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Let M be a complex analytic manifold of complex di-
mension m. The manifold 3/, considered open, is a submani-
fold of a manifold M’ of the same dimension, and its
boundary 9}/ is a smooth C3-manifold. Let A7 ¢ be the sheaf of
germs of complex-valued (p, ¢)-forms, p and ¢ are integers,
p=0, g =0. The exterior differential of an element uc A?.¢
can be written in a unique way as a sum du = 6u + du. There
is a real operator

dew = V' =1 (ou — ou)
and the real second order operator
dd. = 2V —169

defined on AP 7. Let AR" ={a=a;+ a: € A? 1P A7 |a, = @}
be the sheaf of real (p, q)-forms. Then we get two short
exact sequences of sheaves

a0 d
0—>,_g?éq.q__,Ap.q———»Ap+1.q+1.__,Ap+2,q+1€9Ap+1,q+z
(1.1

dd. d
2 1,
00— %P,Q——)A?{q___)APR+1,q+1__.—)A;;J{+ ,q+1@Aﬁ+ q+2

where 277 and 57" are defined by these sequences. The
purpose of this paper is to discuss the cohomology of these
two sequences.

The importance of the cohomology of the first sequence,

Kerd on I'(M, A*9)

1.2 Ayt = 22
(1.2) " 00" (M, AP~

?

lies in its application to the study of strongly ¢-pseudoconvex mani-
folds—A. Andreotti, F. Norguet, B. Bigolin and others. The coho-
mology of the second sequence,

(1.3) A7t — Kerd on I'(M, A%
. R dch(My A};{«l,q—-l)

’

contains (for » = q) the refined Chern classes of complex analytic
vector bundles over M. In both cases the first cohomology group
H'(M, ) plays the important role, therefore we restrict ourselves to
this case.

As for the cohomology of the first sequence (1.1), B. Bigolin
studied recently the relation of A2 with the so called Aeppli coho-
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mology

(L.4) P — Ker 93 on I'(M, A?)
© TSI, A 1 oI (M, A

and with H*(M, C) under certain assumptions on the manifold M
(Stein, k-pseudoconvex, compact Kahler) using methods of sheaf
theory. The main results of this paper are proved by direct Hilbert
space methods. The cohomology of both sequences (1.1) are studied
simultaneously. The statements concerning the first sequence (1.1)
can be considered as another proof of some results obtained by
Bigolin. It is shown that the cohomology of M with coefficients in
the sheaf &#7? and also in <727 is, under certain conditions on the
boundary of M open, finite dimensional and isomorphic to the har-
monic spaces constructed from Spencer’s resolutions of the corresponding
sheaves. Using the terminology of [9] we can say that the Neumann
problem is solvable for the operators 39 and dd,, under certain pseudo-
convexity conditions on the boundary of M (Theorem 3.1).

The technique is based on the methods developed by Hormander
as an extension of those introduced into the subject by Kohn, Morrey,
and Ash. The relatively new part in this direction here is the
application of Hormander’s technique to the Spencer resolution of the
sheaves &% and 7P,

B. Mac Kichan told us recently that he can prove, using the
o-estimate [8], that the Neumann problem is solvable for the operator
00 on complex-valued functions under certain boundary conditions on
the open manifold M.

2. Before we start proving the main results concerning the
open and compact manifolds, let us start some elementary properties
of the sheaves 7? and <7#? defined as the kernels of the operators
80 and dd, respectively—see (1.1)—and summarize the known results
connected with our considerations.

PROPOSITION 2.1. The sheaf FP° is the sheaf of germs of differ-
ential (p, 0)-forms w=N\+[H, where ) is a local holomorphic (p, 0)-form
and ¢ is a d-closed (0, p)-form.

Proof. An element we &7?° if and only if 60w = dow =0. From
the exactness of de Rham’s complex, we conclude that there exists
re A7° such that dh = dw. But ow e AP*°* therefore on = dw and
on =0. Denote @ —N= . Then o(w —\) =0f =0, therefore dp =
0 and w =\ + ¢ as stated above.

