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In an earlier paper we obtained necessary and sufficient
conditions for the group ring K [G] to satisfy a polynomial
identity. In this paper we obtain similar conditions for a
twisted group ring K:[G] to satisfy a polynomial identity.
We also consider the possibility of K[G] having a poly-
nomial part.

1. Twisted group rings. Let K be a field and let G be a
(not necessarily finite) group. We let K*‘[G] denote a twisted group
ring of G over K. That is K'[G] is an associative K-algebra with
basis {Z |2z e G} and with multiplication defined by

Yy = fY(x! y)@ ’ A//(x) ?/) cK — {0} .

The associativity condition is equivalent to Z(yz) = (Zy)z for all
z, Y, 2z€ G and this is equivalent to

Y, y2) (Y, 2) = 7@, Y7 (@Y, 2) .

We call the function v: G x G— K — {0} the factor system of K*‘[G].
If v(=,y) =1 for all ¢, y€ G then K'[G] is in fact the ordinary group
ring K[G]. In this section we offer necessary and sufficient condi-
tions for K![G] to satisfy a polynomial identity. The proof follows
the one for K[G] given in [3] and we only indicate the suitable
modifications needed. The following is Lemma 1.1 of [2].

LEMMA 1.1. If ze G, then in K'[G] we have
(i) 1=~@, 1)1
(i) 7' = v, ™) v@, 1) 2!

= v 2) v, D)t

ProprosITION 1.2. Suppose K'|G] satisfies a polynomial identity
of degree m and set k= (n!)>. Then G has a characteristic subgroup
G, such that [G: Gl < (k + 1)! and such that for all xe G,

[G: Ca(x)] é k4(k+1)! .
Proof. This is the twisted analog of Corollary 3.5 of [3]. We

consider § 3 of [3] and observe that each of the prerequisite results
for that corollary also has a twisted analog.
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First Lemma 3.1 of [3] holds for K‘[G] with no change in the
proof. Of course x must be replaced by Z in the formula

axp, + xB; + <+ + XL, =TV .

Second Theorem 3.4 of [3] also holds for K‘[G] with no change in its
statement. The proof is modified just slightly so that the inductive
result to be proved is as follows. For each z;, ;1. -+, 2,€ G, then
either fi(Z;, Tjiyy +++, X,) = 0 or for some pre 7, 1(T; Tjryy *+*, &,) =
ay for some aec K — {0}, ye 4,(G). Then replacing «'s suitably by
Z's the proof carries through as before. Finally Corollary 3.5 of [3]
holds for K'[G] since it is just a group theoretic consequence of
Theorem 3.4 of [3].

Let K*[G] be a twisted group ring and let H be a subgroup of G.
Then by K'[H] we mean that twisted group ring of H which is
naturally contained in K*![G]. Let JK'[G] denote the Jacobson
radical of K*[G].

ProPOSITION 1.3. Suppose K'|G] satisfies a polynomial identity
of degree m and suppose further that G’ is finite and K'[G'] is
central in K'[G]. Then G has a subgroup Z 2 G’ such that

[G: Z] = (n/2)"¢"
with K'[Z]/(JK'IG'] - K'[Z]) commutative.

Proof. Since K'[G'] is commutative, JK'[G'] is the intersection
of the maximal two-sided ideals of K‘[G’]. Moreover K'[G']/JK![G']
is a finite dimensional semisimple algebra and hence it has at most

dimg K*[G']/JK*[G'] = |G|
maximal two-sided ideals. Thus we may write
JKIIGI=NrL, m £ |G|

where I; is a maximal two-sided ideal of K'[G'].

Fix a subscript <. Then K:[G’]/I; = F,, some finite field exten-
sion of K. Now K'[G’] is central in K*[G], so I, - K*[G] is an ideal
in K'[G]. It is now easy to see that K'[G]|/(I;- K'[G]) is an F-
algebra with a basis consisting of the images of coset representatives
for G’ in G. Thus clearly K'[G]/(I; - K'[G]) is isomorphic to some
twisted group ring F}[G/G'], and this twisted group ring inherits
the polynomial identity satisfied by K’[G]. Thus by Proposition 1.4
of [2], G/G' has a subgroup Z; with [G/G": Z,] £ (n/2)* and with
F}i|Z;] central in F}i[G/G']. Let Z; be the complete inverse image
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of Z,in G. Then Z,;2G', [G: Z;] £ (n/2)* and for all a, ge K*[Z)]
we have apg — pael; - Ki[G].
Set Z = NrZ;. Then

[G: Z] £ IT[G: Z] = (n/2)"™ < (n/2)*¢" .
Moreover for all «, 8e K*[Z] we have

ag — gae 'L - K'[G] = JK'[G'] - K'[G]
since K‘[G] is free over K:[G']. Hence since K'[G] is free over
K![Z] we have

aB — Bae K'[Z] N (JK'[G'] - K![G]) = JK'[G'] - K*[Z]

and the result follows.

