TWO REMARKS ON ELEMENTARY EMBEDDINGS OF THE UNIVERSE

THOMAS J. JECH
TWO REMARKS ON ELEMENTARY EMBEDDINGS
OF THE UNIVERSE

THOMAS J. JECH

The paper contains the following two observations: 1. The existence of the least submodel which admits a given elementary embedding \(j \) of the universe. 2. A necessary and sufficient condition on a complete Boolean algebra \(B \) that the Cohen extension \(V^B \) admits \(j \).

A function \(j \) defined on the universe \(V \) is an elementary embedding of the universe if there is a submodel \(M \) such that for any formula \(\varphi \),

\[
(*) \quad \forall x_1, \ldots, x_n[\varphi(x_1, \ldots, x_n) \iff M \models \varphi(jx_1, \ldots, jx_n)].
\]

Let \(j \) be an elementary embedding of the universe. If \(N \) is a submodel, let \(j_N = j|N \) be the restriction of \(j \) to \(N \). \(N \) admits \(j \) if

\[
(**) \quad N \models j_N \text{ is an elementary embedding of the universe.}
\]

If \(B \) is a complete Boolean algebra, let \(V^B \) be the Cohen extension of \(V \) by \(B \). \(V^B \) admits \(j \) if

\[
(***) \quad V^B \models \text{there exists an elementary embedding } i \text{ of the universe such that } i \equiv j.
\]

THEOREM 1. There is a submodel \(L(j) \) which is the least submodel which admits \(j \). \(^1\)

THEOREM 2. The Cohen extension \(V^B \) admits \(j \) if and only if the identity mapping on \(j''B \) can be extended to a \(j(V) \) - complete homomorphism of \(j(B) \) onto \(j''B \).

Before giving the proof, we have a few remarks. The underlying set theory is the axiomatic theory \(BG \) of sets and classes of Bernays and Gödel [1]. The formula \(\varphi \) in (*) is supposed to have only set variables. However, if for any class \(C \) we let \(j(C) = \bigcup_{a \in \text{on}} j(C \cap V_a) \), then (*) holds also for formulas having free class variables ("normal formulas" of [1].) Incidentally, "\(j \) is an elementary embedding of the universe" is expressible in the language of \(BG \) (viz.: \(j \) is an \(\varepsilon \)-isomorphism and \(\forall C_1 \forall C_2 [\mathcal{F}_i(jC_1, jC_2) = j(\mathcal{F}_i(C_1, C_2))] \) where \(\mathcal{F}_i \) are the Gödel operations).

\(^1\) This was observed independently by K. Hrbáček, giving a different proof.
A submodel M is a transitive class containing all ordinals which is a model of GB; the classes of M are all those subclasses C of M which satisfy the condition $\forall \alpha (C \cap V_\alpha \in M)$. The submodel M in (*) is unique and $M = j(V)$. It is a known fact that if j is not the identity then there exists a measurable cardinal. And, as proved recently by Kunen [2], $j(V) \neq V$. On the other hand, if there exists a measurable cardinal, then there exists a nontrivial elementary of the universe (cf. Scott [6]).

The notion $L(j)$ differs somewhat from the notion of relative constructibility, introduced by Lévy [4]; in general, $L(j) \supseteq L[j]$. A homomorphism is C-complete, if it preserves all Boolean sums $\sum_{i \in I} u_i$ where $\{u_i : i \in I\} \in C$. As usual, $j''B$ is the algebra \{\{j(u): u \in B\}; $j(B)$ is an algebra, $j(B) \supseteq j''B$, and $j(B)$ is not necessarily complete (although jV-complete).

A similar observation as our Theorem 2 was used recently by J. Silver in his result about extendable cardinals.

As a corollary of Theorem 2, we get the following theorem of Lévy and Solovay [5]: If κ is measurable and $|B| < \kappa$, then κ is measurable in V^B.

Let j be a fixed elementary embedding of the universe. First we prove Theorem 1.