REMARK. If we denote by £° the sheaf of germs of holomorphic
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p-forms and by S#* the sheaf of /-closed (p, 0)-forms we see immedi-
ately that there is an exact sequence of sheaves

(2.1) 00— S?— P F"—F—0,

where S? is the sheaf of d-closed (p, 0)-forms, and the corresponding
exact sequence for cohomologies

- — HY(M, 2) @ H\(M, 2¢7) — H'(M, P¢") — H*'(M, S") —>
—— H* (M, 29) @ H*(M, 577) -+ -

PROPOSITION 2.2. The sheaf F5° = G is the sheaf of germs of
real parts of holomorphic functions on M.

Proof. Let ue A}, ddu=0. Then 60u = oou =0and u = f + 7,
where 4f = dg = 0. The function A = f— g is real as u is a real
function. Furthermore 64 =0 and 0k = 0h =0, therefore h = constant
and u is the real part of the homolorphic function 2f — h.

If g is the projection of a homolorphic function on its real part,
we get immediately the exact sequence

a

2.2) 0 R ot o —0,

where ¢ = 2°. The map « gives to any ac R a constant function
0 + 2. We claim that this sequence splits, because there is a sheaf
homomorphism b: &%, — ¢ which to each function u e % associates
a holomorphic function % -~ 7v where v = v at a given point of M.
We then have:

PROPOSITION 2.3. The sequence (2.2) is exact and splits.

ProPOSITION 2.4. Let A™? be the sheaf of C= complex-valued
(p, @)-forms and A% = {we A" P A"’ 0w = a + &, ac A”%, then the
sequences (1.1) are exact sequences of sheaves.

Proof. We prove only the exactness of the second sequence
(1.1) at A% because the proof of the first sequence is analogous.
Let we A%™ ", du = 0. Then there exists w ¢ A% P A%™ such that
w=a+a+p+ B, acA»", ge A%, dw = u. Because dw ¢ Ay
we conclude that 0@ = da = 08 = d 8 = 0 as these terms belong to 47+*?,
AP TtE ArRa AP0+ regpectively. From da@ = 0 follows that there exists
a € A”? such that 0@ = @ and from 08 = 0 we get the existence of
be A*%,0b= . Then (a—a)ec A»*P A*? and (b—b)c A '@ A?? and
0d(a — @+ b—0b) =oa+oa@ +d8+0op8. Putw= —1/2v"—1(a—a —b — b).
Then we see that @w = we A%? and dd,w = 21 — 100w = do(a—a+b—b) =
dw = 4.
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From the work of Aeppli and Bigolin we have the following
information about the cohomology of M with values in the sheaves
FF, P and the cohomology V27 (1.4).

PROPOSITION 2.5. Let M be a Stein manifold, them we have the
following isomorphisms:

Ve = H* (M, C) , »,q=0
Ayt = HY(M, FF) = H**(M, C), »,q=0
H"(M, Pp*) = H***"*"*(M, C) , r=z1l,p+q+2=m=dim; M.

ProOPOSITION 2.6. If M is strongly k-pseudoconvex, then

dim, H"(M, FF %) < + oo, r=1,p,q=k, p+q+2=2m=dim . M ,
dim, V@' < + oo, pag=k,
dime A7 < 4 oo, v,q=k.

ProposiTION 2.7. On a compact manifold M

dimc/lg"’< + oo, p’qzly
dim; H' (M, 8% < + oo, r=1,p+q+2=m=dim.M,
dime V&7 < + oo, p+qg=l.

If M is a compact Kihler manifold then

Vet = HY(M, ) = H"'(M, 2),
Aet = H'(M, &) = H"(M, &) .

3. Let M be an open manifold, M < M’, a submanifold of M’
such that the boundary oM is smooth (C°). Let m=dim, M=dim, M’
as before.

