GROUP RINGS SATISFYING A POLYNOMIAL IDENTITY. II

DONALD STEVEN PASSMAN
GROUP RINGS
SATISFYING A POLYNOMIAL IDENTITY II

D. S. PASSMAN

In an earlier paper we obtained necessary and sufficient conditions for the group ring $K[G]$ to satisfy a polynomial identity. In this paper we obtain similar conditions for a twisted group ring $K^t[G]$ to satisfy a polynomial identity. We also consider the possibility of $K[G]$ having a polynomial part.

1. Twisted group rings. Let K be a field and let G be a (not necessarily finite) group. We let $K^t[G]$ denote a twisted group ring of G over K. That is $K^t[G]$ is an associative K-algebra with basis $\{x | x \in G\}$ and with multiplication defined by

$$\bar{x}y = \gamma(x, y)\bar{x}y, \quad \gamma(x, y) \in K - \{0\}.$$

The associativity condition is equivalent to $\bar{x}(y\bar{z}) = (\bar{x}y)\bar{z}$ for all $x, y, z \in G$ and this is equivalent to

$$\gamma(x, yz)\gamma(y, z) = \gamma(x, y)\gamma(xy, z).$$

We call the function $\gamma: G \times G \rightarrow K - \{0\}$ the factor system of $K^t[G]$. If $\gamma(x, y) = 1$ for all $x, y \in G$ then $K^t[G]$ is in fact the ordinary group ring $K[G]$. In this section we offer necessary and sufficient conditions for $K^t[G]$ to satisfy a polynomial identity. The proof follows the one for $K[G]$ given in [3] and we only indicate the suitable modifications needed. The following is Lemma 1.1 of [2].

Lemma 1.1. If $x \in G$, then in $K^t[G]$ we have

(i) \(1 = \gamma(1, 1)^{-1}\bar{1}\)

(ii) \(\bar{x}^{-1} = \gamma(x, x^{-1})^{-1}\gamma(1, 1)^{-1}\bar{x}^{-1} = \gamma(x^{-1}, x)^{-1}\gamma(1, 1)^{-1}\bar{x}^{-1}\).

Proposition 1.2. Suppose $K^t[G]$ satisfies a polynomial identity of degree n and set $k = (n!)^2$. Then G has a characteristic subgroup G_0 such that $[G: G_0] \leq (k + 1)!$ and such that for all $x \in G_0$

$$[G: C_0(x)] \leq k^{k(k+1)!}.$$

Proof. This is the twisted analog of Corollary 3.5 of [3]. We consider §3 of [3] and observe that each of the prerequisite results for that corollary also has a twisted analog.
First Lemma 3.1 of [3] holds for \(K'[G] \) with no change in the proof. Of course \(x \) must be replaced by \(\bar{x} \) in the formula\
\[
\alpha_1\bar{x}\beta_1 + \alpha_2\bar{x}\beta_2 + \cdots + \alpha_n\bar{x}\beta_n = \bar{x}\gamma.
\]
Second Theorem 3.4 of [3] also holds for \(K'[G] \) with no change in its statement. The proof is modified just slightly so that the inductive result to be proved is as follows. For each \(x_j, x_{j+1}, \ldots, x_n \in G \), then either \(f_j(\bar{x}_j, \bar{x}_{j+1}, \ldots, \bar{x}_n) = 0 \) or for some \(\mu \in \mathcal{L} \), \(\mu(\bar{x}_j, \bar{x}_{j+1}, \ldots, \bar{x}_n) = a \bar{y} \) for some \(a \in K - \{0\} \), \(y \in \mathcal{L} \). Then replacing \(x \)'s suitably by \(\bar{x} \)'s the proof carries through as before. Finally Corollary 3.5 of [3] holds for \(K'[G] \) since it is just a group theoretic consequence of Theorem 3.4 of [3].

Let \(K'[G] \) be a twisted group ring and let \(H \) be a subgroup of \(G \). Then by \(K'[H] \) we mean that twisted group ring of \(H \) which is naturally contained in \(K'[G] \). Let \(JK'[G] \) denote the Jacobson radical of \(K'[G] \).