Let M be a submodel.

Lemma 1. If j_M is a class of M then M admits j.

Proof. We must show that for any formula φ,

$$(\forall \bar{x} \in M)M \models (\varphi(\bar{x}) \rightarrow jM \models \varphi(j\bar{x})).$$

If $M \models \varphi(\bar{x})$, then since $M \models \varphi(\bar{x})$ is a normal formula, we have $jV \models (jM \models \varphi(j\bar{x}))$. However, \models is absolute, so that $M \models (jM \models \varphi(j\bar{x}))$.

Lemma 2. If $j \cap M$ is a class of M and if M is closed under j (i.e., $j''M \subseteq M$), then M admits j.

Proof. It suffices to show that j_M is a class of M. Obviously, $j_M \cap M = j \cap M$, and because M is closed under j, we have $j_M \subseteq M$, and $j_M = j_M \cap M = j \cap M$.

Now we define the model $L(j)$:

- (i) $L_0(j) = 0$,
- (ii) $L_\alpha(j) = \bigcup_{\beta \subseteq \alpha} L_\beta(j)$ if α is a limit ordinal.

\[\textit{Lj}\text{m}	ext{S} m\text{S} c\] An example of models which are not mild extensions but still admit j are the models constructed by Kunen and Paris in [3].
(iii) \(L_{\alpha+1}(j) = \text{Def} \langle L_\alpha(j), \varepsilon, j \cap L_\alpha(j) \rangle \) if \(\alpha \) is even,
(iv) \(L_{\alpha+1}(j) = L_\alpha(j) \cup [j'' L_\alpha(j) \cap \mathcal{P}(L_\alpha(j))] \) if \(\alpha \) is odd,
(v) \(L(j) = \bigcup_{\alpha \in \mathbb{N}} L_\alpha(j) \).

(iii) means that \(L_{\alpha+1}(j) \) consists of all subsets of \(L_\alpha(j) \) which are definable in \(L_\alpha(j) \) from \(j \cap L_\alpha(j) \). \(\mathcal{P}(L_\alpha(j)) \) is the set of all subsets of \(L_\alpha(j) \).

By standard methods it follows that \(L_\alpha(j) \) is a submodel. That \(L_\alpha(j) \) satisfies the axiom of choice is proved in Lemma 4.

Lemma 3. \(i = j \cap L(j) \) is a class of \(L(j) \) and
\[
L(j) = L(i) = L^{L(j)}(i).
\]

Proof. By induction on \(\alpha \), we prove
\[
L_\alpha(j) = L_\alpha(i) = L^{L(j)}(i).
\]

If \(\alpha \) is a limit ordinal or \(\alpha = \beta + 1 \) with \(\beta \) even, then the proof is standard. Let \(\beta \) be odd:
\[
x \in L_{\beta+1}(j) \iff x \in L_\beta(j) \lor [x \subseteq L_\beta(j) \land x \in L(j) \land (\exists y \in L_\beta(j))[x = j(y)]]
\]
\[
\iff x \in L_\beta(i) \lor [x \subseteq L_\beta(i) \land (\exists y \in L_\beta(i))[x = i(y)]]
\]
\[
\iff x \in L_{\beta+1}(i)
\]
\[
\iff x \in L^{L(j)}(i).
\]

Corollary. \(L(j) \models V = L(i) \).

Lemma 4. \(L(j) \models \text{Axiom of Choice} \).

Proof. If \(V = L(i) \) then there is a well ordering of the universe, definable from \(i \); hence \(L(j) \models \text{Axiom of Choice} \).

Lemma 5. \(L(j) \) is closed under \(j \).

Proof. (a) If \(X \subseteq \text{On} \) and \(X \in L(j) \) then there exists \(\alpha \) such that \(X \in L_\alpha(j) \) and \(j(X) \subseteq \alpha \subseteq L_\alpha(j) \); hence \(j(X) \in L_{\alpha+1}(j) \) and so \(j(X) \in L(j) \). Similarly, if \(X \subseteq \text{On} \times \text{On} \).