We now come to our main result on twisted group rings satisfy-
ing a polynomial identity.

THEOREM 1.4. Let K'[G] be a twisted group ring of G over K.
Let G2 A2 B be subgroups of G with B finite and central in A
and with K'[A]/(JK¢[B] - K'[A]) commutative.

(i) If [G: A] < o then K'[G] satisfies a polynomial identity of
degree m = 2[G: A] - | B|.

(ii) If K'[G] satisfies a polynomial identity of degree m, then
there exists suitable A and B with [G: A] - | B| bounded by some fixed
function of n.

Proof. The proof of (¢) is identical to the proof of Theorem 1.3
(i) of [3]. Observe that JK'[B] - K‘[A] = K'[A] - JK![B] is an
ideal of K’[A] by Lemma 1.2 of [1].

We now consider part (ii). Let K*‘[G] satisfy a polynomial
identity of degree n. Set

a = am) = (nl) b=bn) =a'M.
Then by Proposition 1.2 G has a subgroup G, with
[G:G] = (a+1)], Gy, = 4,(Gy)

where 4, is defined in [3].
Set

c=c(m) =", d=dmn) = (n/2)".

Then by Theorem 4.4 of [3], |G;| =c. Let G, = Cs(G;). Then
G, & G, so G, is a finite central subgroup of G,. Moreover

IGilécy [GO:GJéC!.



428 D. S. PASSMAN

Let ze¢G,. Then conjugation by Z induces an automorphism of
K'[G;]. Moreover since G; is central in G, we have

EYE = N(y)T

for all yeG,. It follows easily that A\, is a linear character of G
into K, that is »,e Hom (G{, K — {0}). In addition, it follows easily
that the map x — ., is in fact a group homomorphism

G,— Hom (G, K — {0}) .
Let G, denote the kernel of this homomorphism. Then
[G: G} = |Hom (G, K- {0) | = |G| = ¢.

Set B=G,. Then BZ G; so |B|=c¢ and K![B] is central in
K'[G,]. By Proposition 1.3, G, has a subgroup A 2 B with

[Gs: A] < (/2™ < d

and with K'[A]/(JK'[B] - K‘|A]) commutative. Since | B| < ¢ and
since

[G: A] = [G: Go] [Go: Gl [G: Gl [Gat A] < (@ + D! vcrc-d

the result follows.

It is interesting to interpret this result for various fields. If K
has characteristic 0 and if B is a finite group, then K:[B] is semi-
simple by Proposition 1.5 of [1]. Thus

COROLLARY 1.5. Let K'[G] be a twisted group ring of G over K
and let K have characteristtc 0. Let A be an abelian subgroup of G
with K‘[A] commutative.

(i) If [G: A] < o then K'[G] satisfies a polynomial identity
of degree n = 2[G: A].

(ii) If K'[G] satisfies a polynomial identity of degree m, then
there exists such a group A with [G: A] bounded by some fixed fumnc-
tion of n.

COROLLARY 1.6. Let K'[G] be a twisted group ring of G over K
and let K have characteristic p > 0. Let G2 A2 P be subgroups
of G with P a finite p-group central in A and with K'[A]/(JK¢[P]-
K*'[A]) commutative.

(i) If [G: A] < = then K'[G] satisfies a polynomial identity
of degree m = 2[G: 4] - | P]|.

(ii) If K'[G] satisfies a polynomial identity of degree n, then
there exists suttable A and P with [G: A] - | P| bounded by some fixed
Junction of n.
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Proof. Let B be given as in Theorem 1.4 and let P be its nor-
mal Sylow p-subgroup. Then P is also central in A. Moreover by
Proposition 1.5 of [1] JK![B] = JK'[P] - K‘[B] so the result clearly
follows.