We shall construct first of all the Spencer resolution of the
sheaves <A77 and Z#¢#? But, because the resolution of the “real”
sheaf Z%2? can be obtained from the “complex” one by adding certain
algebraic conditions on the spaces in question, we shall consider the
resolution of 7?7 and point out simultaneously which conditions have
to be dropped in order to get the resolution of 77

The second order operator dd, together with its prolongations
can be factored through the sheaf of germs of the jet bundle J,(A4%%),
1= 2, and thus we can define the vector bundle R??*— M’ by the
commutative diagram
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0 5 Rf,q > Jl(Aﬁ,q) —_— A%H.q @ A?"'H'l
/

/
/dd.
/

(3.1), 7,

A%,q

for [ = 2. Let us denote by 6 the formal differential ([9]) and define
the vector bundles ¢g%:¢4 — M’ and P} ,— M’, 0 < 7 < 2m, by the sequences

(3.2), 0 gris Ry Ry 0,

where 7 is the ordinary jet projection. Now let

(3.3) Py, = (A T*Q RSN T* Q@ g3 ,
T* = T*(M’) being the cotangent bundle of M’. It can be shown
(I3]) that having chosen a splitting A of (3.2), we have an isomorphism

6.4  PL=(AT*QRIDIAT Qg7 0=<i<2m.

Furthermore there is a uniquely defined 1st order differential operator
D such that for any vector bundle E — M’ and for the corresponding
jet bundles

(3.5) D:J(B)— T* R J(E) .

This operator is universal for all linear differential operators on E,
in the sense that for any subbundle R, of J,(E) given by an operator
in the same way as R!? in (3.1); was defined, D maps R, into
T* R R,_,. Therefore

(3.6), D: Ryt — T* ® Rt P,q=0.
The restriction of D to the kernel g7i% of the jet projection z, (3.2),,
is actually (—0).

The operator D, (3.6), and a splitting » of (3.6), define the 1st
order differential operator D, = D-},

3.7 D R —— T* R R .
Now we are in the position to state

LEMMA 3.1. Let 7% — M’ be the sheaf defined by the operator
dd, (1.1). Then the sequence
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D D D
(3.8) 0 > TR0 > P, P;, oo - Pl >0,

where, using the isomorphism (3.4),
Dy = D(5,8) = (Do — {, Dy(Dyo — 0)), uePi,0=<1=2m,
18 an exact resolution of FE* by fine sheaves.

Proof. It follows from the general theory—see [8].

COROLLARY.

Ker D on I'(M’', P;.) = Aprredt

3.9 H! M', yJRp,q =~
(3.9 (M’, F7%¢%) DI, P2

In order to study this group we need an explicit description of the
sheaf P, ,.

Let U be a coordinate neighborhood in M’ with complex an-
alytic coordinates (2',---.,z™) related to the real coordinates (z',- .-, 2*™)
by the usual relations z/ = 2¥ ' + 1/ —12¥,1 <j < m. In order to
get an expression more suitable for calculation let us introduce at
this point a hermitian product {,) on the tangent bundle T'= T(M’).
This product is locally given by a hermitian matrix h = (hi;), {0/6%',
01027y = h;, {3/0%", 3/0Z") = 0, and the matrix *A~' = (h’%) gives an inner
product on the cotangent bundle T* by the formulas {dz’, dz’y = ¥,
{d#', dz%) = 0.

As the differentiation of the hermitian product involves differ-
entials of the matrix % it turns out to be useful to intorduce a more
suitable frame. Let

(3.10) (@' +«+, @™)

be C= (1, 0)-forms on U such that
! = i aidz*, dz¥ = i biw*
k=1

and (@, @) =069 1=<1,j5<m. We denote by (9/0w’, ---, 0w™) the
frame dual to (@', -+-, ®™).

Identifying Pj, with the direct sum in the isomorphism (3.4) we
get from straightforward local considerations

ProrosiTION 3.1. FEach element uwe P}, u = (0, ) can be written
locally in terms of the frame (3.10) in the form
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o =300 + 3 0@,

N = Zv,w’/\wwz ]aﬂ/\ww—z ;O A\ @?
(3.11) v =7 g

+ lél N N @,
T+ Na=0,05+75=0,
where
01 = (2015,0" N\ @7 + X 07,6 \ @
+ Zé Orra@* Q @' N\ &7 + Zé Oirea@* @ @ N @’
Zé} 017:0.0" @ ©F N\ @ + zél Orria@* @ & A @)

and
©; = exactly the same expression as for p, if p is replaced by p.

