COHOMOLOGY GROUPS ASSOCIATED WITH THE $\bar{\partial}\partial$ OPERATOR

Bohumil Cenkl and Giuliano Sorani
COHOMOLOGY GROUPS ASSOCIATED WITH THE $\bar{\partial}\partial$-OPERATOR

BOHUMIL CENKL AND GIULIANO SORANI

Let M be a complex analytic manifold of complex dimension m. The manifold M, considered open, is a submanifold of a manifold M' of the same dimension, and its boundary ∂M is a smooth C^∞-manifold. Let $A^{p,q}$ be the sheaf of germs of complex-valued (p,q)-forms, p and q are integers, $p \geq 0$, $q \geq 0$. The exterior differential of an element $u \in A^{p,q}$ can be written in a unique way as a sum $du = \partial u + \bar{\partial} u$. There is a real operator

$$d_u = \sqrt{-1} (\bar{\partial} u - \partial u)$$

and the real second order operator

$$\dd = 2\sqrt{-1} \bar{\partial} \partial$$

defined on $A^{p,q}$. Let $A^{p,q}_R = \{ \alpha = \alpha_1 + \alpha_2 \in A^{p,q} \oplus A^{q,p} \mid \alpha_2 = \bar{\alpha}_1 \}$ be the sheaf of real (p,q)-forms. Then we get two short exact sequences of sheaves

$$0 \rightarrow A^{p,q}_c \rightarrow A^{p,q} \xrightarrow{\bar{\partial} \partial} A^{p+1,q+1} \xrightarrow{d} A^{p+2,q+2}$$

and

$$0 \rightarrow A^{p,q}_R \rightarrow A^{p,q}_R \xrightarrow{\dd} A^{p+1,q+1}_R \xrightarrow{d} A^{p+2,q+2}_R$$

where $A^{p,q}_c$ and $A^{p,q}_R$ are defined by these sequences. The purpose of this paper is to discuss the cohomology of these two sequences.

The importance of the cohomology of the first sequence,

$$A^{p,q}_R = \frac{\ker d}{\partial \partial \Gamma(M, A^{p,q})},$$

lies in its application to the study of strongly q-pseudoconvex manifolds—A. Andreotti, F. Norguet, B. Bigolin and others. The cohomology of the second sequence,

$$A^{p,q}_R = \frac{\ker d}{\dd \Gamma(M, A^{p,q}_R)},$$

contains (for $p = q$) the refined Chern classes of complex analytic vector bundles over M. In both cases the first cohomology group $\mathcal{H}^1(M, \cdot)$ plays the important role, therefore we restrict ourselves to this case.

As for the cohomology of the first sequence (1.1), B. Bigolin studied recently the relation of $A^{p,q}_c$ with the so called Aeppli coho-
and with $H^*(M, C)$ under certain assumptions on the manifold M (Stein, k-pseudoconvex, compact Kähler) using methods of sheaf theory. The main results of this paper are proved by direct Hilbert space methods. The cohomology of both sequences (1.1) are studied simultaneously. The statements concerning the first sequence (1.1) can be considered as another proof of some results obtained by Bigolin. It is shown that the cohomology of M with coefficients in the sheaf $\mathcal{H}^r_{p, q}$ and also in $\mathcal{H}^r_{p, q}$ is, under certain conditions on the boundary of M open, finite dimensional and isomorphic to the harmonic spaces constructed from Spencer’s resolutions of the corresponding sheaves. Using the terminology of [9] we can say that the Neumann problem is solvable for the operators $\bar{\partial}\partial$ and $\partial\partial^c$, under certain pseudoconvexity conditions on the boundary of M (Theorem 3.1).

The technique is based on the methods developed by Hörmander as an extension of those introduced into the subject by Kohn, Morrey, and Ash. The relatively new part in this direction here is the application of Hörmander’s technique to the Spencer resolution of the sheaves $\mathcal{H}^r_{p, q}$ and $\mathcal{H}^r_{p, q}$.

B. Mac Kichan told us recently that he can prove, using the δ-estimate [8], that the Neumann problem is solvable for the operator $\bar{\partial}\partial$ on complex-valued functions under certain boundary conditions on the open manifold M.

2. Before we start proving the main results concerning the open and compact manifolds, let us start some elementary properties of the sheaves $\mathcal{H}^r_{p, q}$ and $\mathcal{H}^r_{p, q}$ defined as the kernels of the operators $\bar{\partial}\partial$ and $\partial\partial^c$ respectively—see (1.1)—and summarize the known results connected with our considerations.

Proposition 2.1. The sheaf $\mathcal{H}^r_{p, q}$ is the sheaf of germs of differential $(p, 0)$-forms $\omega = \lambda + \bar{\mu}$, where λ is a local holomorphic $(p, 0)$-form and μ is a $\bar{\partial}$-closed $(0, p)$-form.

Proof. An element $\omega \in \mathcal{H}^r_{p, q}$ if and only if $\bar{\partial}\partial\omega = \bar{\partial}\partial\omega = 0$. From the exactness of de Rham’s complex, we conclude that there exists $\lambda \in A^p, q$ such that $d\lambda = \partial\omega$. But $\partial\omega \in A^{p+1, 0}$ therefore $\partial\lambda = \partial\omega$ and $\bar{\partial}\lambda = 0$. Denote $\omega - \lambda = \bar{\mu}$. Then $\bar{\partial}(\omega - \lambda) = \bar{\partial}\bar{\mu} = 0$, therefore $\bar{\partial}\bar{\mu} = 0$ and $\omega = \lambda + \bar{\mu}$ as stated above.

Remark. If we denote by Ω^p the sheaf of germs of holomorphic
\[p\text{-forms and by } \mathcal{H}^p \text{ the sheaf of } \partial\text{-closed } (p, 0)\text{-forms we see immediately that there is an exact sequence of sheaves} \]
\[(2.1) \quad 0 \longrightarrow S^p \longrightarrow \Omega^p \oplus \mathcal{H}^p \longrightarrow \mathcal{P}^0 \longrightarrow 0 , \]
where \(S^p \) is the sheaf of \(d \)-closed \((p, 0)\)-forms, and the corresponding exact sequence for cohomologies

\[\cdots \longrightarrow H^i(M, \Omega^p) \oplus H^i(M, \mathcal{H}^p) \longrightarrow H^i(M, P^0) \longrightarrow H^{i+1}(M, S^p) \longrightarrow H^{i+1}(M, \mathcal{P}^0) \cdots . \]

Proposition 2.2. The sheaf \(\mathcal{P}^0 = \mathcal{P}_R \) is the sheaf of germs of real parts of holomorphic functions on \(M \).

Proof. Let \(u \in A^0_R \), \(dd_u = 0 \). Then \(\delta \delta u = \overline{\delta} \delta u = 0 \) and \(u = f + \overline{g} \), where \(\delta f = \delta g = 0 \). The function \(h = f - g \) is real as \(u \) is a real function. Furthermore \(\overline{\delta}h = 0 \) and \(\delta h = \partial h = 0 \), therefore \(h \) is constant and \(u \) is the real part of the holomorphic function \(2f - h \).

If \(\beta \) is the projection of a holomorphic function on its real part, we get immediately the exact sequence

\[(2.2) \quad 0 \longrightarrow \mathcal{O} \longrightarrow \mathcal{O} \overset{\beta}{\longrightarrow} \mathcal{P}_R \longrightarrow 0 , \]
where \(\mathcal{O} = \mathcal{P} \). The map \(\alpha \) gives to any \(a \in \mathcal{O} \) a constant function \(0 + ia \). We claim that this sequence splits, because there is a sheaf homomorphism \(b : \mathcal{P}_R \rightarrow \mathcal{O} \) which to each function \(u \in \mathcal{P}_R \) associates a holomorphic function \(u + iv \) where \(u = v \) at a given point of \(M \). We then have:

Proposition 2.3. The sequence (2.2) is exact and splits.