Finally in the above if K is a perfect field of characteristic p,
then by Lemma 2.1 of [1], K*[P] = K[P] so K'[P]/JK![P]= K. It
then follows easily that

K'[A]/(JK'[P] - K*[A]) = K" [A/P]

is in fact some twisted group ring of A/P.

2. Generalized polynomial identities. Let X be an algebra
over K. A generalized polynomial over E is, roughly speaking, a
polynomial in the indeterminates {,, {;, +++, £, in which elements of ¥
are allowed to appear both as coefficients and between the indeter-
minates. We say that E satisfies a generalized polynomial identity
if there exists a nonzero generalized polynomial f(C,, &, ---,&,) such
that f(a, &, «+++, a,) = 0 for all &, s, -+-, @, ¢ E. The problem here
is precisely what does it mean for f to be nonzero. For example,
suppose that the center of F is bigger than K and let « be a central
element not in K. Then E satisfies the identity f({) = af, — {«a
but surely this must be considered trivial. Again, suppose that E is
not prime. Then we can choose nonzero a, 3¢ E such that E satis-
fies the identity f({) = af,8 and this must also be considered trivial.
We avoid these difficulties by restricting the allowable form of the
polynomials.

We say that f is a multilinear generalized polynomial of degree n
if

f(cn Cz: M) Cn) ZGQZS fg(cu Cz’ cty Cn)

and
g
JUE, Gy oo 8) = anao o o 0,50@ * 0t Ay .
=

where «;,,c¢ E and a, is some positive integer. This form is of
course motivated by Lemma 3.2 of [3]. The above f is said to be
nondegenerate if for some o¢ S,, f° is not a polynomial identity satis-
fied by E. Otherwise f is degenerate.

In this section we will study group rings K [G] which satisfy
nondegenerate multilinear generalized polynomial identities. Let
4 = 4(G) denote the F. C. subgroup of G and let 6: K[G] — K[4(G)]
denote the natural projection.
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LEMMA 2.1. Suppose K[G] satisfies a nondegenerate multilinear
generalized polynomial of degree n. Then K[G] satisfies a polynomial
identity as given above with

&1
]Z:“lﬂ(ao,l,j)ﬁ(am’j) e 0(an,1,j) £0.

Proof. Let K|[G] satisfy f as above. Since f is nondegenerate,
by reordering the {’s if necessary, we may assume that (&, &, -+, &)
is not an identity for K[G]. Thus since f* is multilinear there exists
Byy Lgy * o+, X, € G with

0 :,éfl(x”xz, cee, T,)

et !

= Zlaoylvjxlal,l,ij e Uy ,1,i 01,5 .
=

If we replace {; in f by x,{; we see clearly that K[G] satisfies a
suitable f with

ay

(*) 0=~ _Z;ao,l.jal.l,j R ST
=

For each 1, j write
&g = Zk‘. BiiYr

where B;;. € K[4] and {y,} is a finite set of coset representatives for
4 in G. We substitute this into (*) above. It then follows easily
that for some k%, k,, --+, k, we have

a3y
0= Z‘f BoikgYroBrit,Ye, *** Buiky Y, «
=
Thus if 2; is defined by 2z, = ¥, ¥s, * - ¥s,_, and 2, =1 then
@y 1 1 L
0+ jz::.l Bogkoﬁlékl b Bnr;kn .

Now B, = 0(a,.,;¥x;) S0

B:thl = 0(2:;,,, Y, %") = 0 (205, 5277) «
It therefore follows that if we replace {; in f by z:'.{:%,, and if, in
addition, we multiply f on the left by 2z, and on the right by z;i,,
then this new multilinear generalized polynomial identity obtained
has the required property.

LEMMA 2.2. Let a,, @y +++, &, Biy B2 +++, Bu € K[G]. Suppose
that for some integers k and t
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| U Suppa;| =7, |UJSupp Bi| = s
and
(U Supp &) N 4:(6) < 4.(6)

with k= rst'. Let T be a subset of G and suppose that for all
ze G-T we have

a,xB + TG + -+ + a, 28, =0.
Then either [G: T1 < (k + 2)! or
O (@)B, + 0n(a)B: + + -+ + Oa,)B, = 0.

Proof. Let A = U;Supp «a;, B= U;Supp B; and write
A= AN, = {9, 0 -+ 94}
A" = A— 4 = Yo Yoy +++, Yl
B=1{2,2,+,2)}.

