot (u' \otimes \omega') = (u \wedge u') \otimes (\omega \wedge \omega') \) is clearly a bilinear map \(L_r^* \times L_r^* \rightarrow L_{r+s}^* \).

Let \(e_1^*, \ldots, e_N^* \) be the reciprocal basis to \(e_1, \ldots, e_N \), so \(\langle e_i^*, e_j \rangle = \delta_{ij} \). We define \(P_f : L_r^* \rightarrow L_r^{*-1} \) by

\[
P_f(d \otimes \omega) = \sum_{i=1}^N (f_i \cdot u) \otimes (e_i^* \cdot \omega), \text{and linearity.}
\]

(For the definition of \(\int \), see [12] Ch. 1.)

\[P_f : L_r^* \rightarrow L_r^* \] maps \(\sum_{i=1}^N u_i \otimes e_i \) to \(\sum_{i=1}^N f_i \cdot u_i \); in particular, \(P_f g' = f \), when \(g' = \sum_{i=1}^N g_i \otimes u_i \).

A simple computation gives \(P_f^2 = 0 \), while the derivation property of \(\int \) gives

(\(i \)) \[P_f(k \cdot k') = (P_f k) \cdot k' + (-1)^r k \cdot P_f k' \]

when \(k \in L_r^* \).

Let \(M_r^* = \{ k \in L_r^* : k|_{U_1} = 0 \} \).

Lemma 2. The complex \(0 \rightarrow M_r^* \xrightarrow{P_f} M_{r-1}^* \xrightarrow{P_f} \cdots \xrightarrow{P_f} M_0^* \rightarrow 0 \) is exact.

Proof. Let \(\varphi \in C^\infty(C^N) \) be zero near \(w \) and one outside \(U_1 \). We put \(k_0 = \sum_{i=1}^N (\varphi \cdot \bar{\varphi}_i) / f_i \otimes e_i \). Clearly \(k_0 \in L_0^* \), and \(P_f k_0 \in L_0^* \) is identically one in \(D \setminus U_1 \). If \(k \in M_r^* \) and \(P_f k = 0 \), \(k \cdot k \in M_{r-1}^* \), and by (\(i \)), \(P_f(k_0 \cdot k) = (P_f k_0) \cdot k = k \).

As \(f_1, \ldots, f_N \) are holomorphic in \(D \), \(P_f \) and \(\bar{\delta} \) commute.

Lemma 3. If \(k \in M_r^* \) and \(P_f k = \bar{\delta} k = 0 \), there exists a \(k' \in L_{r+1}^* \), with \(P_f k' = k \) and \(\bar{\delta} k' = 0 \).

This is trivially true when \(r > n \), and the proof goes by downward induction on \(r \). Suppose the lemma is valid for \(r+1 \). By Lemma 2, there exists a \(k_1 \in M_{r+1}^* \) with \(P_f k_1 = k \). Clearly \(\bar{\delta} M_{r+1}^* \subset M_{r+1}^* \), while \(P_f \bar{\delta} k_1 = \bar{\delta} P_f k_1 = 0 \). Using the induction hypothesis, we can find \(k_2 \in L_{r+2}^* \) with \(P_f k_2 = \bar{\delta} k_1 \) and \(\bar{\delta} k_2 = 0 \). By Lemma 1', \(k_2 = \bar{\delta} k_3 \), with \(k_3 \in L_{r+2}^* \). If we put \(k' = k_1 - P_f k_3 \), we get \(k' \in L_{r+1}^* \), with \(\bar{\delta} k' = \bar{\delta} k_1 - P_f \bar{\delta} k_3 = 0 \), and \(P_f k' = P_f k_1 - P_f k_3 = k \). This completes the induction step.
Proof of Proposition 1. As the g_i's are holomorphic in $U_i \cap D$, $\bar{\partial}g' \in M_1$. Applying Lemma 1' and Lemma 3, we find a $k \in L_2^0$, with $\bar{\partial}P'k = P'\bar{\partial}k = \bar{\partial}g'$, such that k is continuous on \bar{D}. If $h = g' - P'k$, $\bar{\partial}h = 0$. Writing $h = \sum_{i=1}^N h_i \otimes e_i$, this means that $h_1, \ldots, h_N \in A$, and $\sum_{i=1}^N h_i \cdot f_i = f$.