Proposition 2.4. Let \(A^{p,q} \) be the sheaf of \(C^\infty \) complex-valued \((p, q)\)-forms and \(A^p_R = \{ \omega \in A^p_R \oplus A^{\overline{p}}_R \mid \omega = \alpha + \overline{\alpha}, \alpha \in A^{p,q} \} \), then the sequences (1.1) are exact sequences of sheaves.

Proof. We prove only the exactness of the second sequence (1.1) at \(A^{p+1,q+1}_R \) because the proof of the first sequence is analogous. Let \(u \in A^{p+1,q+1}_R \), \(du = 0 \). Then there exists \(\omega \in A^{p,q+1}_R \oplus A^{\overline{p},q}_R \) such that \(\omega = \alpha + \overline{\beta} + \beta + \overline{\beta} \), \(\alpha \in A^{p,q+1}_R \), \(\beta \in A^{p+1,q}_R \), \(d\omega = u \). Because \(d\omega \in A^{p+1,q+1}_R \) we conclude that \(\partial \overline{\alpha} = \overline{\partial} \alpha = \partial \beta = \partial \overline{\beta} = 0 \) as these terms belong to \(A^{p+2,p}_R \), \(A^{p,q+2} \), \(A^{p+2,q} \), \(A^{p,q+2} \) respectively. From \(\partial \overline{\alpha} = 0 \) follows that there exists \(\overline{\alpha} \in A^{p,q} \) such that \(\partial \overline{\alpha} = \overline{\alpha} \) and from \(\partial \beta = 0 \) we get the existence of \(b \in A^{p,q} \), \(\partial b = \beta \). Then \((a - \overline{b}) \in A^{p,q} \oplus A^{\overline{p},q} \) and \((\overline{b} - b) \in A^{p,q} \oplus A^{\overline{p},q} \) and \(\partial \overline{\alpha}(a - \overline{b} + \overline{b} - b) = \partial \overline{\alpha} + \partial \overline{\beta} + \partial \overline{\beta} \). Put \(w = -1/2\sqrt{-1} \partial \overline{\alpha}(a - \overline{b} - b) \). Then we see that \(w = w \in A^0_R \) and \(dd_w = 2\sqrt{-1} \partial \overline{\alpha}w = \partial \overline{\alpha}(a - \overline{b} - b) = d\omega = u \).
From the work of Aeppli and Bigolin we have the following information about the cohomology of M with values in the sheaves $\mathcal{S}^{p,q}, \mathcal{S}_k^{p,q}$ and the cohomology $V_{c}^{p,q}$ (1.4).

Proposition 2.5. Let M be a Stein manifold, then we have the following isomorphisms:

\[
V_{c}^{p,q} \cong H^{p+q+1}(M, \mathcal{C}), \quad p, q \geq 0
\]

\[
\Lambda_{c}^{p,q} \cong H^i(M, \mathcal{S}^{p-1,q-1}) \cong H^{p+q}(M, \mathcal{C}), \quad p, q \geq 0
\]

\[
H^{r}(M, P_{c}^{p,q}) \cong H^{p+q+r+1}(M, \mathcal{C}), \quad r \geq 1, p + q + 2 \geq m = \dim_{c} M.
\]

Proposition 2.6. If M is strongly k-pseudoconvex, then

\[
\dim_{c} H^{r}(M, \mathcal{S}_{c}^{p,q}) < + \infty, \quad r \geq 1, p, q \geq k, p + q + 2 \geq m = \dim_{c} M,
\]

\[
\dim_{c} V_{c}^{p,q} < + \infty, \quad p, q \geq k,
\]

\[
\dim_{c} \Lambda_{c}^{p,q} < + \infty, \quad p, q \geq k.
\]

Proposition 2.7. On a compact manifold M

\[
\dim_{c} \Lambda_{c}^{p,q} < + \infty, \quad p, q \geq 1,
\]

\[
\dim_{c} H^{r}(M, \mathcal{S}_{c}^{p,q}) < + \infty, \quad r \geq 1, p + q + 2 \geq m = \dim_{c} M,
\]

\[
\dim_{c} V_{c}^{p,q} < + \infty, \quad p + q \geq 1.
\]

If M is a compact Kähler manifold then

\[
V_{c}^{p,q} \cong H^{q}(M, \mathcal{O}^{p}) = H^{p,q}(M, \mathcal{O}),
\]

\[
\Lambda_{c}^{p,q} \cong H^{r}(M, \mathcal{O}^{p}) = H^{p,q}(M, \mathcal{O}).
\]

3. Let M be an open manifold, $M \subset M'$, a submanifold of M' such that the boundary ∂M is smooth (C^0). Let $m = \dim_{c} M = \dim_{c} M'$ as before.

We shall construct first of all the Spencer resolution of the sheaves $\mathcal{S}^{p,q}$ and $\mathcal{S}_k^{p,q}$. But, because the resolution of the “real” sheaf $\mathcal{S}_k^{p,q}$ can be obtained from the “complex” one by adding certain algebraic conditions on the spaces in question, we shall consider the resolution of $\mathcal{S}_k^{p,q}$ and point out simultaneously which conditions have to be dropped in order to get the resolution of $\mathcal{S}^{p,q}$.

The second order operator dd_α together with its prolongations can be factored through the sheaf of germs of the jet bundle $J_1(A_{k}^{\alpha})$, $l \geq 2$, and thus we can define the vector bundle $R_1^{\alpha} \to M'$ by the commutative diagram
for \(l \geq 2 \). Let us denote by \(\delta \) the formal differential ([9]) and define the vector bundles \(g_{i+1}^{p,q} \rightarrow M' \) and \(P_{i}^{p,q} \rightarrow M' \), \(0 \leq i \leq 2m \), by the sequences

\[
(3.2)_{i} \quad 0 \longrightarrow g_{i+1}^{p,q} \longrightarrow R_{i+1}^{p,q} \xrightarrow{\pi} R_{i}^{p,q} \longrightarrow 0 ,
\]

where \(\pi \) is the ordinary jet projection. Now let

\[
(3.3) \quad P_{i}^{p,q} = (\bigwedge T^{*} \otimes R_{i}^{p,q})/\delta(\bigwedge T^{*} \otimes g_{i}^{p,q}) ,
\]

\(T^{*} = T^{*}(M') \) being the cotangent bundle of \(M' \). It can be shown ([3]) that having chosen a splitting \(\lambda \) of (3.2), we have an isomorphism

\[
(3.4) \quad P_{i}^{p,q} \cong (\bigwedge T^{*} \otimes R_{i}^{p,q}) \oplus \delta(\bigwedge T^{*} \otimes g_{i}^{p,q}) , \quad 0 \leq i \leq 2m .
\]

Furthermore there is a uniquely defined 1st order differential operator \(D \) such that for any vector bundle \(E \rightarrow M' \) and for the corresponding jet bundles

\[
(3.5) \quad D: J_{i}(E) \longrightarrow T^{*} \otimes J_{i-1}(E) .
\]

This operator is universal for all linear differential operators on \(E \), in the sense that for any subbundle \(R_{i} \) of \(J_{i}(E) \) given by an operator in the same way as \(R_{i}^{p,q} \) in (3.1), was defined, \(D \) maps \(R_{i} \) into \(T^{*} \otimes R_{i-1} \). Therefore

\[
(3.6)_{i} \quad D: R_{i}^{p,q} \longrightarrow T^{*} \otimes R_{i-1}^{p,q} , \quad p, q \geq 0 .
\]

The restriction of \(D \) to the kernel \(g_{i+1}^{p,q} \) of the jet projection \(\pi \), (3.2), is actually \((-\delta)\).

