RINGS OF QUOTIENTS AND π-REGULARITY

ROBERT RAPHAEL
Throughout this paper rings are understood to be commutative with 1, and subrings are understood to have the same identity as their over-rings. Familiarity with the Utumi-Lambek concept of complete ring of quotients \(Q(R)\), of a commutative ring \(R\), is assumed. \(Q(R)\) is commutative and it contains a copy of the classical ring of quotients of \(R\) (denoted \(Q_0(R)\)), obtained by localizing \(R\) at its set of nonzero-divisors. Any ring lying between \(R\) and \(Q(R)\) is called a ring of quotients of \(R\). \(R\) is \(\pi\)-regular if for \(r \in R\) there exists \(r' \in R\) and a positive integer \(n\) such that \(r^n = (r^n)^2 r'\). This paper investigates the question: if \(Q(R)\) is \(\pi\)-regular, under what conditions are all rings of quotients of \(R\) \(\pi\)-regular?

The characterization obtained is applied to the case of semiprime rings. Examples are given, followed by some results directed at the problem of characterizing internally those rings \(R\) for which \(Q(R)\) is \(\pi\)-regular. The author is indebted to the referee for posing the latter question, and for his criticisms. The terminology and notation are consistent with Lambek's Lectures on Rings and Modules.

Proposition 1. (Bourbaki-Storrer, [(6, 5.6), (1, p. 173, 16(d))].) If \(R\) is a commutative ring then the following are equivalent:

1. \(R\) is \(\pi\)-regular,
2. \(R/\text{rad } R\) is regular, where \(\text{rad } R\) is the prime radical of \(R\),
3. all prime ideals of \(R\) are maximal ideals.

Corollary 2. A semiprime \(\pi\)-regular ring is regular.

Let \(R\) be a ring and let \(S\) be an over-ring of \(R\). An element \(s\) of \(S\) is called integrally dependent on \(R\) if there exist elements \(r_0, r_1, \ldots, r_{n-1}\) in \(R\) such that \(s^n + r_{n-1}s^{n-1} + \cdots + r_1s + r_0 = 0\). The set of all elements of \(S\) which are integrally dependent on \(R\) is a ring called the integral closure of \(R\) in \(S\), and if this is all of \(S\) then \(S\) is called an integral extension of \(R\).

Proposition 3. [7, p. 259]. Let \(R, S\) be rings, \(S\) an integral extension of \(R\). If \(P\) is a prime ideal of \(S\), \(P\) is maximal in \(S\) if and only if \(P \cap R\) is a maximal ideal in \(R\).

Definition 4. A ring is classical if it coincides with its classical
ring of quotients. Equivalently, each of its elements is a unit or a zero-divisor.

LEMMA 5. A \(\pi \)-regular ring is a classical ring.

Proof. Let \(r \) be a nonzero-divisor in \(R \), a \(\pi \)-regular ring. Then there exists \(r' \in R \) and an integer \(n \) such that \(r^n(1 - r^n r') = 0 \). Since \(r \) does not divide zero, neither does \(r^n \) so \(1 - r^n r' = 0 \) which shows that \(r \) is a unit.

The main result.

PROPOSITION 6. Let \(R \) be a commutative ring with complete ring of quotients \(Q(R) \) which is \(\pi \)-regular. The following are equivalent:

1. \(Q(R) \) is integral over \(R \),
2. every ring of quotients of \(R \) is \(\pi \)-regular,
3. every ring of quotients of \(R \) is classical,
4. \(R[q] \) is \(\pi \)-regular for all \(q \in Q(R) \),
5. \(R[q] \) is classical for all \(q \in Q(R) \),
6. the units of \(Q(R) \) are integral over \(R \).

Proof. Clearly \((2) \Rightarrow (4) \Rightarrow (5) \) and \((2) \Rightarrow (3) \Rightarrow (5) \). \((1) \Rightarrow (2) \). If \(S \) is a ring of quotients of \(R \), then \(S \) is integral over \(R \). Any prime ideal of \(S \) contracts to a prime ideal of \(R \) which is maximal in \(R \) by Proposition 1. Thus by Proposition 3 all prime ideals in \(S \) are maximal and by Proposition 1, \(S \) is \(\pi \)-regular.