T = 2 5 0700* @ @ A & + 3 3 it @ 3 A

D5 = 2 S 0@ @ 0N @ + X3 05500 @O A @

N = 3 3 Nrap, @ Q 0 N @7 + Zé Nira®* Q® ' A 07,

T = 33 Niras@* ® o A @ + 2:2,1 Nirkii®F Q OF N 0,
stands for |I| = p,|J]| = g,

Wl = wh A o0 A @,
W =W N e AW, T < Gy e <,ip!j1<j2< <jq.

All these components satisfy the conditions
(3.12) =00, M =T = T

REMARK. The Spencer resolution of the sheaf <#7? is an exact
sequence

D D D
0 — F* ? Pcop,q Pcl'p,q s PCp:q_"O

where the vector bundles P¢,, are defined in an obvious way by an
expression similar to (3.3). Each element uwe P}, ,, uw = (0, ) has the
local form given by the previous Proposition 3.1, but the conditions
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“for reality” (3.12) are not satisfied.
The complex tangent bundle T = V@ V splits into holomorphic
and antiholomorphic parts. Let V* and V* be their duals.

PROPOSITION 3.2.

(3.13) PL=(V*QAR) O T ® (V*® A
ST AV R (V*® 4% .

Proof. It is easily seen directly or from previous Proposition 3.1.

Before we proceed any further with the general situation
(p, ¢ = 0) let us make an observation about & = Z#°. From the
general theory it follows that for any kth order, involutive, linear
differential operator =, with constant coefficients, from a vector
bundle E — M into a vector bundle F — M there is in a certain
sense a unique exact Spencer resolution &2, of the sheaf .&” of germs
of solutions to the homogeneous system < = 0. The resolution
.., of the sheaf .&” corresponding to the Ith prolongation j'-<» of
the operator & is also exact and has the same cohomology as .z,
for any [ = 0. Let us look in particular at the resolution of the
sheaf of germs of holomorphic functions ¢ corrresponding to the
first order operator o:

(3.14) 0 i C) C! o Cr 0,7 =2m.

This resolution is defined in a way analogous to (3.8) and C; is the
vector bundle such that weCi is a pair u = (0,&), where o is a
complex-valued i-form and & is a complex-valued (¢ 4+ 1)-form which
belongs to the ideal generated by the dz’s (in the coordinates in
UcM). Du= D(o, & = (do — & —df).

To the first prolongation j'-0 of & corresponds an exact resolution

(3.15) 0— e —c o2 20

where the Ci’s and D are defined using the general principle [8]
Let us call (3.15) a prolongation of the Dolbeault resolution of ~.
It is not difficult to prove

ProposITION 3.3. The resolution (3.8) of Py = F% s the quo-
ttent of de Rham’s resolution for R and the prolongation (3.15) of
Dolbeault’s resolution for 7. In other words the following diagram
is exact and commutative (writing P = P} ,):
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R !
!
0 R— A g% Y A
| | | !
(3.16) V2o 2o —o
! l | |
0—p—p 2, p 2 Pp
| ] ! ]
0 0 0 0.

It turns out that the resolution of &7, can be somewhat simpli-
fied. Let us define the following vector bundles over M’; for 4 odd:

V7t is the bundle of complex-valued (p, ¢)-forms » > gq,

Ui+ is the bundle of complex-valued (¢ 4+ 1)-forms which belong
to the ideal generated by the dz’s;
for 7 even:

V77 ig the bundle of complex-valued (p, q¢)-forms p > q,

Wiz ijs the bundle of (¢/2, 7/2)-forms of type a + &,

Ui is the bundle of complex-valued (¢ + 1)—forms which belong
to the ideal generated by the dz’s.

Now let us define

W() —_ WG,O @ Ul
W= V@ U
W=V QW@ U
W= V@V U

Wi=@V)@WH@ U™, ptg=2,0<ism,
Wi = @ (VP @ U, pPrg=2i—1L1<ism.

PROPOSITION 3.4. The following diagram is exact and commutative

0 0 0 0
! ! | !
0— R Attt
! ! ! !
@l e —c 2o 2o
l Lo b, ,
0—s P W w2 P
| | ] ]
0 0 0 0

The operator 'D s defined by D.

