Vol. 39, No. 2, 1971

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 294: 1
Vol. 293: 1  2
Vol. 292: 1  2
Vol. 291: 1  2
Vol. 290: 1  2
Vol. 289: 1  2
Vol. 288: 1  2
Vol. 287: 1  2
Online Archive
The Journal
Editorial Board
Special Issues
Submission Guidelines
Submission Form
Author Index
To Appear
ISSN: 0030-8730
Matrix characterizations of circular-arc graphs

Alan Curtiss Tucker

Vol. 39 (1971), No. 2, 535–545

A graph G is a circular-arc graph if there is a one-to-one correspondence between the vertices of G and a family of arcs on a circle such that two distinct vertices are adjacent when the corresponding arcs intersect. Circular-arc graphs are characterized as graphs whose adjacency matrix has the quasi-circular 1’s property. Two interesting subclasses of circular-arc graphs are also discussed proper circular-arc graphs and graphs whose augmented adjacency matrix has the circular 1’s property.

Mathematical Subject Classification 2000
Primary: 05C99
Received: 30 April 1970
Published: 1 November 1971
Alan Curtiss Tucker