(b) If \(X \in L(j) \) is arbitrary, then since \(L(j) \models AC \), there exists a well founded relation \(R \in L(j) \) on ordinals which is isomorphic to \(TC(\{X\}) \), the transitive closure of \(\{X\} \). Hence \(j(TC(\{X\})) = TC(\{jX\}) \) is isomorphic to \(j(R) \) which is well founded and by (a), \(jR \in L(j) \); thus \(j(X) \in L(j) \).

Lemma 6. If \(M \) admits \(j \) then
\[L(j) = L^x(j \cap M) \subseteq M. \]

Proof. Same as of Lemma 3.

Now, Theorem 1 follows.

Let \(B \) be a complete Boolean algebra. The *Cohen extension* \(V^n \) is the Boolean-valued model of Scott [7] or Vopěnka [8]. There is a natural embedding \(x \mapsto \bar{x} \) of \(V \) into \(V^n \) and \(C \mapsto \check{C} \) can be defined also for classes, in a natural way (in (**), we should rather write \(i \supseteq j \)). More generally, if \(M \) is a submodel satisfying the axiom of choice and if \(B \in M \) is an \(M \)-complete Boolean algebra then \(M^n \) is the Cohen extension of \(M \) by \(B \).

Lemma 7. The condition in Theorem 2 is necessary.

Proof. Let \(i \) be such that

(1) \(V^n \models i \) is an elementary embedding of the universe and \(i \supseteq j \).

Let \(G \) be the canonical generic ultrafilter on \(\check{B} \), i.e.,

\[G \in V^{(B)}, \quad \text{dom}(G) = \{ \hat{u}: u \in B \}, \]

\[G(\hat{u}) = u \text{ for all } u \in B. \]

From (1) it follows that

(3) \(V^n \models i(G) \) is an \(i(\check{V}) \)-complete ultrafilter on \(i(\check{B}) \), i.e.,

(4) \(V^n \models j(V)^{\check{V}} \)-complete ultrafilter on \((jB)^{\check{V}} \).

Let \(f \) be the following function from \(j(B) \) into \(B \):

\[f(v) = \llbracket \check{v} \in i(G) \rrbracket. \]

By (4), \(f \) is a \(j(V) \)-complete homomorphism of \(j(B) \) into \(B \) and for all \(u \in B, \) \(f(ju) = \llbracket (ju)^{\check{V}} \in i(G) \rrbracket = \llbracket i(\hat{u}) \in i(G) \rrbracket = \llbracket \hat{u} \in G \rrbracket = u. \) If we let \(h = j \circ f \) then \(h \) is a \(j(V) \)-complete homomorphism of \(j(B) \) onto \(j''B \) and \(h \mid j''B \) is the identity.

Lemma 8. The condition is sufficient.

Proof. Let \(h \) be a \(j(V) \)-complete homomorphism of \(j(B) \) onto \(j''B \) such that \(h(ju) = ju \) for all \(u \in B \). We are supposed to find \(i \) such that (1) holds. To simplify the considerations, assume that \(G \) is some \(V \)-complete ultrafilter on \(B \) and that \(V[G] \) is the universe. (This is possible because \(V^n \models \check{V}[G] \) is the universe,
where G is the canonical generic ultrafilter defined in (2).

Let $i(G) = h_\gamma(j''G)$. We have $i(G) \supseteq j''G$, and

$$i(G)$$

is a $j(V)$-complete ultrafilter on $j(B)$.

