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An almost Hermitian manifold whose almost complex
structure is Killing is called a nearly Eaehler manifold; the
usual almost complex structure on the six-sphere is a well-
known example.

The purpose of this note is to introduce the study of
almost contact metric manifolds whose almost contact structure
tensors are Killing. In particular if such a structure is
normal it is cosymplectic. Hypersurfaces of nearly Kaehler
manifolds are also studied. As an example, it is shown that
the five-sphere carries a nonnormal almost contact metric
structure. More generally, the induced structure on a compact
orientable hypersurface of a nearly Kaehler manifold of posi-
tive curvature cannot be cosymplectic.

1* Introduction* An almost Hermitian manifold whose almost
complex structure is Killing is called a nearly Kaehler manifold by
A. Gray and an almost Tachίbana space by K. Yano. The usual
almost Hermitian structure on the six-sphere is a well-known example.
The reader is referred to A. Gray [3] and K. Yano [7] for a discus-
sion of these spaces and for further references.

The purpose of this note is to introduce the study of almost
contact metric manifolds whose almost contact structure tensors are
Killing. In §2 we review almost contact structures and in §3 prove
that if the structure tensors are Killing then, if the structure is
normal it is cosymplectic. Section 4 reviews the induced almost con-
tact metric structure on a hypersurface of an almost Hermitian
manifold. Section 5 discusses hypersurfaces of nearly Kaehler mani-
folds and generalizes some of the results of H. Proppe [4]. Finally
in §6 we show, as an example, that the five-sphere carries an almost
contact metric structure with Killing structure tensors. In contrast
to the canonical normal contact metric structure on an odd-dimensional
sphere, this structure on the five-sphere is not normal. More gen-
erally, the induced structure on a compact orientable hyper surface
of a nearly Kaehler manifold of positive curvature cannot be cosym-
plectic.

2* Almost contact structures* A (2n + 1) —dimensional C°°
manifold M2n+1 is said to have an almost contact structure if there
exists on M2n+1 a tensor field φ of type (1,1), a vector field ζ and a
1-form rj satisfying
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this is equivalent to a reduction of the structural group of the tangent
bundle to U(ri)xl (see[5]) If M2n+1 has an almost contact structure
{φ,ξ,V) then w e c a n find a Riemannian metric g on M2n+1 such that

= g(ξ, X)

g(φX, φY) = g(X, Y) - η{X)η(Y)

where X and Y are vector fields on M2n+1 [5].
S. Sasaki and Y. Hatakeyama [5] defined an almost complex

structure J on M2n+1 x R1 by

where / is a C" real-valued function on ilί2ί!+1 x R1. Considering the
Nijenhuis torsion [J, J] of J, they computed [/, J] ((X, 0), (Y, 0)) and
[J,J]((X,0),(0,d/dt)) which gave rise to four tensors Nw,Nm,Nm

Nw given by

NW(X, Y) = [φ, φ](X, Y) + dη{X, Y)ξ

N™(X, Y) = (2φxV)(Y) - (2φΐV)(X)

NιS)(X) =

where S denotes Lie differentiation. The result is that J is integrable
if and only if N{1) = 0; in particular Nω = 0 implies Ni2) = Nm =
JV(4) = 0 [5]. An almost contact structure is said to be normal if
Na) = 0, that is, if the almost complex structure on MZn+1xIP is
integrable.

Finally we define a fundamental 2-form Φ by

Φ(X, Y) = g(X,φY).

An almost contact metric structure (φ, ξ, η, g) is said to be cosymplectic
if it is normal and both Φ and rj are closed [1]. Cosymplectic manifolds
are also characterized by normality and the vanishing of the Rieman-
nian covariant derivative of <p.

The following Lemmas will be needed later.

LEMMA 2.1. If N{4) — 0 (in particular if the almost contact
structure is normal), then dη(X,ξ) = 0.

Proof. The proof is a computation using the coboundary formula.
dy(X, ξ) = Xfflξ)) - ξ(η(X)) - 7]{[X, ξ]) = -(2ξV)(X) - 0.
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Let V denote covariant differentiation with respect to g.