Here of course m + n =r. Set W = " Cy(g;). Since by assumption
A’ € 4,(G) we have clearly [G: W] < t". Observe that for all xe W,
x centralizes 6,(«;).

Suppose that

Y = O0(@)B + O (@)Be + o+ + O (a)B. # 0

and let veSupp v. If y; is conjugate to wz;' in G for some %, j
choose h;; € G with h;jyh;; = vzi'.
Write a; = 6,(a;) + «; and then write
a' =2 a5 Bi= 2 biz; .
Let xe W-T. Then we must have
0 =o'axs + v7'axB, + +++ + 27,28,
= [0 (@)B, + O (@)B. + -+ + O,)B.]
+ [a"B, + a8 + -+« + @,°B,] .

Since v occurs in the support of the first term it must also occur in
the second and hence there exists y;, z; with v = yiz, or

Y = vt = hijyh; .

Thus € Cy(y;)h;;. We have therefore shown that
W TuUs; Ca(yi)hij .
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Let w,, w,, +++,w; be a complete set of coset representatives for
W in G. Then d = [G: W] < t" and the above yields
G=Tw, UTw, U+ Tw,US
where
S= U Co(yi)hiw, .

%, 5,¢

Now the number of cosets in the above union for S is at most
rsd < rstr < k

by assumption on k. Moreover y;¢ 4, so [G: Cy(y;,)] > k for all s.
Thus by Lemma 2.3 of [3] S # G and then Lemma 2.1 of [3] yields
[G: T1< (k+ 1)!

where
T =U. Tw, .
Thus
[G:TI=k+D!IdZ(k+1)! (B+2)

and the result follows.

We will need the following group theoretic lemma.

LEMMA 2.3. Let G be a group. The following are equivalent
(i) [G:4@)] < oo and | AHG) | < o=.
(ii) There exists an integer k with [G: 4,(G)] < .

Proof. Suppose that G satisfies (i) and set n = [G:4], m = |4'|.
If xe 4, then by Theorem 4.4 (i) of [3], [4: C)(x)] < m and hence
[G: Cyx)] < mm. Thus (ii) follows with k& = mn.

Now suppose that (ii) holds. Since 4(G) 2 4,(&) and [G: 4,]<
we conclude that [G: 4] < .. Now 4(G) is a subgroup of G so every
right translate of 4, in G is either entirely contained in 4 or is dis-
joint from 4. This implies that [4: 4] < - and say

AZA/;?AUZ’k?/zU e Udky,-.

Since each y;€ 4 we can set n = max; [G: C(y;)] < «o. If xe 4 then
x e 4,y; for some i and this implies easily that [G: C(x)] < nk. Thus
[4: C,(x)] < nk and by Theorem 4.4 (ii) of [3], |4'| < oo.

We now come to the main result of this section

THEOREM 2.4. Let K[G] be a group ring of G over K and sup-
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pose that K [G] satisfies a nmondegegerate multilinear polynomial iden-
tity. Then [G: 4(G)] < o and |4(G) | < .

Proof. By Lemma 2.1. we may assume that K [G] satisfies

FCo by l) =S S on Loty oo+

. * an—l a jCa(n)a{n,a j
oeS, j=1
with

Zj 0(“0.1,1‘) 0(“1&.1 j) e (9(6(,,, 1-1’) #=0.

We first define a number of numerical parameters associated with f.
Set

‘ Supp ai,a J I
and

Now consider

g

U=a£_sj U HOSUPD 0(;.0,5) -

j=1

Then U is a finite subset of 4(G) so there exists an integer b with
U< 4,(G). Set

t=20"" and k= 7rstr.

We assume now that [G: 4,] = > and derive a contradiction.
For 1 =0,1, .-+, n define S* < S, by

Si={oeS,|ol) =1, 0@) =2, -+, 00) = i}

Then S°=S,, S"=<1)> and S* is just an embedding of S,_; in S,.
We define the multilinear generalized polynomial f; of degree n—1i by

fi(CHu (:sz *ty Cn)

= Z 30 0(A 5,)0(, 5,5) *++ O(@imy 0, )% 0,801

oe St j=1

* an—d‘a jcu(n)an g.j °

Thus f, = f and

21
f'n = ng 0(“0,1.j)0(a1,1~j) e 6(an—1,1,j)an 1,7

is a nonzero element of K [G] since
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OS2 = 3500, )0(@) +++ O s ) s) # 0.