Proposition 1.3. Suppose \(K'[G] \) satisfies a polynomial identity of degree \(n \) and suppose further that \(G' \) is finite and \(K'[G'] \) is central in \(K'[G] \). Then \(G \) has a subgroup \(Z \supseteq G' \) such that
\[
[G: Z] \leq (n/2)^{|G'|}
\]
with \(K'[Z]/(JK'[G'] \cdot K'[Z]) \) commutative.

Proof. Since \(K'[G'] \) is commutative, \(JK'[G'] \) is the intersection of the maximal two-sided ideals of \(K'[G'] \). Moreover \(K'[G']/JK'[G'] \) is a finite dimensional semisimple algebra and hence it has at most
\[
\dim_K K'[G']/JK'[G'] \leq |G'|
\]
maximal two-sided ideals. Thus we may write
\[
JK'[G'] = \bigcap_i I_i, \quad m \leq |G'|
\]
where \(I_i \) is a maximal two-sided ideal of \(K'[G'] \).

Fix a subscript \(i \). Then \(K'[G']/I_i = F_i \), some finite field extension of \(K \). Now \(K'[G'] \) is central in \(K'[G] \), so \(I_i \cdot K'[G] \) is an ideal in \(K'[G] \). It is now easy to see that \(K'[G']/(I_i \cdot K'[G]) \) is an \(F_i \)-algebra with a basis consisting of the images of coset representatives for \(G' \) in \(G \). Thus clearly \(K'[G']/(I_i \cdot K'[G]) \) is isomorphic to some twisted group ring \(F_i \cdot K'[G']/G' \), and this twisted group ring inherits the polynomial identity satisfied by \(K'[G] \). Thus by Proposition 1.4 of [2], \(G/G' \) has a subgroup \(\bar{Z}_i \) with \([G/G': \bar{Z}_i] \leq (n/2)^2 \) and with \(F_i \cdot [Z_i] \) central in \(F_i \cdot [G'/G'] \). Let \(Z_i \) be the complete inverse image
of Z_i in G. Then $Z_i \supseteq G'$, $[G: Z_i] \leq (n/2)^2$ and for all $\alpha, \beta \in K'[Z_i]$ we have $\alpha \beta - \beta \alpha \in I_i \cdot K'[G]$.

Set $Z = \bigcap^n Z_i$. Then

$$[G: Z] \leq \prod^n [G: Z_i] \leq (n/2)^{2m} \leq (n/2)^{\omega[G']}. $$

Moreover for all $\alpha, \beta \in K'[Z]$ we have

$$\alpha \beta - \beta \alpha \in \bigcap^n I_i \cdot K'[G] = JK'[G'] \cdot K'[G]$$

since $K'[G]$ is free over $K'[G']$. Hence since $K'[G]$ is free over $K'[Z]$ we have

$$\alpha \beta - \beta \alpha \in K'[Z] \cap (JK'[G'] \cdot K'[G]) = JK'[G'] \cdot K'[Z]$$

and the result follows.

We now come to our main result on twisted group rings satisfying a polynomial identity.

Theorem 1.4. Let $K'[G]$ be a twisted group ring of G over K. Let $G \supseteq A \supseteq B$ be subgroups of G with B finite and central in A and with $K'[A]/(JK'[B] \cdot K'[A])$ commutative.

(ii) If $K'[G]$ satisfies a polynomial identity of degree n, then there exists suitable A and B with $[G: A] \cdot |B|$ bounded by some fixed function of n.

Proof. The proof of (i) is identical to the proof of Theorem 1.3 (i) of [3]. Observe that $JK'[B] \cdot K'[A] = K'[A] \cdot JK'[B]$ is an ideal of $K'[A]$ by Lemma 1.2 of [1].

We now consider part (ii). Let $K'[G]$ satisfy a polynomial identity of degree n. Set

$$a = a(n) = (n!)^2, \quad b = b(n) = a^{(a+1)!}. $$

Then by Proposition 1.2 G has a subgroup G_0 with

$$[G: G_0] \leq (a + 1)!, \quad G_0 = \Delta_0(G_0)$$

where Δ_k is defined in [3].