The operator \(D, (3.6)_{i} \) and a splitting \(\lambda \) of (3.6), define the 1st order differential operator \(D_{i} = D \cdot \lambda \),

\[
(3.7) \quad D_{i}: R_{i}^{p,q} \longrightarrow T^{*} \otimes R_{i}^{p,q} .
\]

Now we are in the position to state

Lemma 3.1. Let \(\mathcal{D}_{h}^{p,q} \rightarrow M' \) be the sheaf defined by the operator \(d\bar{d}c \) (1.1). Then the sequence
(3.8) \[0 \rightarrow \mathcal{R}^q_R \rightarrow P^q_{p,q} \xrightarrow{D} P^1_{p,q} \xrightarrow{D} \cdots \xrightarrow{D} P^{2m}_{p,q} \rightarrow 0, \]

where, using the isomorphism (3.4),

\[Du = D(\sigma, \zeta) = (D_\sigma - \zeta, D_\zeta(D_\sigma - \zeta)), \]

is an exact resolution of \(\mathcal{R}^q_R \) by fine sheaves.

Proof. It follows from the general theory—see [8].

Corollary. It follows from the general theory—see [8].

In order to study this group we need an explicit description of the sheaf \(P^q_{p,q} \).

Let \(U \) be a coordinate neighborhood in \(M' \) with complex analytic coordinates \((z^1, \ldots, z^m)\) related to the real coordinates \((x^1, \ldots, x^{2m})\) by the usual relations \(z^j = x^{2j-1} + \sqrt{-1} x^{2j}, 1 \leq j \leq m \). In order to get an expression more suitable for calculation let us introduce at this point a hermitian product \(\langle \cdot, \cdot \rangle \) on the tangent bundle \(T = T(M') \). This product is locally given by a hermitian matrix \(h = \{ h_{ij} \} \), \(\langle \partial / \partial z^i, \partial / \partial z^j \rangle = h_{ij}, \langle \partial / \partial z^i, \partial / \partial \bar{z}^j \rangle = 0 \), and the matrix \(h^{-1} = (h^{ij}) \) gives an inner product on the cotangent bundle \(T^* \) by the formulas \(\langle d\bar{z}^i, dz^j \rangle = h^{ij}, \langle dz^i, d\bar{z}^j \rangle = 0 \).

As the differentiation of the hermitian product involves differentials of the matrix \(h \) it turns out to be useful to introduce a more suitable frame. Let

\[
(\omega^1, \cdots, \omega^m)
\]

be \(C^\infty \) \((1, 0)\)-forms on \(U \) such that

\[
\omega^i = \sum_{k=1}^m a^i_k dx^k, \quad dz^i = \sum_{k=1}^m b^k d\omega^k
\]

and \(\langle \omega^i, \omega^j \rangle = \delta^{ij}, 1 \leq i, j \leq m \). We denote by \((\partial / \partial \omega^1, \cdots, \partial / \partial \omega^m)\) the frame dual to \((\omega^1, \cdots, \omega^m)\).

Identifying \(P^q_{p,q} \) with the direct sum in the isomorphism (3.4) we get from straightforward local considerations

Proposition 3.1. Each element \(u \in P^q_{p,q}, u = (\rho, \eta) \) can be written locally in terms of the frame (3.10) in the form
The cohomology groups associated with the $\partial\bar{\partial}$-operator are given by

$$
\rho = \sum_{i=1}^{m} \rho_i \omega^i + \sum_{i=1}^{m} \rho_i \bar{\omega}^i,
$$

$$
\eta = \sum_{i,j=1}^{n} \eta_{ij} \omega^i \wedge \omega^j + \sum_{i,j=1}^{m} \eta_{ij} \omega^i \wedge \bar{\omega}^j + \sum_{i,j=1}^{m} \eta_{ij} \bar{\omega}^i \wedge \omega^j + \sum_{i,j=1}^{m} \eta_{ij} \bar{\omega}^i \wedge \bar{\omega}^j,
$$

where

$$
\eta_{ij} + \eta_{ji} = 0, \quad \eta_{ij} + \eta_{ji} = 0,
$$

and

$$
\rho_i = \text{exactly the same expression as for } \rho \text{ if } \rho \text{ is replaced by } \bar{\rho}.
$$

$$
\eta_{ij} = \sum_{k=1}^{n} \eta_{ij:k,i} \omega^k \wedge \omega^i \wedge \bar{\omega}^j + \sum_{k=1}^{m} \eta_{ij:k,i} \omega^k \wedge \bar{\omega}^i \wedge \omega^j,
$$

$$
\eta_{ij} = \sum_{k=1}^{m} \eta_{ij:k,i} \omega^k \wedge \omega^i \wedge \bar{\omega}^j + \sum_{k=1}^{m} \eta_{ij:k,i} \omega^k \wedge \bar{\omega}^i \wedge \omega^j,
$$

$$
\eta_{ij} = \sum_{k=1}^{m} \eta_{ij:k,i} \bar{\omega}^k \wedge \omega^i \wedge \bar{\omega}^j + \sum_{k=1}^{m} \eta_{ij:k,i} \bar{\omega}^k \wedge \bar{\omega}^i \wedge \omega^j,
$$

stands for $|I| = p$, $|J| = q$,

$$
\omega^i = \omega^{i_1} \wedge \cdots \wedge \omega^{i_p},
$$

$$
\omega^j = \omega^{j_1} \wedge \cdots \wedge \omega^{j_q}, \quad i_1 < i_2 < \cdots < i_p, \quad j_1 < j_2 < \cdots < j_q.
$$

All these components satisfy the conditions

(3.12) \quad \rho_i = \bar{\rho}_i, \quad \eta_{ij} = \bar{\eta}_{ij}, \quad \eta_{ij} = \bar{\eta}_{ij}.

Remark. The Spencer resolution of the sheaf $\mathcal{G}_c^{p,q}$ is an exact sequence

$$
0 \longrightarrow \mathcal{G}_c^{p,q} \longrightarrow P_{c,p,q} \longrightarrow P_{c,p,q}^1 \longrightarrow \cdots \longrightarrow P_{c,p,q}^{2m} \longrightarrow 0
$$

where the vector bundles $P_{c,p,q}^i$ are defined in an obvious way by an expression similar to (3.3). Each element $u \in P_{c,p,q}$, $u = (\rho, \eta)$ has the local form given by the previous Proposition 3.1, but the conditions
"for reality" (3.12) are not satisfied.

The complex tangent bundle $T = V \oplus \bar{V}$ splits into holomorphic and antiholomorphic parts. Let V^* and \bar{V}^* be their duals.

Proposition 3.2.

$$P^i_{\varphi, g} \cong (V^* \otimes A^{p,q}_R) \oplus T^* \otimes (V^* \otimes A^{p,q}_R)$$

$$\oplus T^* \wedge V^* \otimes (V^* \otimes A^{p,q}_R).$$

Proof. It is easily seen directly or from previous Proposition 3.1.