Let _# be the set of monomial polynomials obtained as follows.
For each o, 7 we start with

o0, 38000 1,0,3C0 *** Ons 0,380 W o,

and we modify it by (1) deleting some but not all of the {; (2) re-
placing some of the «,,; by 0(a;,;); and (3) replacing some of the
®;,; by 1. Then _# consists of all such monomials obtained for all
o, 7 and clearly .~ is a finite set. Note that _# may contain the
zero monomial but it contains no nonzero constant monomial since in
(1) we do not allow all the {; to be deleted.

For ¢t =0,1,--+,n define # < # by pe_ if and only if
Ciy &y + -+, C; do not occur as variables in p. Thus _#, < {0} where 0
is the zero monomial.

Under the assumption that [G: 4,] = « we prove by induction
on t=0,1, ---,n that for all z,,,, %;1s, -+, &, € G either

Ji®ia1s igay =y x,) =0

or there exists pe _# with Supp ¢ (%1, Zisy =+, 2,) N 4, # @. Since
fo = f is an identity satisfied by K[G] the result for 7 = 0 is clear.

Suppose the inductive result holds for some ¢ — 1 <mn. Fix
Diity Tiszy o+, 2, € G and let e G play the role of the ith variable.
Let pe_ . If Supp p(2;yy, -+, 2,) N 4, + @ we are done. Thus we
may assume that Supp p(®;5y, +--,2,) N4, = @ for all pe . Set
Ay — V///; = A4

Now let pre _#7_, so that p involves the variable {,. Write ¢ =
W where ¢ and p” are monomials in the variables (., -+, C,.
Then Supp p¢(x, ;.1 +++, 2,) N 4, # @ implies that

xe hl-——lAkh/’l-—l — Akhl—lhll—l

where ' e Supp (%1, +-+, 2,) and k" e Supp "(2; .\, +--, %,). Thus it
follows that for all xe€ G — T where

T — U Akhl—lh’l—l

#EN;—1
BB
we have Supp # (z, 41, -+, 2,) N4, = @ for all e _~_,. Thus by
the inductive result for 7—1 we conclude that for all xeG—T we
have f;_,(x, %;y, =++,%,) = 0. Note that T is a finite union of right
translates of 4,, a subset of G of infinite index.
Now clearly
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fi—1(xx Litis %%y xn)

2q
= Z >, 0(a, a,j)ﬁ(al,o,j) coo Az, i) Xims o, {00 5 Cainry *** Xy 0. i Bom)Qn o 5

geS? j=1
+ 2 /'e(xiﬂ’ c ey xn)xv(miﬂy ] xn)
e 2

where the 7({.,, -+, ,) are suitable monomials. Since

j:i—l(w’ Liggy =0y xn) =0

for all xe G—T we can apply Lemma 2.2. However we must first
observe that the hypotheses are satisfied.
Let » and s be defined as in Lemma 2.2. Using the basic fact that

| Supp g | = |Supp e | | Supp 5|
for any «a, ge K[G] it follows easily that
r<artt =, sZa"t=s,.

Now pe _« implies that Supp # (% ++, @) N4, = @.  Therefore
the only left hand factors of 2 which have some support in 4, come
from the first of the two sums above. Here we have

Supp 0(a;,.;) € U < 4,

and (4,)"" & 4pn+1= 4,. Thus the intersection of the supports of these
left hand factors with 4, is easily seen to be contained in 4,. Finally

fe = 1t = rst”

so the lemma applies.

There are two possible conclusions from Lemma 2.2. The first is
that [G: T] < «. Since T is a finite union of right translates of 4,
this yields [G: 4,] < o, a contradiction by our assumption. Thus
the second conclusion must hold. Since as we observed above

0 ((@iyy ooy 2,) =0
and clearly

0’c [5(&'0 a,j)e(al,ayj) e 0(“13—2 a,j)ai~1,o,j]
= a(ao,a,j)‘?(al,a,j) et ‘9(ai~2,a,j)0(a’i~1,o,]’)

we therefore obtain

%g
O = Z E 0(0{0 a j)e(al o j) e 0(“12—1 ovj)ai c jxo(i+1) M an—l,o-jxo(n)amu;j

ogeSt j=1

= fi(xHu Litoy * 0y xn)

and the induction step is proved.
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In particular, we conclude for 7 = »n that either f, = 0 or there
exists pte _«, with Supp ¢« N 4, + @. However f, is known to be a
a nonzero constant function and _#, < {0}). Hence we have a contra-
diction and we must therefore have [G: 4,] < . By Lemma 2.3 this
yields [G: 4(G)] < = and | 4(G)'| < o so the result follows.