LEMMA 2.2. On an almost contact metric manifold

{VxΦ){φY,Z) - (VxΦ)(Y,φZ) = -7){Z)(Vxr))(Y) - η(Y)(Vx7])(Z) .

Proof.

, Z) - (VXΦ)(Y, ψZ) = -g(Z, (VX<P)<PY) -g(Z, <P(Vxφ)Y)

= -g(Z, VxV(Y)ξ - y(VxY)ξ)

= -η{Z)Vxη{Y) - η(Y)g{Z, Vxξ)

= -7]{Z)(Vxη){Y) - V(Y)(VxV)(Z) .

We close this section with a brief discussion of a Killing tensor
of type (1,1). Let I be a Riemannian manifold with Riemannian
connexion V. Let φ be a tensor field of type (1,1) on M and 7 a
geodesic; we denote by 7* the tangent vector field of 7. Then we
have a vector field φi* along 7. If ΨΊ* is parallel along 7 we have
Vr^7* = 0 or (Vr<#>)7* — 0. If this is the case for any geodesic, we
have

{Vxφ)X = 0 or (Vxφ)Y + (Vγφ)X = 0

for any vector fields X and Y. We then say φ is a Killing tensor
field.

3* Almost contact metric manifolds with ψ and rj Killing*
For the moment consider an almost Hermitian structure (/, G):

J a = - / , G(JX, JY) = G(X, Y) .

Let V denote the Riemannian connexion of G. Then J is Killing if
and only if (VxJ) X = 0 for every X, equivalently

{VXJ)Y + (VyJ)X = 0 or (Vxi2)(Γ, Z) + (V^)(Γ, X) = 0
where Ω is the fundamental 2-form of the structure:

Ω(X, Y) = G(X, JΓ) .

It is well-known [7] that if the almost complex structure of a nearly
Kaehler manifold is integrable, then it is Kaehlerian.

In this section we prove that if an almost contact metric structure
(Φ, ξ,V' Q) with Φ a n ( i V Killing is normal then it is cosymplectic.

THEOREM 3.1. Suppose M2n+ι has an almost contact metric
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structure (φ, ξ, ~η, g) such that φ and 7] are Killing. Then if this
structure is normal it is cosymplectic.

Proof. By normality we have

0 = g(X, [φ, φ](Z, Y)) + g(X, dη{Z, Y)ξ)

= g(X, {Vψzφ) Y - (Vφγφ)Z + ψ(Vγφ)Z - φ(Vzψ) Y) + g(X, dη{Z, Y)ξ)

= (VφzΦ)(X, Y) - (VψΐΦ){X, Z) - (VrΦ)(φX, Z) + (VzΦ)(φX, Y)

+ η{X)(Vzη)(Y) - η{X)(Vγη)(Z)

= (VφzΦ)(X, Y) - (VφrΦ)(X, Z) - (VYΦ)(X, ψZ) + {VZΦ)(X, φY)

+ η(Z){Vγτ]){X) - η(Y)(Vzη){X)

= (VXΦ)(Y, ψZ) + (VxΦ)(φY, Z) + (VXΦ)(Y, φZ) + (VxΦ)(φY, Z)

+ η{Z){Vγη){X) - V{Y){Vzη){X)

= 4(VxΦ)(Y,φZ) - 27){Z){Vxη)(Y) - 2η{Y)(Vxτ]){Z)

)(X) - V(Y){Vzyj)(X)

, φZ) - Zη{Z){VxV){Y) - η(Y){Vxη)(Z) ,

using Lemma 2.2 several times and the fact that ψ and η are Killing.
On the other hand

(VXΦ)(Y, {ξ®η)Z) = - {VxΦ)(η(Z)ξ, Y)

= - η{Z)V({Vxφ)Y)

η){φY) .

Hence we have

MVXΦ)(Y, (Ψ + ζ®η)Z) = 3V(Z)(Vxr})(Y) + η{Y){VX7]){Z)

+ Aη(Z){Vxη)(φY) .