Before we proceed any further with the general situation $(p, q \geq 0)$ let us make an observation about $\mathcal{D}_R = \mathcal{D}^{p,q}_R$. From the general theory it follows that for any kth order, involutive, linear differential operator \mathcal{D}, with constant coefficients, from a vector bundle $E \to M$ into a vector bundle $F \to M$ there is in a certain sense a unique exact Spencer resolution \mathcal{R}_k of the sheaf \mathcal{I} of germs of solutions to the homogeneous system $\mathcal{D}s = 0$. The resolution \mathcal{R}_{k+l} of the sheaf \mathcal{I} corresponding to the lth prolongation \mathcal{D}^l of the operator \mathcal{D} is also exact and has the same cohomology as \mathcal{R}_k for any $l \geq 0$. Let us look in particular at the resolution of the sheaf of germs of holomorphic functions \mathcal{O} corresponding to the first order operator $\bar{\partial}$:

$$0 \to \mathcal{O} \to C^i_1 \to C^i_2 \to \cdots \to C^i_n \to 0, n = 2m.$$

This resolution is defined in a way analogous to (3.8) and C^i_1 is the vector bundle such that $u \in C^i_1$ is a pair $u = (\sigma, \xi)$, where σ is a complex-valued i-form and ξ is a complex-valued $(i + 1)$-form which belongs to the ideal generated by the dz's (in the coordinates in $U \subset M'$). $Du = D(\sigma, \xi) = (d\sigma - \xi, -d\xi)$.

To the first prolongation $j^1\bar{\partial}$ of $\bar{\partial}$ corresponds an exact resolution

$$0 \to \mathcal{O} \to C^2_1 \to C^2_2 \to \cdots \to C^2_n \to 0$$

where the C^i_j's and D are defined using the general principle [8]. Let us call (3.15) a prolongation of the Dolbeault resolution of \mathcal{O}. It is not difficult to prove

Proposition 3.3. The resolution (3.8) of $\mathcal{D}^{p,q}_R = \mathcal{D}_R$ is the quotient of de Rham's resolution for R and the prolongation (3.15) of Dolbeault's resolution for \mathcal{O}. In other words the following diagram is exact and commutative (writing $P^i = P^i_{\varphi, g}$):
It turns out that the resolution of \mathcal{P}_R can be somewhat simplified. Let us define the following vector bundles over M'; for i odd:

- $V^{p,q}$ is the bundle of complex-valued (p,q)-forms $p > q$,
- U_{i+1} is the bundle of complex-valued $(i+1)$-forms which belong to the ideal generated by the dz's;

for i even:

- $V^{p,q}$ is the bundle of complex-valued (p,q)-forms $p > q$,
- $W^{i/2,i/2}$ is the bundle of $(i/2, i/2)$-forms of type $\alpha + \bar{\alpha}$,
- U_{i+1} is the bundle of complex-valued $(i+1)$-forms which belong to the ideal generated by the dz's.

Now let us define

$$W^0 = W^{0,0} \oplus U^1$$
$$W^1 = V^{1,0} \oplus U^2$$
$$W^2 = V^{2,0} \oplus W^{1,1} \oplus U^3$$
$$W^3 = V^{3,0} \oplus V^{2,1} \oplus U^4$$
$$\vdots$$
$$W^{2i} = \oplus (V^{p,q}) \oplus W^{i,i} \oplus U^{2i+1}, \quad p + q = 2i, 0 \leq i \leq m ,$$
$$W^{2i-1} = \oplus (V^{p,q}) \oplus U^{2i}, \quad p + q = 2i - 1, 1 \leq i \leq m .$$

Proposition 3.4. The following diagram is exact and commutative

\[
\begin{array}{ccccccccc}
0 & 0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & R & A_0^p & A_1^p & \cdots & A_n^p & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \mathcal{O} & C_0^p & C_1^p & \cdots & C_n^p & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \mathcal{P}_R & W^p & W' & \cdots & W' & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

The operator $'D$ is defined by D.

Now let us turn our attention to the open submanifold M of
Let the boundary $\partial \bar{M}$ be a smooth (C^3) submanifold of codimension 1 in M'. A function r on M' is said to define the boundary of M if $r < 0$ on M, $r > 0$ on $M' - \bar{M}$, and $r = 0$ on $\partial \bar{M}$, with $\text{grad } r \neq 0$ on $\partial \bar{M}$. Let $U \subset M'$ be a coordinate neighborhood, $U \cap \partial \bar{M} \neq \emptyset$, with the coordinates (x^1, \ldots, x^n), $n = 2m$. Having chosen the hermitian metric on M' it can be shown (see for example C. B. Morrey, Jr. "Multiple Integrals in the Calculus of Variations.") that the coordinate system can be chosen in such a way that on $\partial \bar{M}$

\begin{equation}
\left\langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^n} \right\rangle = 0, \quad i < n,
\end{equation}

and $x^n = r = 0$ defines $\partial \bar{M}$. This done, assume that

\begin{equation}
\omega^w = \frac{1}{|dr|} \sum_{i=1}^n \frac{\partial r}{\partial z^i} dz^i \quad \text{in } U
\end{equation}

and

\begin{equation}
\left\langle \frac{\partial}{\partial \omega^j}, \frac{\partial}{\partial r} \right\rangle = 0, \quad j < m, \text{ on } \partial \bar{M}.
\end{equation}

Notice that $\langle \omega^w, \omega^w \rangle = 1$ and $(\omega^1, \ldots, \omega^w)$ is an orthonormal frame (which can be obtained by the Gram-Schmidt orthogonalization process).

Because $\partial/\partial \omega^j = \sum_{k=1}^n b^k_j \partial/\partial z^k$, we get from (3.18), (3.20) that

\[b^*_j = 0, \quad 1 \leq j < m. \]

Therefore on $\partial \bar{M} \cap U$ we have $\partial b^*_j/\partial x^i = 0$, $i < m$, $1 \leq j < m$. Finally, on $\partial \bar{M} \cap U$, we have the identities

\begin{equation}
\frac{\partial r}{\partial \omega^j} = 0, \quad \frac{\partial^2 r}{\partial \omega^j \partial \omega^k} = 0, \quad j, k < m.
\end{equation}

Let $*$ denote the usual star operator, $*: A^{p,q} \rightarrow A^{m-q,m-p}$. This operator can be defined by the formula

\[\langle \phi, \psi \rangle \gamma = \phi \wedge *\psi, \quad \phi, \psi \in A^{p,q} \]

where $\gamma = *\langle 1 \rangle$ is the volume element on M'. The volume element has the local form $*\langle 1 \rangle = \det(h) (\sqrt{-1})^w dz^1 \wedge \cdots \wedge dz^m \wedge d\bar{z}^1 \wedge \cdots \wedge d\bar{z}^m$, or, in our special frame,

\begin{equation}
*\langle 1 \rangle = (\sqrt{-1})^w \omega^1 \wedge \cdots \wedge \omega^m \wedge \bar{\omega}^1 \wedge \cdots \wedge \bar{\omega}^m.
\end{equation}

For any C^2-function ϕ on M let $L^2(P^i_{p,q}, \phi)$ be the space of all smooth sections u of $P^i_{p,q}$ such that
\[||u||_p^2 = \int_M |u|^2 e^{-\phi}(1) < \infty , \]

The global product will be denoted by \(\langle , \rangle_p = \int_M \langle \cdot , \cdot \rangle e^{-\phi}(-1) \). The operator \(D : P^{i,q}_p \rightarrow P^{i+1,q}_p \) defines a closed densely defined operator \(L^2(P^{i,q}_p, \phi) \rightarrow L^2(P^{i+1,q}_p, \phi) \), which we denote by \(D \). Let us denote by \(D^* \) its adjoint; and by \(\bar{P}^{i,q}_p \) the space of those sections of \(P^i_p \) over \(M \) which can be smoothly extended across the boundary \(\partial M \) into \(M' \). Because the space \(\bar{D}_p = \bar{P}^{i,q}_p \cap \bar{D}_p \) (\(\bar{D}_p \) stands for the domain of \(D^* \)) is dense in \(\bar{D}_p \cap \bar{D}_p \), with respect to the graph norm \(u \rightarrow ||u||_p + ||D^* u||_p + ||Du||_p \), let us look at \(\bar{D}_p \) more closely. It can be shown in the same way as in [6] that \(u \in \bar{P}^{i,q}_p \) belongs to \(\bar{D}_p \) if and only if

\[(Dv, u)_p = (v, D^* u)_p \quad \text{for all} \quad v \in \bar{P}^{i-1,q}_p . \]