\((5) \Rightarrow (6) \). Let \(q \) be a unit in \(Q(R) \) with inverse \(q' \). Since \(R[q] \) is classical \(q \) is either a zero-divisor or a unit in \(R[q] \). If it were a zero-divisor in \(R[q] \) then it would be both a unit and a zero-divisor in \(Q(R) \), an impossibility. Thus \(q' \) lies in \(R[q] \), and \(q' = r_n q^n + \cdots + r_1 q + r_0 \) for some \(r_i \in R \), \(i = 0, 1, \ldots, n \). Now \(1 = q q' = r_n q^{n+1} + \cdots + r_1 q^2 + r_0 q \). If one multiplies both sides of the equation by \((q')^{n+1} \) and transposes one obtains the equation \((q')^{n+1} - r_n (q')^n - r_1 (q')^{n-1} - \cdots - r_{n-1} (q') - r_n = 0 \) which shows that \(q' \) is integrally dependent on \(R \). Since every unit is the inverse of a unit \((6) \) is established.

\((6) \Rightarrow (1) \). Let \(q \in Q(R) \). Since \(Q(R) \) is \(\pi \)-regular there is a \(q' \in Q(R) \) such that \(q^n = (q')^2 q' \). Let \(e = q^n q' \), \(u = q^n + 1 - q^n q' \). One verifies immediately that \(e = e^2 \), that \(u \) is a unit with inverse \(u^{-1} = q^n (q')^2 + 1 - q^n q' \) and that \(q^n = ue \). Now \(e \) is integral over \(R \), and by \((6) \) \(u \) is, so \(q^n \) is integral over \(R \), which implies in turn that \(q \) is integral over \(R \).
PROPOSITION 7. [4, p. 42]. Let R be a semiprime ring. Then $Q(R)$ is regular.

PROPOSITION 8. Let R be semiprime and let $Q(R)$ be its complete ring of quotients. Then the following are equivalent:

1. $Q(R)$ is integral over R,
2. all rings of quotients of R are regular,
3. all rings of quotients of R are classical.

Proof. $Q(R)$ is regular so by Proposition 6, (2)\implies(3)\implies(1). (1)\implies(2). Let S be a ring of quotients of R. $Q(R)$ is semiprime so S is as well. By Proposition 6, S is π-regular. Therefore by Corollary 2, S is a regular ring.

EXAMPLE 9. Boolean rings. A ring is Boolean if each element is idempotent. Thus a Boolean ring is regular. Rings of quotients of Boolean rings are discussed in [3, 2.4] where it is shown that a Boolean ring coincides with its complete ring of quotients if and only if it is complete when viewed as a partially ordered set. Furthermore the complete ring of quotients of a Boolean ring is Boolean. Thus if R is a non-complete Boolean algebra, $Q(R)$ is a proper extension of R, which clearly satisfies condition (1) of Proposition 8.

EXAMPLE 10. In Fine-Gillman-Lambek [2, 4.3] the rings $Q_L(X)$ and $Q_F(X)$ are introduced and it is shown that the former is the complete ring of quotients of the latter. To realize $Q_L(X)$ one considers the set of all locally constant continuous real-valued functions whose domains of definition are dense open subsets of a completely regular Hausdorff space X, and divides out by the equivalence relation which identifies two functions which agree on the intersection of their domains. $Q_F(X)$ is the subring determined by the functions with finite range. $Q_F(X)$ is regular. It is not difficult to see that the two rings differ if X is the real field in its usual topology.

Let $g \in Q_L(X)$ and suppose that $g^n + g^{n-1}f_{n-1} + \cdots + f_0 = 0$ for some $f_i \in Q_F(X)$, $i = 0, 1, \cdots, n - 1$. We may assume that all the functions are defined on the domain D given by the intersection of their individual domains. Each f_i is defined on a finite clopen partition Π_i of D, on the elements of which it is fixed. Let Π be the common refinement of the Π_i. Then Π is finite and each f_i is fixed on the elements of Π. Since g must satisfy the above polynomial it can assume only a finite number of different values on a given element of Π. Thus g restricted to D has finite range and therefore lies in $Q_F(X)$. Thus the elements of $Q_L(X) - Q_F(X)$ are not integral over
Thus we have examples of regular rings for which the conditions of Proposition 8 fail.