But — φ + ξ <S> V i s the inverse of the nonsingular transformation
Ψ + ξ <8"7, so that

4(VXΦ)(Y,Z) = Zη{Z){V xη){Y) + η(Y){V xη){-φZ + η{Z)ξ)

+ 4η{Z)(Vzη){φY)
( 3 Λ ) = f V(Z)dη{X, Y)-\v( Y)dη(X, φZ)

+ 2η(Z) dη(X,φY)

by use of the fact that since η is Killing, dη(Y, X).= -2(Vxη)(Y)
and that dη{X, ξ) = 0. The first conclusion from equation (3.1) is
that Vξψ = 0 and hence since φ is Killing

0 = (Vξφ)X = ~(Vxφ)ξ = φVxξ .
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Thus if X is orthogonal to ξ, X — φZ for some Z and we have

dη(X, Y) = - 2(Vγη){X) = - 2g(X, Vγξ)

= - 2g(φZ, Vγξ) = 2g(Z, <pVγξ)

= 0 .

Hence, since dη(ξ, Y) = 0 also, we have dη = 0 and equation (3.1)
yields VXΦ = 0 and therefore dΦ — 0, completing the proof.

An almost contact metric manifold whose structure tensors are
Killing fields will be called a nearly cosymplectic manifold.

4* Hypersurfaces of almost Hermitian manifolds* Let M2n

be an almost Hermitian manifold with structure tensors (J, (?) and
M2n~ι a C°° orientable hypersurface of M2n. Let B denote the dif-
ferential of the imbedding and C a unit normal. The induced metric
g on M2n~ι is given by g(X, Y) = G(BX, BY) and the Gauss-Weingarten
equations are

VBXBY =BVXY+ h(X, Y)C, VBXC = -BHX

where V, V are the Riemannian connexions of G and g respectively.
h denotes the second fundamental form and H the corresponding
Weingarten map.

Y. Tashiro [6] showed that the almost Hermitian structure (J, G)
induces an almost contact metric structure on M2n~\ We review
this construction briefly.

Define a tensor field φ of type (1,1), a vector field ξ and a 1-form
η on M2n~ι by

JBX = BφX + η{X)C, JC = -Bξ .

Then computing J2BX we have

-BX = Bφ2X + y{φX)C -

comparing tangential and normal parts we have φ2X = — X + η{X)ξ
and η{φX) = 0. Similarly computing J2C have — C = — Bφξ — η{ξ)C
which yields φξ = 0 and η(ξ) = 1.

Moreover τj{X) - G(J^X, C) - -G(BX, JC) = (?(BJSΓ, B£) - ^(X, f)
and

g(X, Y) - G(SX, 5 7 ) - G(JBX, JBY)
= G(BφX, BφY) + 7){X)η(Y) = g(φX, φY) + η(X)η(Y) .

Thus we have

PROPOSITION 4.1 (Tashiro [6]). A C°° orientable hypersurface of an
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almost Hermitian manifold carries a naturally induced almost contact
metric structure.

5* Hypers ur faces of nearly Kaehler manifolds* In this section
we consider the induced almost contact metric structure (φ,ξ,y9g)
on a hypersurface of a nearly Kaehler manifold. H. Proppe [4]
observed that if the hypersurface is totally geodesic then φ and η
are Killing. We first show that φ is Killing if and only if the second
fundamental form h is proportional to η§§η. This result should be
compared with a theorem of S. I. Goldberg [2] that a hypersurface
of a Kaehler manifold is cosymplectic if and only if h is proportional
to Ύ)§§7]. We also show that in our case, if h is proportional to
Ύ] (g) Ύ] then η is Killing.

THEOREM 5.1. Let M2n be a nearly Kaehler manifold and JkP1"1

a C°° orientable hypersurface. Let {φ, ξ, η, g) denote the induced
almost contact metric structure on M2n~~ι. Then φ is Killing if and
only if the second fundamental form h is proportional to rj ® rj.