Using this relation let us describe the space \(\bar{D}_p \) explicitly. As we are mainly interested in \(\bar{D}_p \), let us take an element \(u \in \bar{P}^{i,q}_p, u = (\rho, \eta) \), and \(v \in \bar{P}^{i,q}_p, v = (\sigma, \gamma) \) (see Lemma 3.1). Then

\[\langle Dv, u \rangle_p = \langle D_0 \sigma - \gamma, \rho \rangle + \langle D_0 \gamma - D_0 \gamma, \eta \rangle , \]

where

\[\langle D_0 \sigma - \gamma, \rho \rangle = d\sigma \wedge \ast \bar{\rho} - (\delta \lambda \sigma + \gamma) \wedge \ast \bar{\rho} , \]

\[\langle D_0 \gamma - D_0 \gamma, \eta \rangle = d\gamma \wedge \ast \bar{\eta} - \delta \lambda \gamma \wedge \ast \bar{\eta} , \]

and \(D_0 \sigma = fD_0^i \sigma \) for any function \(f \) because \(D_0^i \) is the curvature form of the connection \(D_0 \) defined on the vector bundle \(R^i_p \rightarrow M' \). Furthermore we get the formulas

\[d\sigma \wedge \ast \bar{\rho} e^{-\phi} = d(\sigma \wedge \ast \bar{\rho} e^{-\phi}) - \sigma \wedge d(\ast \bar{\rho} e^{-\phi}) \]

\[= d(\sigma \wedge \ast \bar{\rho} e^{-\phi}) - [e^{\phi} \ast d(\bar{\rho} e^{-\phi})] e^{-\phi} \]

\[d\gamma \wedge \ast \bar{\eta} e^{-\phi} = d(\gamma \wedge \ast \bar{\eta} e^{-\phi}) + \gamma \wedge d(\ast \bar{\eta} e^{-\phi}) \]

\[= d(\gamma \wedge \ast \bar{\eta} e^{-\phi}) - [e^{\phi} \ast d(\bar{\eta} e^{-\phi})] e^{-\phi} \]

therefore for any \(v \) with compact support in \(U, U \cap \partial M \neq \emptyset \),

\[\int_{v \cap M} \langle Dv, u \rangle e^{-\phi} \ast (1) = \int_{v \cap M} \langle D_0 \sigma - \gamma, \rho \rangle + \langle D_0 \gamma - D_0 \gamma, \eta \rangle e^{-\phi} \ast (1) \]

\[= \int_{v \cap M} [d(\sigma \wedge \bar{\rho} e^{-\phi}) - d(\gamma \wedge \ast \bar{\eta} e^{-\phi})] \ast (1) \]

\[+ \int_{v \cap M} [- (\delta \lambda \sigma + \gamma) \wedge \ast \bar{\rho} - \sigma \wedge [e^{\phi} \ast d(\bar{\rho} e^{-\phi})] \]

\[+ D_0 \sigma \wedge \ast \bar{\eta} + \delta \lambda \gamma \wedge \ast \bar{\eta} - \gamma \wedge [e^{\phi} \ast d(\bar{\eta} e^{-\phi})] e^{-\phi} \ast (1) . \]
By Stoke's formula we get
\[(Dv, u)_\phi - (v, D^* u)_\phi = \int_{\partial \bar{M}} (\sigma \wedge *\bar{\rho} - \gamma \wedge *\bar{\eta}) e^{-\phi} * (dr) , \]
where
\[D^* u = (-e^\phi d^*(\rho e^{-\phi}) + \cdots, -e^\phi d^*(\gamma e^{-\phi}) + \cdots) , \]
and \(\cdots \) stands for the terms which do not involve differentiation of \(u \) or \(\phi \). From the above remarks it follows that
\[\int_{\partial \bar{M}} (\sigma \wedge *\bar{\rho} - \gamma \wedge *\bar{\eta}) e^{-\phi} * (dr) = 0 \]
for any \(v \in \hat{P}_{p,q}^n \) with compact support in \(U \) if and only if \(u \in \hat{D}_{p,q}^n \). Because \(\sigma \) and \(\gamma \) can vanish independently we get instead
\[\int_{\partial \bar{M}} \sigma \wedge *\bar{\rho} e^{-\phi} = 0 , \quad \int_{\partial \bar{M}} \gamma \wedge *\bar{\eta} e^{-\phi} = 0 . \]
If we use the usual notation for the decomposition of forms into the tangent and normal parts \(\Phi = t\Phi + n\Phi \) on \(\partial \bar{M} \), we conclude from above that \(\sigma \wedge *\bar{\rho} = n(\sigma \wedge *\bar{\rho}) \), \(\gamma \wedge *\bar{\eta} = n(\gamma \wedge *\bar{\rho}) \) because
\[\int_{\partial \bar{M}} \sigma \wedge *\bar{\rho} e^{-\phi} = \int_{\partial \bar{M}} t(\sigma \wedge *\bar{\rho}) e^{-\phi} = 0 \]
and analogously for the second integral. But, if for any form \(\Phi \), we have \(\Phi = n\Phi \) on \(\partial \bar{M} \), then \(dr \wedge \phi = 0 \). Therefore
\[(3.24) \quad dr \wedge \sigma \wedge *\bar{\rho} = 0 , \quad dr \wedge \gamma \wedge *\bar{\eta} = 0 . \]
From the first identity we can conclude that \(dr \wedge *\bar{\rho} = 0 \), because \(\sigma \) is a 0-form with values in \(R^{r,q} \). Therefore \(t\bar{\rho} = 0 \) and from the formulas
\[*n = t* , \quad *t = n* \]
we conclude that \(t*\bar{\rho} = *n\bar{\rho} = \bar{n}\rho = 0 \), so that \(n\rho = 0 \). Recall that \(\gamma \) is a \((T^* \otimes A_{k}^{r}) \)-valued 1-form (as \(\tilde{\partial}(T^* \otimes A_{k}^{r}) \subset T^* \otimes T \otimes A_{k}^{r} \)). Such a form \(\gamma \) splits into \((1, 0) \) and \((0, 1) \)-parts, \(\gamma = \gamma_1 + \gamma_2 \). The second condition (3.24) should hold for any \(\gamma \) with compact support in \(U \). Therefore
\[(3.25) \quad dr \wedge \gamma_1 \wedge *\bar{\eta} = 0 , \quad dr \wedge \gamma_2 \wedge *\bar{\eta} = 0 \]
should hold for any \(\gamma_1 \) and \(\gamma_2 \). From Proposition 3.1 follows that we can write
\[\eta = \sum_{k=1}^{m} \eta_{iJ,k} \omega^k \otimes \omega^T \wedge \bar{\omega}^j + \sum_{k=1}^{m} \eta_{iJ,k} \bar{\omega}^k \otimes \omega^T \wedge \bar{\omega}^j + \sum_{k=1}^{m} \eta_{iJ,k} \omega^k \otimes \bar{\omega}^j \wedge \omega^j + \sum_{k=1}^{m} \eta_{iJ,k} \bar{\omega}^k \otimes \bar{\omega}^j \wedge \omega^j , \]

where \(\eta_{iJ,k} , \text{ etc} \) are 2-forms (3.11). We shall use the obvious notation

\[\eta = \sum_{|U|=p} \sum_{|V|=q} \eta_{UV,u} \omega^v \otimes \omega^U \wedge \omega^V \]

where \(U, V \) and \(w \) stand for barred as well as for unbarred indices. Then we can write, instead of (3.25), for any \((1, 0)\)-form \(\phi \) and any \((0, 1)\)-form \(\psi \)

\[dr \wedge \phi \wedge *\bar{\eta}_{UV,u} = 0 , \quad dr \wedge \psi \wedge *\bar{\eta}_{UV,u} = 0 . \]

And these identities have to be satisfied for all components of \(\eta \).