Set

$$c = c(n) = (b!)^{2^k}, \quad d = d(n) = (n/2)^{2c}. $$

Then by Theorem 4.4 of [3], $|G_0| \leq c$. Let $G_i = C_{\Delta_0}(G_0)$. Then

$$G_i \supseteq G_0,$$

so G_i is a finite central subgroup of G_i. Moreover

$$|G_i| \leq c, \quad [G_0: G_i] \leq c!. $$
Let \(x \in G_i \). Then conjugation by \(x \) induces an automorphism of \(K'[G_i] \). Moreover since \(G'_i \) is central in \(G_i \) we have
\[
\bar{x}^{-1}y\bar{x} = \lambda_x(y)\bar{y}
\]
for all \(y \in G'_i \). It follows easily that \(\lambda_x \) is a linear character of \(G'_i \) into \(K \), that is \(\lambda_x \in \text{Hom}(G'_i, K - \{0\}) \). In addition, it follows easily that the map \(x \mapsto \lambda_x \) is in fact a group homomorphism
\[
G_{\lambda} \longrightarrow \text{Hom}(G'_i, K - \{0\}) .
\]
Let \(G_2 \) denote the kernel of this homomorphism. Then
\[
[G_i : G_2] \leq |\text{Hom}(G'_i, K - \{0\})| \leq |G'_i| \leq c .
\]
Set \(B = G'_2 \). Then \(B \subseteq G'_i \) so \(|B| \leq c \) and \(K'[B] \) is central in \(K'[G_2] \). By Proposition 1.3, \(G_2 \) has a subgroup \(A \supseteq B \) with
\[
[G_2 : A] \leq (n/2)^{|B|} \leq d
\]
and with \(K'[A]/(JK'[B] \cdot K'[A]) \) commutative. Since \(|B| \leq c \) and since
\[
[G : A] = [G : G_0] [G_0 : G_i] [G_i : G_2] [G_2 : A] \leq (a + 1)! \cdot c \cdot c \cdot d
\]
the result follows.

It is interesting to interpret this result for various fields. If \(K \) has characteristic 0 and if \(B \) is a finite group, then \(K'[B] \) is semisimple by Proposition 1.5 of [1]. Thus

Corollary 1.5. Let \(K'[G] \) be a twisted group ring of \(G \) over \(K \) and let \(K \) have characteristic 0. Let \(A \) be an abelian subgroup of \(G \) with \(K'[A] \) commutative.

(i) If \([G : A] < \infty \) then \(K'[G] \) satisfies a polynomial identity of degree \(n = 2[G : A] \).

(ii) If \(K'[G] \) satisfies a polynomial identity of degree \(n \), then there exists such a group \(A \) with \([G : A] \) bounded by some fixed function of \(n \).

Corollary 1.6. Let \(K'[G] \) be a twisted group ring of \(G \) over \(K \) and let \(K \) have characteristic \(p > 0 \). Let \(G \supseteq A \supseteq P \) be subgroups of \(G \) with \(P \) a finite \(p \)-group central in \(A \) and with \(K'[A]/(JK'[P] \cdot K'[A]) \) commutative.

(i) If \([G : A] < \infty \) then \(K'[G] \) satisfies a polynomial identity of degree \(n = 2[G : A] \cdot |P| \).

(ii) If \(K'[G] \) satisfies a polynomial identity of degree \(n \), then there exists suitable \(A \) and \(P \) with \([G : A] \cdot |P| \) bounded by some fixed function of \(n \).
Proof. Let B be given as in Theorem 1.4 and let P be its normal Sylow p-subgroup. Then P is also central in A. Moreover by Proposition 1.5 of [1] $JK'[B] = JK'[P] \cdot K'[B]$ so the result clearly follows.

Finally in the above if K is a perfect field of characteristic p, then by Lemma 2.1 of [1], $K'[P] \cong K[P]$ so $K'[P]/JK'[P] = K$. It then follows easily that

$$K'[A]/(JK'[P] \cdot K'[A]) \cong K'[A/P]$$

is in fact some twisted group ring of A/P.