Proposition 6 demands the \(\pi \)-regularity of \(Q(R) \) thus raising the question: for which rings is the complete ring of quotients \(\pi \)-regular? In the Noetherian case the classical ring of quotients is Noetherian and it coincides with the complete ring of quotients. Thus [6, 5.5 and 5.7] the complete ring of quotients is \(\pi \)-regular if and only if it is Artinian. Furthermore Small [5] has shown that a Noetherian ring \(R \) has Artinian classical ring of quotients if and only if \(R \) satisfies the following 'regularity' condition: if \(\bar{r} \) is not a zero-divisor in \(R/\text{rad} \, R \), then \(r \) is not a zero-divisor in \(R \). We examine the question of \(Q(R) \)'s \(\pi \)-regularity in the light of this condition. By \(\bar{R} \) and \(Q(\bar{R}) \) we denote \(R/\text{rad} \, R \) and \(Q(R)/\text{rad} \, Q(R) \) respectively. The following diagram (with the obvious maps) is commutative

\[
\begin{array}{ccc}
R & \longrightarrow & Q(R) \\
\downarrow & & \downarrow \\
\bar{R} & \longrightarrow & Q(\bar{R}) \\
\end{array}
\]

and \(\bar{R} \rightarrow Q(\bar{R}) \) is a monomorphism since \(\text{rad} \, (Q(R)) \cap R = \text{rad} \, R \).

Lemma 11. If \(Q(R) \) is \(\pi \)-regular and \(\text{rad} \, R \) is nilpotent then \(R \) satisfies the regularity condition.

Proof. Let \(\bar{r} \) be a nonzero-divisor in \(\bar{R} \). If \(\bar{r} \) is a zero-divisor in \(Q(\bar{R}) \), then there exists \(s \in Q(\bar{R})/\text{rad} \, Q(\bar{R}) \) such that \(rs \in \text{rad} \, Q(\bar{R}) \). There is a dense ideal \(D \) in \(R \) such that \(sD \subset R \). Suppose that \(sD \subset R \). Since \(\text{rad} \, R \) is nilpotent, \((\text{rad} \, R)^k = (0) \) for some integer \(k \). Thus \(s^k D^k = (0) \). But \(D^k \) is dense so \(s^k = 0 \), contradicting the fact that \(s \notin \text{rad} \, Q(R) \). Thus there exists \(d \in D \) such that \(sd \in R \setminus (\text{rad} R) \). Now \(r(sd) \in \text{rad} \, R \) contradicting the fact that \(\bar{r} \) is not a zero-divisor in \(\bar{R} \). Thus \(\bar{r} \) is a nonzero-divisor in \(Q(\bar{R}) \). But \(Q(\bar{R}) \) is regular by Proposition 1, so \(\bar{r} \) is invertible in \(Q(\bar{R}) \). Thus there is a \(q \in Q(\bar{R}) \) such that \(rq - 1 \in \text{rad} \, Q(R) \), from which it is easy to see that \(r \) is a unit in \(Q(R) \), and therefore not a zero-divisor in \(R \).

Lemma 12. If \(\text{rad} \, R \) is nilpotent then \(Q(\bar{R}) \) is a ring of quotients of \(\bar{R} \). Furthermore if \(R \) satisfies the regularity condition then \(Q(\bar{R}) \) contains \(Q_{c1}(\bar{R}) \).

Proof. Let \(\bar{q} \) be a nonzero element of \(Q(\bar{R}) \). \(qD \subset R \), for some dense ideal \(D \) of \(R \). Suppose that \(qD \subset \text{rad} \, R \). There exists an integer \(k \) such that \((\text{rad} \, R)^k = (0) \) so \(q^k D^k = (0) \) yielding \(q^k = 0 \), a
contradiction. Thus there is a $d \in D$ such that $qd \in R \setminus \text{rad } R$ yielding $\overline{qd} \neq 0$ in \overline{R}, and $Q(\overline{R})$ is a ring of quotients of \overline{R}. [4, p. 46 no. 5].

If the regularity condition holds and \overline{r} is a nonzero-divisor in \overline{R}, then r is a nonzero-divisor in R and $rq = 1$ for some $q \in Q(\overline{R})$. But then $\overline{rq} = 1$ showing the nonzero-divisors in \overline{R} have inverses in $Q(\overline{R})$. Thus $Q(\overline{R}) \supseteq Q_{\pi}(\overline{R})$.

Proposition 13. If $\text{rad } R$ is nilpotent and $Q_{\pi}(\overline{R}) = Q(\overline{R})$ then $Q(R)$ is π-regular if and only if R satisfies the regularity condition.

Proof. Lemma 11 gives one implication. If $Q_{\pi}(\overline{R}) = Q(\overline{R})$ then by Lemma 12 $Q(\overline{R}) = Q(\overline{R})$. But $Q(\overline{R})$ is regular by Proposition 7. Thus by Proposition 1, $Q(R)$ is π-regular.

The above proposition applies to the Noetherian case. More generally if R is commutative with maximum condition on annihilator ideals then:

(a) $\text{rad } R$ is nilpotent [3]

(b) \overline{R} satisfies the maximum condition annihilator ideals [5, 1.16], and

(c) $Q(\overline{R}) = Q_{\pi}(\overline{R})$, [4, p. 114, 5(g)].