Now let us turn our attention to the open submanifold M of
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M'. Let the boundary oM be a smooth (C?) submanifold of codi-
mension 1 in M’. A function » on M’ is said to define the boundary
of Mif r<0on M,»>0on M — M, and » = 0 on oM, with grad
r+# 0 on oM. Let Uc M’ be a coordinate neighborhood, U N oM =
@, with the coordinates (!, -+, 2"), n = 2m. Having chosen the
hermitian metric on M’ it can be shown (see for example C. B.
Morrey, Jr. “Multiple Integrals in the Calculus of Variations.”) that
the coordinate system can be chosen in such a way that on oM

5 9 .
3.18 <— —-—>= , :
( ) ox* ox" 0,1 <m

and 2" = » = 0 defines 0M. This done, assume that

m . 1 & 0r ;.
(3.19) o™ = ar ,Z_} P det in U
and
0 0 . =
(3.20) <awj,W —0, j < m, on ol

Notice that (o™, ™) =1 and (®', ---®w™) is an orthonormal frame
(which can be obtained by the Grame-Schmidt orthogonalization

process).
Because 0/0w’ = >r, bk0/oz", we get from (3.18), (3.20) that

by =0, 1<j<m.

Therefore on 6M N U we have 0b?/dx' = 0,1 <m,1 <j <m. Finally,
on 0M N U, we have the identities

or o*r .
3.21 —— =0, — =0, , k .
( ) ow? owow* Jp o< m

Let = denote the usual star operator, *: A??— A™ %""?, This
operator can be defined by the formula

(b v =6 N =, 6, 9 € A"
where v = *(1) is the volume element on M’. The volume element
has the local form *(1) = det (k) (V' —1)™dz' A +++ A dz™ A dZ' A ++- dz™,
or, in our special frame,
(3.22) 1) = (V=D @' A\ +++ AO™ AN B N +++ A O™ .

For any C*-function ¢ on M let L*(Pi, ¢) be the space of all
smooth sections w of P/, such that
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ul = | tupes) < o,

juf = <{u, uy. The global product will be denoted by (,), =
S {, e ?+(—1). The operator D: P; ,— P;'} defines a closed densely
M

defined operator L*(P},, ¢)— L*(P;}}, ¢), which we denote by D. Let
us denote by D* its adjoint; and by P,i,q the space of those sections
of P}, over M which can be smoothly extended across the boundary
oM into M’. Because the space Zi.=Pi, N Dy (D stands for the
domain of D*) is dense in &, N &, with respect to the graph norm
u—||ully + || D*ull, + || Dull;, let us look at . more closely. It
can be shown in the same way as in [6] that ue P;, belongs to
i if and only if

(3.23) (Dv, w); = (v, D*u), for all ve Pi;'.

Using this relation let us describe the space . explicitely. As we
are mainly interested in =7, let us take an element u e P}, u=(p, 1),
and ve P}, v = (0,7) (see Lemma 3.1). Then

<D'U, U/> = <D00' — 7, p> + <D§O' - -D07, 7]> ’
where

D0 — v, 0) =do N\ xp — (ONG + V) N *D ,
{Dy7, m> = dy A *7 — ONY A *T]
and D:ifo = fDlo for any function f because D} is the curvature

form of the connection D, defined on the vector bundle R??— M’.
Furthermore we get the formulas

do N\ xpe™® = d(o N\ *pe™ %) — o N\ d(xpe?)
= (0 A +pe?) — x[exdx(Pe?)]e?
dy N\ e = d(v \ e ?) + v A d(xe?)
=d(v N =€) ~ [efxdx(Pe ) ]e?

therefore for any v with compact support in U, U N oM = ¢,

S <D’U, u>e"¢*(1) = g (<D00 — 7, 10> + <D;U — Dy, 77)6_.,;,*(1)

Ny unm

- S {d(o A Pe?) — d(v A =Te)}x(1)

onm

+ g {—(@NG + %) A D — 0 A [ePrdn(Pe )]

+ Dio A =7 + oMY A+ — Y N x[e?xd=(Te~?) e ?x(1) .
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By Stoke’s formula we get