2. Generalized polynomial identities. Let E be an algebra over K. A generalized polynomial over E is, roughly speaking, a polynomial in the indeterminates $\zeta_1, \zeta_2, \ldots, \zeta_n$ in which elements of E are allowed to appear both as coefficients and between the indeterminates. We say that E satisfies a generalized polynomial identity if there exists a nonzero generalized polynomial $f(\zeta_1, \zeta_2, \ldots, \zeta_n)$ such that $f(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$ for all $\alpha_1, \alpha_2, \ldots, \alpha_n \in E$. The problem here is precisely what does it mean for f to be nonzero. For example, suppose that the center of E is bigger than K and let α be a central element not in K. Then E satisfies the identity $f(\zeta_1) = \alpha \zeta_1$ but surely this must be considered trivial. Again, suppose that E is not prime. Then we can choose nonzero $\alpha, \beta \in E$ such that E satisfies the identity $f(\zeta_1) = \alpha \zeta \beta$ and this must also be considered trivial. We avoid these difficulties by restricting the allowable form of the polynomials.

We say that f is a multilinear generalized polynomial of degree n if

$$f(\zeta_1, \zeta_2, \ldots, \zeta_n) = \sum_{\sigma \in S_n} f^\sigma(\zeta_1, \zeta_2, \ldots, \zeta_n)$$

and

$$f^\sigma(\zeta_1, \zeta_2, \ldots, \zeta_n) = \sum_{j=1}^{\delta} \alpha_{\sigma,j} \zeta_{\sigma(1)} \zeta_1 \alpha_{\sigma,j} \zeta_{\sigma(2)} \alpha_2 \ldots \alpha_{n-1} \alpha_{\sigma,j} \zeta_{\sigma(n)}$$

where $\alpha_{i,j} \in E$ and α_{σ} is some positive integer. This form is of course motivated by Lemma 3.2 of [3]. The above f is said to be nondegenerate if for some $\sigma \in S_n$, f^σ is not a polynomial identity satisfied by E. Otherwise f is degenerate.

In this section we will study group rings $K[G]$ which satisfy nondegenerate multilinear generalized polynomial identities. Let $\Delta = \Delta(G)$ denote the F. C. subgroup of G and let $\theta: K[G] \to K[\Delta(G)]$ denote the natural projection.
LEMMA 2.1. Suppose $K[G]$ satisfies a nondegenerate multilinear generalized polynomial of degree n. Then $K[G]$ satisfies a polynomial identity as given above with

$$\sum_{j=1}^{a_1} \theta(\alpha_{0,1,j}) \theta(\alpha_{1,1,j}) \cdots \theta(\alpha_{n,1,j}) \neq 0.$$

Proof. Let $K[G]$ satisfy f as above. Since f is nondegenerate, by reordering the ζ's if necessary, we may assume that $f^1(\zeta_1, \zeta_2, \cdots, \zeta_n)$ is not an identity for $K[G]$. Thus since f^1 is multilinear there exists $x_1, x_2, \cdots, x_n \in G$ with

$$0 \neq f^1(x_1, x_2, \cdots, x_n) = \sum_{j=1}^{a_1} \alpha_{0,1,j} x_1 \alpha_{1,1,j} x_2 \cdots \alpha_{n-1,1,j} x_n \alpha_{n,1,j}.$$

If we replace ζ_i in f by $x_i \zeta_i$ we see clearly that $K[G]$ satisfies a suitable f with

$$(*) \quad 0 \neq \sum_{j=1}^{a_1} \alpha_{0,1,j} \alpha_{1,1,j} \cdots \alpha_{n,1,j}.$$

For each i, j write

$$\alpha_{i,1,j} = \sum_k \beta_{ijk} y_k$$

where $\beta_{ijk} \in K[\Delta]$ and $\{y_k\}$ is a finite set of coset representatives for Δ in G. We substitute this into (*) above. It then follows easily that for some k_0, k_1, \cdots, k_n we have

$$0 \neq \sum_{j=1}^{a_1} \beta_{0jk_0} y_{k_0} \beta_{1jk_1} y_{k_1} \cdots \beta_{njk_n} y_{k_n}. $$

Thus if z_i is defined by $z_i = y_{k_0} y_{k_1} \cdots y_{k_{i-1}}$ and $z_0 = 1$ then

$$0 \neq \sum_{j=1}^{a_1} \beta_{0jk_0}^{-1} \beta_{1jk_1}^{-1} \cdots \beta_{njk_n}^{-1}. $$