Proof. Let (J, (?) denote the nearly Kaehler structure on M2n

and Ω its fundamental 2-form. Computing VZΦ we have

(VXΦ)(Y, Z) = Xg(Y, φZ) - g(VxY, φZ) + g{VxZ, φY)

= BXG(BY, JBZ) - G(VBXBY, JBZ) + h{X, Y)η{Z)

+ G{VBXBZ, JBY) - h(X, Z)rj(Y)

= (VBXΩ)(BYy BZ) + h(X, Y)V(Z) - h{X, Z)η{Y) .

Now since Ω is Killing

, Z) + (VZΦ)(Γ, X) = - 2y(Y)h(X, Z)(V
( ' } + y(Z)h(X, Y) + y(X)h(Z, Y) .

Clearly then if h is proportional to η 0 η, Φ is Killing. Conversely
if Φ is Killing,

(5.2) 2η{Y)h(X, Z) - η{Z)h{X, Y) - η{X)h{Z, Y) = 0 .

Thus taking Z = ξ, we have h(φ2X, φΎ) = 0 or

h(-X+7)(X)ξ, - Y+η{Y)ξ) - 0
and hence

(5.3) h(X, Y) = y(Y)h(X, ξ) + y(X)h(Y, ξ) - y(X)y(Y)h(ξ, ξ) .

On the other hand setting X = Y = ξ in (5.2) gives

h(ξ, Z) = y(Z)h(ξ, ξ)



ALMOST CONTACT MANIFOLDS 291

for all Z. Therefore (5.3) becomes

h(X, Y)=h{ζ,ξ)η(X)η(Y)

as desired.

THEOREM 5.2. Let M2n be a nearly Kaehler manifold and M2""1

a C°° orientable hyper surf ace. Let Ύ] denote the induced (almost) con-
tact form and suppose the second fundamental form h is proportional
to Ύ]®Ύ]. Then η is Killing, in particular JkP*"1 is a nearly cosym-
plectic manifold.

Proof. Computing VBXJC in two ways we have

VBXJC = VBX(-Bξ) = -BVxξ - h(X, ξ)C ,

VBXJC = (VBXJ)C + J(-BHX) = {VBXJ)C - BφHX - η{HX)C ,

and hence

(VBXJ)C = -BVxξ + BφHX.

Now, since J is Killing, we have

0 = G((VBXJ)BY + (VBYJ)BX, C)

= -G(BY, {VBXJ)Q - G(BX, (VBYJ)C)

= G(BY, BVxξ - BφHX) + G(BX, BVγξ - BφHY)

h(φY, X) + h(φX, Y)

6. Applications* We shall first briefly describe the well known
nearly Kaehler structure on the six-sphere SQ. R7 considered as the
space of pure Cayley numbers admits a vector product x . Letting
N denote the outer normal to S6 and B the differential of the imbedding,
BJX = N x BX defines an almost complex structure J on S6 which
is almost Hermitian with respect to the canonically induced metric.
Using the fact that the Weingarten map is — / in the Gauss-Weingar-
ten equations, a direct computation shows that J is Killing.

As an example we show that besides its structures as a normal
contact metric manifold the five sphere S5 carries a nearly cosym-
plectic structure which is not cosymplectic. Consider S5 as a totally
geodesic hypersurface of SQ with the above nearly Kaehler structure,
then by the results of §5 the induced almost contact metric structure
(Φ, ξ, η, g) has φ and η Killing. In particular since rj is Killing it is
coclosed. Now if this structure is normal, it is cosymplectic by
Theorem 3.1 and hence η is closed. Thus η is harmonic contradicting
the vanishing of the first betti number of S5.



292 D. E. BLAIR

More generally let M2n be a nearly Kaehler manifold of positive
curvature and ikf2*"1 a compact orientable hypersurface, then the
induced structure cannot be cosymplectic. For suppose M2""1 is
cosymplectic. Then VXΦ = 0 so by Theorem 5.1 h is proportional to
7]®rj. Thus contracting the Gauss equation we see that M2n~ι has
positive definite Ricci curvature. This implies the vanishing of the
first betti number of M271"1, contradicting the fact that η is harmonic
on a compact cosymplectic manifold.
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