(D, W) — @, D7), = | @ A 15— 7 A e

UnNem
where
D*y = (—efxdx(0e™?) + o+, —e’xdx(ne™?) + +++),

and --- stands for the terms which do not involve differentiation of u
or ¢. From the above remarks it follows that

S (@A *p — 7N =9)e?=(dr) =0

UNoM

for any vePz‘,’,q with compact support in U if and only if ue Fik.
Because ¢ and v can vanish independently we get instead

30/\*,56“9‘20, 87/\*776—¢=0.
Unaix Tuan
If we use the usual notation for the decomposition of forms into the
tangent and normal parts @ = t® + n® on oM, we conclude from
above that o A *0 = n(o A *0), Y A *9) = a(y A\ *P) because
I
S g A xpe? = 3 tlo N\ xp)e™? =0

UnNoM UnNoM
and analogously for the second integral. But, if for any form @,
we have ® = n® on oM, then dr A ¢ = 0. Therefore

(3.24) dr No N =p=0, dr ANY AN =0.

From the first identity we can conclude that dr A =0 = 0, because
o isa O-form with values in R?? Therefore {g = 0 and from the
formulas

*n = tx, *t = mx

we conclude that t+p = *np = s*np = 0, so that no = 0. Recall that
v is a (T*® Ax9)-valued 1l-form (as H(T* R gr)CcT*RQ TR A%9).
Such a form 7 splits into (1,0) and (0, 1)-parts, v = v, + v.. The
secon condition (3.24) should hold for any + with compact support
in U. Therefore

(3.25) dr A A*N =0, drABAx=0

should hold for any 7, and 7,. From Proposition 3.1 follows that we
can write
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= 33 75.0" @ ' A & + 3 37,540 @ 0 A &

m

+2’k§_] Nira®* @ &' /\wJ+227]1ka KRN @7,

where 7;5,, etc...are 2-forms (3.11). We shall use the obvious
notation

= > i Noviw®@ @ 07 A (0}

U|=p w=1
Vi=gq

where U, V and w stand for barred as well as for unbarred indices.
Then we can write, instead of (3.25), for any (1, 0)-form ¢ and any
0, 1)-form

Ar N A *pviw =0, AP ANy A\ gy =0.
And these identities have to be satisfied for all components of 7.
PROPOSITION 3.5. An element we P, w = (0,7), belongs to D

of and only if for any ¢e A" e A™ with compact support in
U UnoM # @,

no =0,
dr/\fb/\*ﬁUV;w:Oy d7'/\"{'f/\*77UV;w:O!
holds (on U N oM).

Using the explicit coordinate description (3.11) of an element
ue P}, we get, by direct computation,

(3.26)

COROLLARY. An element ueI-";'q belongs to L if and only if
for its components (via (3.11)) the following identities hold:

noi; =0, nP57: =0, nP;5; =0

Zé%yjli:k,li =0, ZZ{aTﬂ?U b = 0,

(3.27) ™ or = or, L
é@"?n i =0, ;é‘@’?u:k,l] =0,
L;%’%i;ﬁ,ii =0, Z 7)1J 7, =0,

together with their complex conjugates.

REMARK. If we write down only formally the conjugate equations
to (3.27), than using the remark following Proposition 3.1 we get the
boundary conditions for an element u in complex situation.
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For an element u € . write Du= Au + --- and D*u = Bu + cee,
where - -« stands for those terms where # and ¢ do not get differ-
entiated. Then for such an » = (o, ) we have

(3.28) Aw = Ao, ) = (dp, d7) .
Let us introduce symbols
dPw = e?d(w-e~?)

and
@ =S O Ad+ S @A
=1 l=1

The differentiating part of the adjoint D* gives then

Bu = B(p, 1) = (—3dj¢, — Xdio; ,
(3.29) qu;‘%%jwl - Ed?%idﬁ - Zd?y}“—-w‘
— Idn;@" — Sdin;el + Idin;@l) .

It is an easy computation to show that for any ue . there is an
inequality

I Aw s + || Bulls — [| Dulls — [[D*ulf} |

(3.30) < Cllull,(| Dully + || D*ull;, + |[ull,)

where C is a constant independent of % and ¢.