Let $\pi_\gamma: V^\beta \to V[G]$ be the G-interpretation of V^β:

$$\pi_\gamma(0) = 0, \quad \pi_\gamma(x) = \{\pi_\gamma(y): x(y) \in G\}.$$

Since $j(B) \subseteq j(V)$ is an $j(V)$-complete Boolean algebra, $j(V)^{j(B)} = j(V''')$ is the Cohen extension of $j(V)$ by $j(B)$; it follows from the definition of $i(G)$ that $i(G)$ is a $j(V)$-complete ultrafilter on $j(B)$. Let $\pi_{i\gamma}:(jV)^{j(B)} \to (jV)[iG]$ be the $i(G)$-interpretation of $(jV)^{j(B)}$ and let

$$i(\pi_\gamma x) = \pi_{i\gamma}(jx), \text{ for all } x \in V^\beta.$$

Now we claim that i is a function, i is an elementary embedding of $V[G]$ into $(jV)[iG]$ and that $i \supseteq j$. To prove that, note that for any formula φ and for all $\bar{x} \in V^n$,

$$\models_{j} \varphi(j\bar{x}) \equiv j(\models V \varphi(\bar{x}));$$

This can be proved by induction on the rank of \bar{x} and on the complexity of φ. In particular, if $\pi_\gamma \bar{x} = \pi_\gamma \bar{y}$, then $\models_{V} \varphi(\bar{x}) \in G$, so that $\models_{jV} \varphi(j\bar{x}) \in i''G \supseteq i(G)$ and so $i(\pi_\gamma \bar{x}) = \pi_{i\gamma}(j\bar{x}) = \pi_{i\gamma}(j\bar{y}) = i(\pi_\gamma \bar{y})$. Similarly, if $V[G] \models \varphi(\pi_\gamma \bar{x})$, then $(jV)[iG] \models \varphi(i(\pi_\gamma \bar{x}))$. If $x \in V$, then $i(x) = i(\pi_\gamma \bar{x}) = \pi_{i\gamma}(j\bar{x}) = j(x)$.

This completes the proof of Theorem 2.

REFERENCES

Received February 5, 1970. The preparation of this paper was partially supported by NSF Grant GP-22937.

State University of New York at Buffalo
and
University of California, Los Angeles
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edward Arthur Bertram</td>
<td>Permutations as products of conjugate infinite cycles</td>
<td>275</td>
</tr>
<tr>
<td>David Blair</td>
<td>Almost contact manifolds with Killing structure tensors</td>
<td>285</td>
</tr>
<tr>
<td>Bruce Donald Calvert</td>
<td>Nonlinear equations of evolution</td>
<td>293</td>
</tr>
<tr>
<td>Bohumil Cenkl and Giuliano Sorani</td>
<td>Cohomology groups associated with the (\bar{\partial} \bar{\partial}) operator</td>
<td>351</td>
</tr>
<tr>
<td>Martin Aaron Golubitsky and Bruce Lee Rothschild</td>
<td>Primitive subalgebras of exceptional Lie algebras</td>
<td>371</td>
</tr>
<tr>
<td>Thomas J. Jech</td>
<td>Two remarks on elementary embeddings of the universe</td>
<td>395</td>
</tr>
<tr>
<td>Harold H. Johnson</td>
<td>Conditions for isomorphism in partial differential equations</td>
<td>401</td>
</tr>
<tr>
<td>Solomon Leader</td>
<td>Measures on semilattices</td>
<td>407</td>
</tr>
<tr>
<td>Donald Steven Passman</td>
<td>Group rings satisfying a polynomial identity. II</td>
<td>425</td>
</tr>
<tr>
<td>Ralph Tyrrell Rockafellar</td>
<td>Integrals which are convex functionals. II</td>
<td>439</td>
</tr>
<tr>
<td>Stanisław Sławomir Świerczkowski</td>
<td>Cohomology of group germs and Lie algebras</td>
<td>471</td>
</tr>
<tr>
<td>John Griggs Thompson</td>
<td>Nonsolvable finite groups all of whose local subgroups are solvable. III</td>
<td>483</td>
</tr>
<tr>
<td>Alan Curtiss Tucker</td>
<td>Matrix characterizations of circular-arc graphs</td>
<td>535</td>
</tr>
</tbody>
</table>