Now $\beta_{ijk_i} = \theta(\alpha_{i,1,j} y_{k_i}^{-1})$ so

$$\beta_{ijk_i}^{-1} = \theta(z_i \alpha_{i,1,j} y_{k_i}^{-1} z_i^{-1}) = \theta(z_i \alpha_{i,1,j} z_i^{-1}).$$

It therefore follows that if we replace ζ_i in f by $z_i^{-1} \zeta_i z_{i+1}$ and if, in addition, we multiply f on the left by z_0 and on the right by z_n^{-1}, then this new multilinear generalized polynomial identity obtained has the required property.

LEMMA 2.2. Let $\alpha_1, \alpha_2, \cdots, \alpha_n, \beta_1, \beta_2, \cdots, \beta_n \in K[G]$. Suppose that for some integers k and t
\[| \bigcup_i \text{Supp } \alpha_i | = r, \quad | \bigcup_i \text{Supp } \beta_i | = s \]

and

\[(\bigcup_i \text{Supp } \alpha_i) \cap \Delta_k(G) \subseteq \Delta_i(G) \]

with \(k \geq r s t^r \). Let \(T \) be a subset of \(G \) and suppose that for all \(x \in G - T \) we have

\[\alpha_1 x \beta_1 + \alpha_2 x \beta_2 + \cdots + \alpha_s x \beta_s = 0. \]

Then either \([G: T] < (k + 2)!\) or

\[\theta_k(\alpha_1) \beta_1 + \theta_k(\alpha_2) \beta_2 + \cdots + \theta_k(\alpha_s) \beta_s = 0. \]

Proof. Let \(A = \bigcup_i \text{Supp } \alpha_i, B = \bigcup_i \text{Supp } \beta_i \) and write

\[A' = A \cap \Delta_k = \{g_1, g_2, \cdots, g_n\} \]

\[A'' = A - \Delta_k = \{y_1, y_2, \cdots, y_m\} \]

\[B = \{z_1, z_2, \cdots, z_s\}. \]

Here of course \(m + n = r \). Set \(W = \bigcap_i C_G(g_i) \). Since by assumption \(A' \subseteq \Delta_i(G) \) we have clearly \([G: W] \leq t^r \). Observe that for all \(x \in W \), \(x \) centralizes \(\theta_k(\alpha_i) \).

Suppose that

\[\gamma = \theta_k(\alpha_1) \beta_1 + \theta_k(\alpha_2) \beta_2 + \cdots + \theta_k(\alpha_s) \beta_s \neq 0 \]

and let \(v \in \text{Supp } \gamma \). If \(y_i \) is conjugate to \(v z_i^{-1} \) in \(G \) for some \(i, j \) choose \(h_{ij} \in G \) with \(h_{ij}^{-1} y_i h_{ij} = v z_j^{-1} \).

Write \(\alpha_i = \theta_k(\alpha_i) + \alpha_i' \) and then write

\[\alpha_i' = \sum a_{ij} y_j, \quad \beta_i = \sum b_{ij} z_j. \]

Let \(x \in W - T \). Then we must have

\[0 = x^{-1} \alpha_1 x \beta_1 + x^{-1} \alpha_2 x \beta_2 + \cdots + x^{-1} \alpha_s x \beta_s = [\theta_k(\alpha_1) \beta_1 + \theta_k(\alpha_2) \beta_2 + \cdots + \theta_k(\alpha_s) \beta_s] + [\alpha_i' \beta_1 + \alpha_i' \beta_2 + \cdots + \alpha_i' \beta_s]. \]

Since \(v \) occurs in the support of the first term it must also occur in the second and hence there exists \(y_i, z_j \) with \(v = y_i^j z_j \) or

\[x^{-1} y_i x = v z_j^{-1} = h_{ij}^{-1} y_i h_{ij}. \]