We have chosen the local coframe (w!, ---, ®™), where o’ is
(1, 0)-form. Therefore there are smooth (C=) functions ¢}, and a,
such that

m m
ow' = > ¢, A\ 0F, 00' = 3, ¢ w' A\ @F,
Frk=1 Frk=1
. m . T~ — ”
oWt = >, a0 N\ 0F, 00' = 3, &, A\ OF .

Jrk=1 Jrk=1

If w is any function, then

0w = —oow = — i‘, w0 N\ @F
kyy=1
3.31) 4, = _OW 0w S 5 1 OW
(33D w”‘_awﬂawkﬂzc”‘ W = e T e
w:{k = Wi »

And we introduce other symbols, namely
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0w ™ ;0w _ 0*w @, 8w
Vit = e zz:‘i Gzt Yt = Saiaar Zl i

=+

(3.32)
Wik = Wi5 Wi — Wyj »

Because (dr)/|dr| is the volume element on oM we have
dr A *dr=|drP+(1), where *(1)= (/" —=D"®' A «++ A O™ A @ A +++ @™
is the volume element on M’. Let f,g be any two functions with
support in a coordinate neighborhood U < M’. Then

d(fge (V=D N =- AGTEANOFTA s AOTA BN e A O

= (1L ge () + (— 1) dige (D) + (D g ()
where o, is defined by this relation. By Stoke’s fromula we get

ProrosiTION 3.5. Let f, g be complex-valued functions (C) with
supports in U, then we have the formula

DL getv) = = fodigets) = | fgeton)
onM @ unu vnm

+ | Fo T er(an .

7 ow
onemM

(3.33)

There is an analogous formula for E of/ow*ge=?x(1) which is
vuM

obvious.

One more technical device is needed for obtaining the basic
estimate—the commutation relations. Using the definition of df and
replacing w in (3.31) by ¢ we get

dl;:ga?f] ai) ;i Z c]kd¢w - ZZ:l ckjg,):vi ’
(3.34) 5 >
w " <& ow
d¢aw1 aa)j : + Zajkd w — Ea}” a)i .

DEFINITION 3.1. Let » be a tangent vector at oM. The quad-
ratic form

(3.35) {007, 7 A 7

is called the Levi form.
If we use the orthonormal coframe (@', «++, ®™) then the Levi form
can be written in the form

m

2 T N = ?::1 7w’

2,7=1
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Now, let us compute explicitely || Au | + || Bu|} for we <. and
use the estimate (3.30) to make the results of [4] immediately appli-
cable. The computation is rather long and routine. Using (3.28)
and (3.29) together with (3.33) and (3.34) we get, for uwe k. with
support in U, the terms involving o only:

2 2y oo, [ \_3.0_22 20, [}
dulp +1iBul, = 5 | {38+ | 6] + | 32
(3.36) 5
_,_’ or } ~Sa(l) 4 oo
and the terms involving 7 only:
(Il Aulls + [ Bul[3)
_ L/ O L O /7 O /I e
— 2 S l lj J %] J
Umf dw* st | T 1Gar Taar | T Bak
(3.37) :
oni; [ o [ 0”1 2} —¢
3ar | T130r | T 5w |10+

Let us put for the moment:
k, = the boundary integral in (3.36),
k, = the integral following %, in (3.36),
k, = the terms involving the d?p’s,
k, = the remaining terms.
Therefore (3.36) can be written in the form

S O S I A S A T

2 S {645(0k* 05 + 070%) + 6130+ 0% + %505+ 0ute (1)
Tha

kb de Ry R

The integral k, splits into %} and %}; k, = k] + k), where

, _ — 0 a _
ks =2 & {Cgcjpj'loia(; JHOJ A- + akloj (Oz =

v —
UvnoM

k05 Dot e () -

Using the boundary conditions (3.27) all terms involving the d?o’s
are zero, because no = 0 implies

=0

Sotr =0,  Xorlt

0w’ ow?!
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and simple substitution does it. As for the remaining part of k, we
get by integration by parts

o*r — o’*r —
k=2 S { b —— 05 0; + ————0;°*0;
R PR va‘zp Ot et T et

o*r }_d,* d
 sana Pyl @

Then

ky,+ k=2 g {0+ 0i + 7330707 + T30 0520

UnNx
T 05 Pde ¢ x(dn) .