THEOREM 2. Let $w \in \bar{D}$, and let M_w denote the unique maximal ideal of H_w. The family $(f_i)_{i \in I}$ in A generates $\mathcal{M}_w(\bar{D})$ if and only if

1. $(f_i)_i$ generates M_w, and
2. w is the only common zero of functions f_i in \bar{D}

Proof. I. The sufficiency of (1) and (2): If $f \in \mathcal{M}_w(\bar{D})$, we have $f_w \in M_w$, and by (1) f_w belongs to some ideal $[f_{i_1,w}, \ldots, f_{i_n,w}]$. As $(z_i - w_i)_w, \ldots, f(z_n - w_n)_w$ belong to M_w, the functions $z_i - w_i$, $i = 1, \ldots, n$, may be expressed as linear combinations of functions $f_{i_{M+1}}, \ldots, f_{i_p}$ in the family on some open neighbourhood V of w in \bar{D}. Then $f_{i_{M+1}}, \ldots, f_{i_p}$ have w as their only common zero in V. By condition (2) and the compactness of $D \setminus V$, there exist $f_{i_{p+1}}, \ldots, f_{i_N}$ in the family with no common zeroes outside V. Now proposition 1 implies that $f \in [f_{i_1}, \ldots, f_{i_N}]$.

II. The necessity of (1) and (2): If $(f_i)_{i \in I}$ generate $\mathcal{M}_w(\bar{D})$, condition (2) follows from the fact that A separates points in \bar{D}. Condition (1) follows from

PROPOSITION 2. The germs at w of elements in $\mathcal{M}_w(\bar{D})$ generate M_w.

The following proof of Proposition 2 was kindly communicated to me by Dr. R. M. Range, and replaces a more complicated argument of my own:

When $w \in D$, $z_1 - w_1, \ldots, z_n - w_n$ generate $\mathcal{M}_w = M_w$. Thus we may assume $w \in \partial D$, and consider an $f \in H(U \cap \bar{D})$ with $f(w) = 0$, where U is some neighbourhood of w in C^n. We choose $\varphi \in C_0^\infty(U)$ such that $\varphi \equiv 1$ on a smaller neighbourhood V of w. As D is strictly pseudoconvex, we may extend it inside V to a strictly pseudoconvex domain D' containing w. As $\bar{\partial}(\varphi \cdot f)$ vanishes on $V \cap D$, it may be extended by zero to a smooth, bounded, $\bar{\partial}$-closed $(0, 1)$-form ω on D'. By Lemma 1, the equation $\bar{\partial}g = \omega$ has a solution in $C^\infty(D') \cap C(\bar{D}')$, and we may assume $g(w) = 0$. As g is holomorphic in $D' \cap V$, we may write it near w as $g = \sum_{i=1}^n g_i(z_i - w_i)$, with g_1, \ldots, g_n holomorphic. Thus $f_w = (\varphi \cdot f - g)_w + \sum_{i=1}^n g_i w(z_i - w_i)_w$, and $\varphi \cdot f - g|_{\bar{D}} \in \mathcal{M}_w(\bar{D})$.
When \(w \in D \) and \(I \) is finite, Theorem 2 reduces to theorem 1. If \(w \in \partial D \), it follows from Gleason’s result that \(\mathcal{M}_w(\overline{D}) \) is not finitely generated. If \(M_w \) were finitely generated, it would by Proposition 2 be generated by finitely many elements of \(A \), which implies by the argument of I that \(\mathcal{M}_w(\overline{D}) \) must be finitely generated. Thus \(M_w \) is not finitely generated when \(w \in \partial D \). (This may also be proved in a more direct fashion).

References

Received August 6, 1970. Dr. Range’s proof received June 28, 1971.