3. Polynomial parts. Let E be an algebra over K. We say
that F has a polynomial part it and only if £ has an idempotent e
such that eFe satisfies a polynomial identity. In this section we ob-
tain necessary and sufficient conditions for K[G] to have a polynomial
part.

We first discuss some well known properties of the standard poly-
nomial s, of degree n. Here

Sn(cly C2! ) Cn) = y (_1)0C0(1)Ca(2) e Ca(n) .

geS,

Suppose A is a subset of {{, &, -+, ,} of size a. Then we let s,(A)
denote s, evaluated at these variables. This is of course only deter-
mined up to a plus or minus sign.

LEmMmA 3.1. Let a,,a, --+,a, be fived integers with
a +a;+ o +a.=mn.
Then
(G G e G = S s (A)s (4D - 5, (4)

where A,, Ay, +++, A, run through all subsets of {C,, &, +++, L} with
lAzl = a; and A1UA2U"‘UAr= {CnCzy "'7Cn}'

Proof. Consider all those terms in the sum for s, such that the
first a, variables come from A,, the next a, variables come from A,,
etc. Then the subsum of all such terms is easily seen to be

84, (A8, (As) =+ 50, (4,) -
This clearly yields the result.
THEOREM 3.2. Let K[G] be a group ring of G over K which

satisfies a polynomial identity. Then K[G] satisfies a standard poly-
nomial tdentity.

Proof. If K has characteristic 0 then Theorem 1.1 of [3] and
proof of (i) of that theorem show that K[G] satisfies a standard
identity. If K has characteristic p > 0 then Theorem 1.3 of [3] and
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a slight modification of the proof of (i) of that theorem show that
K|[G] satisfies

Szn(Cl, Cm ttty CZn)SZn(CZnHv C2n+27 crty Cm) e

e Szn(sz—lmﬂa sz—nm-z, ttty C2m'n) .

Of course it also satisfies this polynomial with all possible permuta-
tions of the 2mn variables. Thus by Lemma 8.1 K|[G] satisfies s.,,.

THEOREM 3.3. Let K[G] be a group ring of G over K. Then
the following are equivalent.

(i) [G:4(@)] < o= and | 4(G)] < oo.

(ii) KI[G] satisfies a nondegenerate multilinear generalized poly-
nomial identity.

(iii) KI[G] has polynomial part.

(iv) K|[G] has a central idempotent e such that eK [G] satisfies a
standard identity.

Proof. (iv) = (iii). This is obvious.

(iii) = (ii). Let ¢ be an idempotent such that E = ¢K[G]e satis-
fies a polynomial identity. By Lemma 3.2 of [3], E satisfies an iden-
tity of the form

9(Cy Coy »++, 8) = ;;: baCa(J)Co‘(Z) coe Lomy o

If aec K[G] then of course ewec E. This shows immediately that
K[(G] satisfies the multilinear generalized polynomial identity

f(CI, Loy v oe, Cn) = % baeCo(l)eCa(Z)e e 6Cg<me .

Moreover f is nondegenerate since b, = 0 for some ¢ and then
f”(l,l, "',1) = bae #0.

(ii) = (i). This follows from Theorem 2.4.
(i)=(iv). Suppose first that K has characteristic 0. Let H =
A(G)" so that H is a finite normal subgroup of G. Set

m:iﬁ§fexmy

Then ¢ is a central idempotent in K[G] and eK[G] is easily seen to
be isomorphic to K[G/H]. Now G/H has an abelian subgroup 4(G)/H
of finite index so by Theorem 3.2 and Theorem 1.1 of [3],

eK[G] = K[G/H]
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satisfies a standard identity.

Now let K have characteristic p > 0 and let A = C,(4(G)).
Then A is normal in G, [G: A] < «~ and A’' < 4(G)’ so A’ is central
in A. Let H be the normal p-compliment of A’ and define e as
above. Then again ¢ is central in K[G] and e¢K[G] = K[G/H].
Since G/H has a p-abelian subgroup A/H of finite index it follows
from Theorem 3.2 and Theorem 1.3 of [3] that K[G/H] satisfies a
standard identity. This completes the proof of the theorem.
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