But the special choice of the local frame in U with the property
(8.21) shows that the last two terms are zero on oM so that

(3.38 kot = 3| ralor i+ et (dn) -
unai
Let us denote by

apz ¢
ow*

op, [
* |5

apl
* ' ow*

dw “¢*(1)

+ el -
Then it is easy to show that there are constants C,, C,, C, such that

[k = Celllollls-llolls: [kl = Celllollls- [l o1l

@39 ek == | {22

and

[k = C,lleolls-1ols -

Similarly let us define ¢, ¢, &, t, in (3.37). And as we did for &,
we can also split ¢, into ¢ + ¢, get an estimate for ¢, ¢, ¢, and
write the boundary integral

L+t=2 g i (D s + N3N+ Do s
(3.39) TN
+ 0505 + N Na + Yo nae fx(dr) .
By direct computation we get
PROPOSITION 3.6. For an element we < wanishing outside a

fized compact subset of a coordinate meighborhood U im M’ and for
any ¢ € C*(M), oM e C? the following estimate holds
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HID*ul3 + || Dullz — @, u) — Qu(u, u) — Qy(u, w) |

(3.40) .
= Cllulls(l| Dully + || D*ully + |l ullls)
where
a 2 a -2 a 2 a ~ |2 a ; 2
Qulu, u) = 2 S {l azlk +!a£if +la£§c +’a£2 + aZ)lk
vnMm
on; [ la% i '6% i \8%- i (3771; i
+ l ow* + ow* + owk* + ow* + ow*
ony F 0Ny, 2} -
+] sar | T 1Gar €W

Qul, w) = 3 | (845(05°B + 05T8) + 603055 + 97307
vhm
+ 657 ui* s + M5+ 0a + N + YW + Na Y
+ D50 a) + Gl a + bn T + D
+ i) }e?x(1)
Q:(u, u) = % g 7:5(0:° 05 + 0705 + N Nig + N3N + N7

vnoM
+ MM + NN + N Tan)e ¥ (dr) .
This proposition corresponds to Proposition 3.1.1 is [4]. Now applying
the technique of [4] to our situation we get

LEMMA 3.1. If the Levi from (3.35) has at least (n — 2) positive
eigenvalues or at least 3 mnegative eigenvalues at every point on 0M
then there exists a constant C > 0 such that

(3.4) Dufy+ (D7l + |uf = C | [upers@n)
o
Jfor ue T

We are now in the position that the Kohn-Nirenberg Theorem
can be applied (Theorem 5, §2 [7]). Let us denote by N' the
subspace of P., composed of all sections ue P}, satisfying the
boundary conditions (3.23) and

(3.42) (Dv, Du); = (u, D*Du), for all ve P}, .

Let H' be the subspace of N' which is annihilated by the laplacian
DD* + D*D, i.e., H' = {ue N'| Du = D*u = 0}.

THEOREM 3.1. For an open manifold Me M’', oM C C°, satisfying
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the assumptions of the previous Lemma 3.1, the Neuwmann problem
is solvable for the operator D: P} ,— P}, (related to dd, by (1.1)) at
P, .. This means that H* is closed im L*(P},,, ¢), and that there exists
a bounded operator N:L*P,, ¢)— L* P}, ¢) such that its range is
wn N, and

(i) NH = HN, where H: L*(P} ,, ) — H" is the orthogonal pro-
jection,

(ii) each element we L*P, ,, ¢) can be written in the form wu =
DD*Nuw + D*DNu + Hu, where the terms are mutually orthogonal,

(iiiy DN = ND.

REMARKS. 1. If one drops the “side conditions” (3.12) and con-
siders the operator 00 instead of dd, then exactly the same conditions
on the Levi form are sufficient for the solvability of the Neumann
problem related to 94.

2. All the computations have been done at P,, only. It would
be only a technical problem to get an extension in that direction
and show that on strongly pseudoconvex manifolds the Neumann
problem is solvable (for 96 and dd.,).
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