Thus \(x \in C_G(y_i) h_{ij} \). We have therefore shown that

\[W \subseteq T \cup \bigcup_{i,j} C_G(y_i) h_{ij}. \]
Let w_1, w_2, \ldots, w_d be a complete set of coset representatives for W in G. Then $d = [G: W] \leq t^r$ and the above yields
\[G = Tw_1 \cup Tw_2 \cup \cdots \cup Tw_d \cup S \]
where
\[S = \bigcup_{i,j,e} C_0(y_i) h_i w_e. \]
Now the number of cosets in the above union for S is at most
\[rsd \leq rst^r \leq k \]
by assumption on k. Moreover $y_i \in A_k$ so $[G : C_0(y_i)] > k$ for all i. Thus by Lemma 2.3 of [3] $S \neq G$ and then Lemma 2.1 of [3] yields
\[[G : T^*] \leq (k + 1)! \]
where
\[T^* = \bigcup_e Tw_e. \]
Thus
\[[G : T] \leq (k + 1)! \quad d \leq (k + 1)! \quad (k + 2) \]
and the result follows.

We will need the following group theoretic lemma.

Lemma 2.3. Let G be a group. The following are equivalent

(i) $[G : \Delta(G)] < \infty$ and $|\Delta(G)'| < \infty$.

(ii) There exists an integer k with $[G : \Delta_k(G)] < \infty$.

Proof. Suppose that G satisfies (i) and set $n = [G : \Delta]$, $m = |\Delta'|$. If $x \in \Delta$, then by Theorem 4.4 (i) of [3], $[\Delta : C_\Delta(x)] \leq m$ and hence $[G : C_0(x)] \leq nm$. Thus (ii) follows with $k = mn$.

Now suppose that (ii) holds. Since $\Delta(G) \supseteq \Delta_k(G)$ and $[G : \Delta_k] < \infty$ we conclude that $[G : \Delta] < \infty$. Now $\Delta(G)$ is a subgroup of G so every right translate of Δ_k in G is either entirely contained in Δ or is disjoint from Δ. This implies that $[\Delta : \Delta_k] < \infty$ and say
\[\Delta = \Delta_k y_1 \cup \Delta_k y_2 \cup \cdots \cup \Delta_k y_r. \]
Since each $y_i \in \Delta$ we can set $n = \max_i [G : C(y_i)] < \infty$. If $x \in \Delta$ then $x \in \Delta_k y_i$ for some i and this implies easily that $[G : C(x)] \leq nk$. Thus $[\Delta : C_\Delta(x)] \leq nk$ and by Theorem 4.4 (ii) of [3], $|\Delta'| < \infty$.

We now come to the main result of this section

Theorem 2.4. Let $K[G]$ be a group ring of G over K and sup-
pose that $K[G]$ satisfies a nondegenerate multilinear polynomial identity. Then $[G: Δ(G)] < ∞$ and $|Δ(G)'| < ∞$.

Proof. By Lemma 2.1, we may assume that $K[G]$ satisfies

$$f(\zeta_1, \zeta_2, \cdots, \zeta_n) = \sum_{s \in S_n} \sum_{j=1}^{a_s} a_{0, s, j} \zeta_{\sigma(1)} \alpha_{1, s, j} \zeta_{\sigma(2)} \cdots \zeta_{n-1, s, j} \zeta_{\sigma(n)} \alpha_{n, s, j}$$

with

$$\sum_{j=1}^{a_s} \theta(\alpha_{0,1,j}) \theta(\alpha_{1,1,j}) \cdots \theta(\alpha_{n,1,j}) \neq 0.$$

We first define a number of numerical parameters associated with f. Set

$$a = \sum_{s \in S_n} \sum_{j=1}^{a_s} \sum_{i=1}^{n} |\text{Supp} \alpha_{i,s,j}|$$

and

$$r_0 = s_0 = a^{n+1}.$$

Now consider

$$U = \bigcup_{s \in S_n} \bigcup_{j=1}^{a_s} \bigcup_{i=0}^{n} \text{Supp} \theta(\alpha_{i,s,j}).$$

Then U is a finite subset of $Δ(G)$ so there exists an integer b with $U \subseteq Δ_0(G)$. Set

$$t = b^{n+1} \quad \text{and} \quad k = r_0 s_0 t^{b_0}.$$

We assume now that $[G: Δ_k] = ∞$ and derive a contradiction.