Proposition 3.5. An element \(u \in \tilde{P}_{p,q} \), \(u = (\rho, \eta) \), belongs to \(\tilde{\mathcal{D}}_{p}^\rho \) if and only if for any \(\phi \in A^{1,0}, \psi \in A^{0,1} \) with compact support in \(U, U \cap \partial M \neq \emptyset \),

\[\text{dr} \wedge \phi \wedge *\bar{\eta}_{UV,u} = 0 , \quad dr \wedge \psi \wedge *\bar{\eta}_{UV,u} = 0 , \]

holds (on \(U \cap \partial \bar{M} \)).

Using the explicit coordinate description (3.11) of an element \(u \in \tilde{P}_{p,q} \), we get, by direct computation,

Corollary. An element \(u \in \tilde{P}_{p,q} \) belongs to \(\tilde{\mathcal{D}}_{p}^\rho \) if and only if for its components (via (3.11)) the following identities hold:

\[n\rho_{ij,j} = 0 , \quad n\rho_{iJ,j,j} = 0 , \quad n\rho_{iJ,i} = 0 \]

\[\sum_{i=1}^{m} \frac{\partial}{\partial \omega^i} \eta_{iJ,k,b,i} = 0 , \quad \sum_{i=1}^{m} \frac{\partial}{\partial \omega^i} \eta_{iJ,k,b,i} = 0 , \]

\[\sum_{i=1}^{m} \frac{\partial}{\partial \omega^j} \eta_{iJ,k,b,i} = 0 , \quad \sum_{i=1}^{m} \frac{\partial}{\partial \omega^j} \eta_{iJ,k,b,i} = 0 , \]

\[\sum_{i=1}^{m} \frac{\partial}{\partial \omega^j} \eta_{iJ,k,b,i} = 0 , \quad \sum_{i=1}^{m} \frac{\partial}{\partial \omega^j} \eta_{iJ,k,b,i} = 0 , \]

\[\text{together with their complex conjugates.} \]

Remark. If we write down only formally the conjugate equations to (3.27), than using the remark following Proposition 3.1 we get the boundary conditions for an element \(u \) in complex situation.
For an element \(u \in \mathcal{D}' \), write \(Du = Au + \cdots \) and \(D^*u = Bu + \cdots \), where \(\cdots \) stands for those terms where \(u \) and \(\phi \) do not get differentiated. Then for such an \(u = (\rho, \eta) \) we have

\[
(3.28) \quad Au = A(\rho, \eta) = (d\rho, d\eta) .
\]

Let us introduce symbols

\[
d^\phi w = e^\phi d(w \cdot e^{-\phi})
\]

and

\[
d^\phi = \sum_{i=1}^m \omega^i \wedge d_i^\phi + \sum_{i=1}^m \bar{\omega}^i \wedge d_i^\phi .
\]

The differentiating part of the adjoint \(D^* \) gives then

\[
Bu = B(\rho, \eta) = (-\Sigma d_i^\phi \phi_i - \Sigma d_i^\phi \rho_i , \Sigma d_i^\phi \eta_{ij} \bar{\omega}^j - \Sigma d_i^\phi \eta_{ij} \omega^i - \Sigma d_i^\phi \eta_{ij} \bar{\omega}^j + \Sigma d_i^\phi \eta_{ij} \omega^i) .
\]

It is an easy computation to show that for any \(u \in \mathcal{D}_0' \) there is an inequality

\[
(3.30) \quad ||Au||_p^2 + ||Bu||_p^2 - ||Du||_p^2 - ||D^*u||_p^2 \leq C||u||_p(||Du||_p + ||D^*u||_p + ||u||_p)
\]

where \(C \) is a constant independent of \(u \) and \(\phi \).

We have chosen the local coframe \((\omega^i, \cdots, \omega^m) \), where \(\omega^i \) is \((1, 0)\)-form. Therefore there are smooth \((C^\infty)\) functions \(c^i_{jk} \), and \(a^i_{jk} \) such that

\[
\bar{\phi} \omega^i = \sum_{j,k=1}^m c^i_{jk} \bar{\omega}^j \wedge \omega^k , \quad \bar{\phi} \bar{\omega}^i = \sum_{j,k=1}^m \bar{c}^i_{jk} \omega^j \wedge \bar{\omega}^k ,
\]

\[
\phi \omega^i = \sum_{j,k=1}^m a^i_{jk} \omega^j \wedge \omega^k , \quad \phi \bar{\omega}^i = \sum_{j,k=1}^m a^i_{jk} \bar{\omega}^j \wedge \bar{\omega}^k .
\]

If \(w \) is any function, then

\[
\bar{\phi} \bar{\omega} w = -\bar{\phi} \bar{w} = -\sum_{k,j=1}^m w_{kj} \bar{\omega}^j \wedge \omega^k ,
\]

\[
(3.31) \quad w_{jk} = \frac{\partial^2 w}{\partial \omega^j \partial \omega^k} + \sum_{i=1}^m c^i_{jk} \frac{\partial w}{\partial \omega^i} , \quad w_{kj} = \frac{\partial^2 w}{\partial \omega^k \partial \omega^j} + \sum_{i=1}^m \bar{c}^i_{kj} \frac{\partial w}{\partial \bar{\omega}^i} ,
\]

\[
w_{jk} = w_{kj} .
\]

And we introduce other symbols, namely
Because \(*(dr)/|dr| \) is the volume element on \(\partial M \) we have
\[dr \wedge *(dr) = |dr|^2 *(1), \]
where \(*(1) = (\sqrt{-1})^m \omega^1 \wedge \cdots \wedge \omega^m \wedge \cdots \wedge \bar{\omega}^m \)
is the volume element on \(M' \). Let \(f, g \) be any two functions with support in a coordinate neighborhood \(U \subset M' \). Then
\[
d(f \bar{g} e^{-\varphi})(\sqrt{-1})^m \omega^1 \wedge \cdots \wedge \omega^{k-1} \wedge \omega^{k+1} \wedge \cdots \wedge \omega^m \wedge \bar{\omega}^1 \wedge \cdots \wedge \bar{\omega}^m)
= (-1)^{k-1} \frac{\partial f}{\partial \omega_k} \bar{g} e^{-\varphi} *(1) + (-1)^{k-1} f \cdot d\bar{\omega}^k \bar{g} e^{-\varphi}*(1) + (-1)^{k-1} f \bar{g} e^{-\varphi} \sigma_k *(1)
\]
where \(\sigma_k \) is defined by this relation. By Stoke's formula we get

Proposition 3.5. Let \(f, g \) be complex-valued functions \((C^\infty) \) with supports in \(U \), then we have the formula
\[
\int_{U \cap M} \frac{\partial f}{\partial \omega_k} \bar{g} e^{-\varphi} *(1) = -\int_{U \cap M} f \cdot d\bar{\omega}^k \bar{g} e^{-\varphi} *(1) - \int_{U \cap M} f \bar{g} e^{-\varphi} \sigma_k *(1)
\]
(3.33)
\[
+ \int_{U \cap \partial M} f \bar{g} \frac{\partial r}{\partial \omega_k} e^{-\varphi} *(dr).
\]

There is an analogous formula for \(\int_{U \cup M} \frac{\partial f}{\partial \omega_k} \bar{g} e^{-\varphi} *(1) \) which is obvious.