By condition (b), condition (c) also holds for the ring \overline{R}. This together with condition (a) makes Proposition 13 meaningful for these rings as well.

References

Received May 12, 1970. Based partially on a thesis supervised by J. Lambek at McGill University with N.R.C. support.

DALHOUSIE UNIVERSITY AND SIR GEORGE WILLIAMS UNIVERSITY
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

C. R. HOBBY
University of Washington
Seattle, Washington 98105

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY *
UNIVERSITY OF OREGON *
OSAKA UNIVERSITY AMERICAN MATHEMATICAL SOCIETY

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles A. Akemann</td>
<td>A Gelfand representation theory for C*-algebras</td>
<td>1</td>
</tr>
<tr>
<td>Sorrell Berman</td>
<td>Spectral theory for a first-order symmetric system of ordinary differential operators</td>
<td>13</td>
</tr>
<tr>
<td>Robert L. Bernhardt, III</td>
<td>On splitting in hereditary torsion theories</td>
<td>31</td>
</tr>
<tr>
<td>J. L. Brenner</td>
<td>Geršgorin theorems, regularity theorems, and bounds for determinants of partitioned matrices. II. Some determinantal identities</td>
<td>39</td>
</tr>
<tr>
<td>Robert Morgan Brooks</td>
<td>On representing F*-algebras</td>
<td>51</td>
</tr>
<tr>
<td>Lawrence Gerald Brown</td>
<td>Extensions of topological groups</td>
<td>71</td>
</tr>
<tr>
<td>Arnold Barry Calica</td>
<td>Reversible homeomorphisms of the real line</td>
<td>79</td>
</tr>
<tr>
<td>J. T. Chambers and Shinnosuke Oharu</td>
<td>Semi-groups of local Lipschitzians in a Banach space</td>
<td>89</td>
</tr>
<tr>
<td>Thomas J. Cheatham</td>
<td>Finite dimensional torsion free rings</td>
<td>113</td>
</tr>
<tr>
<td>Byron C. Drachman and David Paul Kraines</td>
<td>A duality between transpotence elements and Massey products</td>
<td>119</td>
</tr>
<tr>
<td>Richard D. Duncan</td>
<td>Integral representation of excessive functions of a Markov process</td>
<td>125</td>
</tr>
<tr>
<td>George A. Elliott</td>
<td>An extension of some results of Takesaki in the reduction theory of von Neumann algebras</td>
<td>145</td>
</tr>
<tr>
<td>Peter C. Fishburn and Joel Spencer</td>
<td>Directed graphs as unions of partial orders</td>
<td>149</td>
</tr>
<tr>
<td>Howard Edwin Gorman</td>
<td>Zero divisors in differential rings</td>
<td>163</td>
</tr>
<tr>
<td>Maurice Heins</td>
<td>A note on the Löwner differential equations</td>
<td>173</td>
</tr>
<tr>
<td>Louis Melvin Herman</td>
<td>Semi-orthogonality in Rickart rings</td>
<td>179</td>
</tr>
<tr>
<td>David Jacobson and Kenneth S. Williams</td>
<td>On the solution of linear G.C.D. equations</td>
<td>187</td>
</tr>
<tr>
<td>Michael Joseph Kallaher</td>
<td>On rank 3 projective planes</td>
<td>207</td>
</tr>
<tr>
<td>Donald Paul Minassian</td>
<td>On solvable O*-groups</td>
<td>215</td>
</tr>
<tr>
<td>Nils Øvrelid</td>
<td>Generators of the maximal ideals of A(\overline{D})</td>
<td>219</td>
</tr>
<tr>
<td>Mohan S. Putcha and Julian Weissglass</td>
<td>A semilattice decomposition into semigroups having at most one idempotent</td>
<td>225</td>
</tr>
<tr>
<td>Robert Raphael</td>
<td>Rings of quotients and (\pi)-regularity</td>
<td>229</td>
</tr>
<tr>
<td>J. A. Siddiqi</td>
<td>Infinite matrices summing every almost periodic sequence</td>
<td>235</td>
</tr>
<tr>
<td>Raymond Earl Smithson</td>
<td>Uniform convergence for multifunctions</td>
<td>253</td>
</tr>
<tr>
<td>Thomas Paul Whaley</td>
<td>Multiplicity type and congruence relations in universal algebras</td>
<td>261</td>
</tr>
<tr>
<td>Roger Allen Wiegand</td>
<td>Globalization theorems for locally finitely generated modules</td>
<td>269</td>
</tr>
</tbody>
</table>