For $i = 0, 1, \cdots, n$ define $S^i \subseteq S_n$ by

$$S^i = \{s \in S_n \mid \sigma(1) = 1, \sigma(2) = 2, \cdots, \sigma(i) = i\}.$$

Then $S^0 = S_n$, $S^n = \langle 1 \rangle$ and S^i is just an embedding of S_{n-i} in S_n. We define the multilinear generalized polynomial f_i of degree $n-i$ by

$$f_i(\zeta_{i+1}, \zeta_{i+2}, \cdots, \zeta_n)$$

$$= \sum_{s \in S_i} \sum_{j=1}^{a_s} \theta(\alpha_{0,i,j}) \theta(\alpha_{1,1,j}) \cdots \theta(\alpha_{i-1,1,j}) \alpha_{i,s,j} \zeta_{\sigma(i+1)} \cdots \zeta_{n-1, s, j} \zeta_{\sigma(n)} \alpha_{n, s, j}.$$

Thus $f_0 = f$ and

$$f_n = \sum_{j=1}^{a_0} \theta(\alpha_{0,1,j}) \theta(\alpha_{1,1,j}) \cdots \theta(\alpha_{n-1,1,j}) \alpha_{n, 1, j}$$

is a nonzero element of $K[G]$ since
\[\theta(f_n) = \sum_{j=1}^{a_1} \theta(\alpha_{0,j})\theta(\alpha_{1,j}) \cdots \theta(\alpha_{n-1,j})\theta(\alpha_{n,j}) \not= 0. \]

Let \(\mathcal{M} \) be the set of monomial polynomials obtained as follows. For each \(\sigma, j \) we start with
\[\alpha_{0,\sigma,j} \alpha_{1,\sigma,j} \alpha_{2,\sigma,j} \cdots \alpha_{n-1,\sigma,j} \alpha_{n,\sigma,j} \]
and we modify it by (1) deleting some but not all of the \(\zeta_i \); (2) replacing some of the \(\alpha_{i,\sigma,j} \) by \(\theta(\alpha_{i,\sigma,j}) \); and (3) replacing some of the \(\alpha_{i,\sigma,j} \) by 1. Then \(\mathcal{M} \) consists of all such monomials obtained for all \(\sigma, j \) and clearly \(\mathcal{M} \) is a finite set. Note that \(\mathcal{M} \) may contain the zero monomial but it contains no nonzero constant monomial since in (1) we do not allow all the \(\zeta_i \) to be deleted.

For \(i = 0, 1, \ldots, n \) define \(\mathcal{M}_i \subseteq \mathcal{M} \) by \(\mu \in \mathcal{M}_i \) if and only if \(\zeta_1, \zeta_2, \ldots, \zeta_i \) do not occur as variables in \(\mu \). Thus \(\mathcal{M}_n \subseteq \{0\} \) where 0 is the zero monomial.

Under the assumption that \([G: \Delta_k] = \infty \) we prove by induction on \(i = 0, 1, \ldots, n \) that for all \(x_{i+1}, x_{i+2}, \ldots, x_n \in G \) either
\[f_i(x_{i+1}, x_{i+2}, \ldots, x_n) = 0 \]
or there exists \(\mu \in \mathcal{M}_i \) with \(\text{Supp} \mu(x_{i+1}, x_{i+2}, \ldots, x_n) \cap \Delta_k \not= \emptyset \). Since \(f_0 = f \) is an identity satisfied by \(K[G] \) the result for \(i = 0 \) is clear.

Suppose the inductive result holds for some \(i - 1 < n \). Fix \(x_{i+1}, x_{i+2}, \ldots, x_n \in G \) and let \(x \in G \) play the role of the \(i \)th variable. Let \(\mu \in \mathcal{M}_i \). If \(\text{Supp} \mu(x_{i+1}, \ldots, x_n) \cap \Delta_k \not= \emptyset \) we are done. Thus we may assume that \(\text{Supp} \mu(x_{i+1}, \ldots, x_n) \cap \Delta_k = \emptyset \) for all \(\mu \in \mathcal{M}_i \). Set \(\mathcal{M}_{i-1} = \mathcal{M}_i \).