One more technical device is needed for obtaining the basic estimate—the commutation relations. Using the definition of \(d_\varphi^i \) and replacing \(w \) in (3.31) by \(\varphi \) we get
\[
d_\varphi^i \frac{\partial w}{\partial \omega^j} - \frac{\partial}{\partial \omega^j} d_\varphi^i w = w \cdot \phi^i_j + \sum_{i=1}^m c_{k_j}^i \frac{\partial w}{\partial \omega^k} + \sum_{i=1}^m \bar{c}_{k_j}^i \frac{\partial w}{\partial \bar{\omega}^i},
\]
(3.34)
\[
d_\varphi^i \frac{\partial w}{\partial \omega^j} - \frac{\partial}{\partial \omega^j} d_\varphi^i w = w \cdot \phi^i_j + \sum_{i=1}^m a_{k_j}^i \frac{\partial w}{\partial \omega^k} + \sum_{i=1}^m \bar{a}_{k_j}^i \frac{\partial w}{\partial \bar{\omega}^i}.
\]

Definition 3.1. Let \(\eta \) be a tangent vector at \(\partial M \). The quadratic form
\[
\langle \partial \omega, \eta \rangle \wedge \eta
\]
(3.35)
is called the Levi form.

If we use the orthonormal coframe \((\omega^1, \cdots, \omega^m) \) then the Levi form can be written in the form
\[
\sum_{i,j=1}^m r^i_j \eta_i \bar{\eta}_j, \quad \eta = \sum_{j=1}^m \eta_j \omega^j.
\]
Now, let us compute explicitly $||Au||_p^p + ||Bu||_p^p$ for $u \in \mathcal{D}_b$, and use the estimate (3.30) to make the results of [4] immediately applicable. The computation is rather long and routine. Using (3.28) and (3.29) together with (3.33) and (3.34) we get, for $u \in \mathcal{D}_b$ with support in U, the terms involving ρ only:

$$||Au||_p^p + ||Bu||_p^p = \sum_{i,j,L} \left\{ \frac{\partial \rho_i}{\partial \omega^k} \right\}^2 + \left\{ \frac{\partial \rho_j}{\partial \omega^k} \right\}^2 + \left\{ \frac{\partial \rho_L}{\partial \omega^k} \right\}^2 + \left\{ \frac{\partial \rho_{i,j,L}}{\partial \omega^k} \right\} e^{-\phi_*(1)} + \cdots \tag{3.36}$$

and the terms involving γ only:

$$||Au||_p^p + ||Bu||_p^p = \sum_{i,j,L} \left\{ \frac{\partial \eta_{i,j} \rho_{i,j,L}}{\partial \omega^k} \right\}^2 + \left\{ \frac{\partial \eta_{i,j} \rho_{i,j,L}}{\partial \omega^k} \right\}^2 + \left\{ \frac{\partial \eta_{i,j} \rho_{i,j,L}}{\partial \omega^k} \right\}^2 + \left\{ \frac{\partial \eta_{i,j} \rho_{i,j,L}}{\partial \omega^k} \right\} e^{-\phi_*(1)} + \cdots \tag{3.37}$$

Let us put for the moment:

k_1 = the boundary integral in (3.36),

k_2 = the integral following k_1 in (3.36),

k_3 = the terms involving the $d^\phi \rho$'s,

k_4 = the remaining terms.

Therefore (3.36) can be written in the form

$$\sum_{i,j,L} \left\{ \phi_{i,j}(\rho_i \cdot \rho_j + \rho_j \cdot \rho_i) + \phi_{i,j} \rho_j \cdot \rho_k + \phi_{i,j} \rho_j \cdot \rho_k \right\} e^{-\phi_*(1)} + k_1 + k_2 + k_3 + k_4 .$$

The integral k_3 splits into k_3' and k_3'', where

$$k_3' = \sum_{i,j,L} \left\{ \frac{\partial \rho_i}{\partial \omega^k} \cdot \frac{\partial \rho_j}{\partial \omega^k} \cdot \frac{\partial r}{\partial \omega^k} + \frac{\partial \rho_j}{\partial \omega^k} \cdot \frac{\partial \rho_k}{\partial \omega^k} \cdot \frac{\partial r}{\partial \omega^k} + \frac{\partial \rho_k}{\partial \omega^k} \cdot \frac{\partial \rho_i}{\partial \omega^k} \cdot \frac{\partial r}{\partial \omega^k} \right\} e^{-\phi_*(dr)} .$$

Using the boundary conditions (3.27) all terms involving the $d^\phi \rho$'s are zero, because $n \cdot \rho = 0$ implies

$$\sum_{j=1}^m \rho_j \cdot \frac{\partial r}{\partial \omega^j} = 0 , \quad \sum_{j=1}^m \rho_j \cdot \frac{\partial r}{\partial \omega^j} = 0$$
and simple substitution does it. As for the remaining part of \(k_i \) we get by integration by parts

\[
k_i = \sum_{\mathcal{V} \cap \mathcal{M}} \left\{ \frac{\partial^2 r}{\partial \omega^i \partial \omega^j} \rho_j \rho_i + \frac{\partial^2 r}{\partial \omega^i \partial \omega^j} \rho_j \rho_i + \frac{\partial^2 r}{\partial \omega^i \partial \omega^j} \rho_j \rho_i \right\} e^{-\phi}(dr) + \frac{\partial^2 r}{\partial \omega^i \partial \omega^j} \rho_j \rho_i \}
\]

Then

\[
k_i + k'_i = \sum_{\mathcal{V} \cap \mathcal{M}} \left\{ \rho_j \rho_i \rho_i + \rho_j \rho_i \rho_i + \rho_j \rho_i \rho_i \right\} e^{-\phi}(dr)
\]

But the special choice of the local frame in \(U \) with the property (3.21) shows that the last two terms are zero on \(\partial \mathcal{M} \) so that

(3.38)
\[
k_i + k'_i = \sum_{\mathcal{V} \cap \mathcal{M}} \left\{ \rho_j \rho_i \rho_i + \rho_i \rho_i \rho_i \right\} e^{-\phi}(dr)
\]

Let us denote by

(3.39)
\[
\sum_{\mathcal{V} \cap \mathcal{M}} \left\{ |\frac{\partial}{\partial \omega^k} \rho_i|^2 + |\frac{\partial}{\partial \omega^k} \rho_i|^2 + |\frac{\partial}{\partial \omega^k} \rho_i|^2 \right\} e^{-\phi}(1) + ||\rho||_\phi^2 .
\]

Then it is easy to show that there are constants \(C_2, C_3, C_4 \) such that

\[
|k'_i| \leq C_2 ||\rho||_\phi ||\rho||_\phi, \ |k_i| \leq C_2 ||\rho||_\phi ||\rho||_\phi
\]

and

\[
|k_i| \leq C_4 ||\rho||_\phi ||\rho||_\phi
\]

Similarly let us define \(t_i, t_2, t_3, t_4 \) in (3.37). And as we did for \(k_i \) we can also split \(t_5 \) into \(t'_5 + t''_5 \), get an estimate for \(t_5, t'_5, t_4 \) and write the boundary integral