UNIVERSITETET I OSLO
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles A. Akemann</td>
<td>A Gelfand representation theory for C^*-algebras</td>
<td>1</td>
</tr>
<tr>
<td>Sorrell Berman</td>
<td>Spectral theory for a first-order symmetric system of ordinary differential operators</td>
<td>13</td>
</tr>
<tr>
<td>Robert L. Bernhardt, III</td>
<td>On splitting in hereditary torsion theories</td>
<td>31</td>
</tr>
<tr>
<td>J. L. Brenner</td>
<td>Geršgorin theorems, regularity theorems, and bounds for determinants of partitioned matrices. II. Some determinantal identities</td>
<td>39</td>
</tr>
<tr>
<td>Robert Morgan Brooks</td>
<td>On representing F^*-algebras</td>
<td>51</td>
</tr>
<tr>
<td>Lawrence Gerald Brown</td>
<td>Extensions of topological groups</td>
<td>71</td>
</tr>
<tr>
<td>Arnold Barry Calica</td>
<td>Reversible homeomorphisms of the real line</td>
<td>79</td>
</tr>
<tr>
<td>J. T. Chambers and Shinnosuke Oharu</td>
<td>Semi-groups of local Lipschitzians in a Banach space</td>
<td>89</td>
</tr>
<tr>
<td>Thomas J. Cheatham</td>
<td>Finite dimensional torsion free rings</td>
<td>113</td>
</tr>
<tr>
<td>Byron C. Drachman and David Paul Kraines</td>
<td>A duality between transpotence elements and Massey products</td>
<td>119</td>
</tr>
<tr>
<td>Richard D. Duncan</td>
<td>Integral representation of excessive functions of a Markov process</td>
<td>125</td>
</tr>
<tr>
<td>George A. Elliott</td>
<td>An extension of some results of Takesaki in the reduction theory of von Neumann algebras</td>
<td>145</td>
</tr>
<tr>
<td>Peter C. Fishburn and Joel Spencer</td>
<td>Directed graphs as unions of partial orders</td>
<td>149</td>
</tr>
<tr>
<td>Howard Edwin Gorman</td>
<td>Zero divisors in differential rings</td>
<td>163</td>
</tr>
<tr>
<td>Maurice Heins</td>
<td>A note on the Löwner differential equations</td>
<td>173</td>
</tr>
<tr>
<td>Louis Melvin Herman</td>
<td>Semi-orthogonality in Rickart rings</td>
<td>179</td>
</tr>
<tr>
<td>David Jacobson and Kenneth S. Williams</td>
<td>On the solution of linear G.C.D. equations</td>
<td>187</td>
</tr>
<tr>
<td>Michael Joseph Kallaher</td>
<td>On rank 3 projective planes</td>
<td>207</td>
</tr>
<tr>
<td>Donald Paul Minassian</td>
<td>On solvable O^*-groups</td>
<td>215</td>
</tr>
<tr>
<td>Nils Øvrelid</td>
<td>Generators of the maximal ideals of $A(\bar{D})$</td>
<td>219</td>
</tr>
<tr>
<td>Mohan S. Putcha and Julian Weisglass</td>
<td>A semilattice decomposition into semigroups having at most one idempotent</td>
<td>225</td>
</tr>
<tr>
<td>Robert Raphael</td>
<td>Rings of quotients and π-regularity</td>
<td>229</td>
</tr>
<tr>
<td>J. A. Siddiqi</td>
<td>Infinite matrices summing every almost periodic sequence</td>
<td>235</td>
</tr>
<tr>
<td>Raymond Earl Smithson</td>
<td>Uniform convergence for multifunctions</td>
<td>253</td>
</tr>
<tr>
<td>Thomas Paul Whaley</td>
<td>Multiplicity type and congruence relations in universal algebras</td>
<td>261</td>
</tr>
<tr>
<td>Roger Allen Wiegand</td>
<td>Globalization theorems for locally finitely generated modules</td>
<td>269</td>
</tr>
</tbody>
</table>