(3.39)
\[
t_i + t'_5 = \sum_{\mathcal{V} \cap \mathcal{M}} \left\{ \eta_{ij} \eta_{ij} \eta_{ii} + \eta_{ij} \eta_{ij} \eta_{ii} + \eta_{ij} \eta_{ij} \right\} e^{-\phi}(dr) + \eta_{ij} \eta_{ij} + \eta_{ij} \eta_{ij} + \eta_{ij} \eta_{ij} e^{-\phi}(dr)
\]

By direct computation we get

Proposition 3.6. For an element \(u \in \mathcal{D}_0^\phi \), vanishing outside a fixed compact subset of a coordinate neighborhood \(U \) in \(\mathcal{M} \) and for any \(\phi \in \mathcal{C}^2(\mathcal{M}), \partial \mathcal{M} \in \mathcal{C}^3 \) the following estimate holds.
\[(3.40) \quad | |D^*u|^2 + |Du|^2 - Q_1(u, u) - Q_2(u, u) - Q_3(u, u)| \leq C\|u\|_\phi (|Du|_\phi + |D^*u|_\phi + \|u\|_\phi) \]

where

\[Q_1(u, u) = \sum_{\nu \in \nu M} \left\{ \left| \frac{\partial \rho_1}{\partial \omega^k} \right|^2 + \left| \frac{\partial \rho_1}{\partial \bar{\omega}^k} \right|^2 + \left| \frac{\partial \rho_1}{\partial \omega^n} \right|^2 + \left| \frac{\partial \rho_1}{\partial \bar{\omega}^n} \right|^2 + \left| \frac{\partial \eta_{i\bar{j}}}{\partial \omega^k} \right|^2 + \left| \frac{\partial \eta_{i\bar{j}}}{\partial \bar{\omega}^k} \right|^2 \right\} e^{-\phi}(1) \]

\[Q_2(u, u) = \sum_{\nu \in \nu M} \left\{ \phi_{i\bar{j}}(\rho_j \cdot \bar{\rho}_k + \rho_j \cdot \bar{\rho}_k) + \phi_{i\bar{j}}(\rho_j \cdot \bar{\rho}_k + \phi_{i\bar{j}}(\rho_j \cdot \bar{\rho}_k \cdot \bar{\rho}_k) + \phi_{i\bar{j}}(\rho_j \cdot \bar{\rho}_k \cdot \bar{\rho}_k) + \phi_{i\bar{j}}(\rho_j \cdot \bar{\rho}_k \cdot \bar{\rho}_k) \right\} e^{-\phi}(1) \]

\[Q_3(u, u) = \sum_{\nu \in \nu \check{M}} \left\{ \rho_j \cdot \bar{\rho}_j + \rho_j \cdot \bar{\rho}_j + \eta_{ij} \cdot \bar{\rho}_j + \eta_{ij} \cdot \bar{\rho}_j + \eta_{ij} \cdot \bar{\rho}_j + \eta_{ij} \cdot \bar{\rho}_j \right\} e^{-\phi}(dr) \]

This proposition corresponds to Proposition 3.1.1 is [4]. Now applying the technique of [4] to our situation we get

Lemma 3.1. If the Levi from (3.35) has at least \(n - 2\) positive eigenvalues or at least 3 negative eigenvalues at every point on \(\partial M\) then there exists a constant \(C > 0\) such that

\[(3.41) \quad |Du|^2 + |D^*u|^2 + |u|^2 \geq C\int_{\partial M} |u|^2 e^{-\phi}(dr) \]

for \(u \in \hat{\mathcal{D}}\).

We are now in the position that the Kohn-Nirenberg Theorem can be applied (Theorem 5, §2 [7]). Let us denote by \(N^1\) the subspace of \(\hat{P}_{p,q}\) composed of all sections \(u \in \hat{P}_{p,q}\) satisfying the boundary conditions (3.23) and

\[(3.42) \quad (Dv, Du)_\phi = (u, D^*Du)_\phi \text{ for all } v \in \hat{P}_{p,q}^1.\]

Let \(H^1\) be the subspace of \(N^1\) which is annihilated by the laplacian \(DD^* + D^*D\), i.e., \(H^1 = \{u \in N^1 \mid Du = D^*u = 0\}\).

Theorem 3.1. For an open manifold \(M \in M', \partial M \subset C^0\), satisfying
the assumptions of the previous Lemma 3.1, the Neumann problem is solvable for the operator $D: P_{p,q}^v \rightarrow P_{p,q}^i$ (related to dd_c by (1.1)) at $P_{p,q}^i$. This means that H^1 is closed in $L^2(P_{p,q}^i, \phi)$, and that there exists a bounded operator $N: L^2(P_{p,q}^i, \phi) \rightarrow L^2(P_{p,q}^i, \phi)$ such that its range is in N^1, and

(i) $NH = HN$, where $H: L^2(P_{p,q}^i, \phi) \rightarrow H^1$ is the orthogonal projection,

(ii) each element $u \in L^2(P_{p,q}^i, \phi)$ can be written in the form $u = DD^*Nu + D^*DNu + Hu$, where the terms are mutually orthogonal,

(iii) $DN = ND$.

REMARKS. 1. If one drops the “side conditions” (3.12) and considers the operator $\partial \partial$ instead of dd_c then exactly the same conditions on the Levi form are sufficient for the solvability of the Neumann problem related to $\partial \partial$.

2. All the computations have been done at $P_{p,q}^i$ only. It would be only a technical problem to get an extension in that direction and show that on strongly pseudoconvex manifolds the Neumann problem is solvable (for $\partial \partial$ and dd_c).

REFERENCES

Received August 3, 1970. The authors were partly supported by National Science Foundation Grants, GP-16354 and GP-12321 during the preparation of this paper.

NORTHEASTERN UNIVERSITY
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

C. R. HOBBY
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *

AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edward Arthur Bertram, Permutations as products of conjugate infinite cycles</td>
<td>275</td>
</tr>
<tr>
<td>David Blair, Almost contact manifolds with Killing structure tensors</td>
<td>285</td>
</tr>
<tr>
<td>Bruce Donald Calvert, Nonlinear equations of evolution</td>
<td>293</td>
</tr>
<tr>
<td>Bohumil Cenkl and Giuliano Sorani, Cohomology groups associated with the $\bar{\partial}\partial$ operator</td>
<td>351</td>
</tr>
<tr>
<td>Martin Aaron Golubitsky and Bruce Lee Rothschild, Primitive subalgebras of exceptional Lie algebras</td>
<td>371</td>
</tr>
<tr>
<td>Thomas J. Jech, Two remarks on elementary embeddings of the universe</td>
<td>395</td>
</tr>
<tr>
<td>Harold H. Johnson, Conditions for isomorphism in partial differential equations</td>
<td>401</td>
</tr>
<tr>
<td>Solomon Leader, Measures on semilattices</td>
<td>407</td>
</tr>
<tr>
<td>Donald Steven Passman, Group rings satisfying a polynomial identity. II</td>
<td>425</td>
</tr>
<tr>
<td>Ralph Tyrrell Rockafellar, Integrals which are convex functionals. II</td>
<td>439</td>
</tr>
<tr>
<td>Stanisław Sławomir Świerczkowski, Cohomology of group germs and Lie algebras</td>
<td>471</td>
</tr>
<tr>
<td>John Griggs Thompson, Nonsolvable finite groups all of whose local subgroups are solvable. III</td>
<td>483</td>
</tr>
<tr>
<td>Alan Curtiss Tucker, Matrix characterizations of circular-arc graphs</td>
<td>535</td>
</tr>
</tbody>
</table>