Now let \(\mu \in \mathcal{M}_{i-1} \) so that \(\mu \) involves the variable \(\zeta_i \). Write \(\mu = \mu'\zeta_i'\mu'' \) where \(\mu' \) and \(\mu'' \) are monomials in the variables \(\zeta_{i+1}, \ldots, \zeta_n \). Then \(\text{Supp} \mu(x, x_{i+1}, \ldots, x_n) \cap \Delta_k \not= \emptyset \) implies that
\[x \in h' \Delta_k h'^{-1} \]
where \(h' \in \text{Supp} \mu'(x_{i+1}, \ldots, x_n) \) and \(h'' \in \text{Supp} \mu''(x_{i+1}, \ldots, x_n) \). Thus it follows that for all \(x \in G - T \) where
\[T = \bigcup_{\mu \in \mathcal{M}_{i-1}} \Delta_k h'^{-1} h''^{-1} \]
we have \(\text{Supp} \mu(x, x_{i+1}, \ldots, x_n) \cap \Delta_k = \emptyset \) for all \(\mu \in \mathcal{M}_{i-1} \). Thus by the inductive result for \(i - 1 \) we conclude that for all \(x \in G - T \) we have \(f_{i-1}(x, x_{i+1}, \ldots, x_n) = 0 \). Note that \(T \) is a finite union of right translates of \(\Delta_k \), a subset of \(G \) of infinite index.

Now clearly
\[f_{i-1}(x_i, x_{i+1}, \ldots, x_n) \]

\[= \sum_{\sigma \in S^i} \sum_{j=1}^{a^i} \theta(\alpha_0, \sigma, j) \theta(\alpha_1, \sigma, j) \cdots \theta(\alpha_{i-2}, \sigma, j) \alpha_{i-1, \sigma, j} x_{\sigma_1(\sigma+1)} \cdots x_{\sigma_{i-1}(\sigma+1)} \alpha_{i-1, \sigma, j} x_{\sigma_i(\sigma+1)} \cdots x_{\sigma_n(\sigma+1)} \alpha_{n, \sigma, j} \]

\[+ \sum_{\mu \in \mathcal{M}} x_{\sigma_i+1} \cdots x_{\sigma_n} x_{\eta_i(\sigma_i+1)} \cdots x_{\sigma_n} \]

where the \(\eta_i(\sigma_i+1, \ldots, \sigma_n) \) are suitable monomials. Since

\[f_{i-1}(x_i, x_{i+1}, \ldots, x_n) = 0 \]

for all \(x \in G - T \) we can apply Lemma 2.2. However we must first observe that the hypotheses are satisfied.

Let \(r \) and \(s \) be defined as in Lemma 2.2. Using the basic fact that

\[|\text{Supp} \alpha \beta| \leq |\text{Supp} \alpha| + |\text{Supp} \beta| \]

for any \(\alpha, \beta \in K[G] \) it follows easily that

\[r \leq a^{n+1} = r_0, \quad s \leq a^{n+1} = s_0. \]

Now \(\mu \in \mathcal{M} \) implies that \(\text{Supp} \mu(x_{i+1}, \ldots, x_n) \cap \Delta_k = \emptyset \). Therefore the only left hand factors of \(x \) which have some support in \(\Delta_k \) come from the first of the two sums above. Here we have

\[\text{Supp} \theta(\alpha_{i, \sigma, j}) \subseteq U \subseteq \Delta_b \]

and \((\Delta_b)^{n+1} \subseteq \Delta_k^{n+1} = \Delta_i \). Thus the intersection of the supports of these left hand factors with \(\Delta_k \) is easily seen to be contained in \(\Delta_i \). Finally

\[k = r_0 s_0 t r_0 \geq rst \]

so the lemma applies.

There are two possible conclusions from Lemma 2.2. The first is that \([G: T] < \infty \). Since \(T \) is a finite union of right translates of \(\Delta_k \) this yields \([G: \Delta_k] < \infty \), a contradiction by our assumption. Thus the second conclusion must hold. Since as we observed above

\[\theta_k(\mu(x_{i+1}, \ldots, x_n)) = 0 \]

and clearly

\[\theta_k[\theta(\alpha_0, \sigma, j) \theta(\alpha_1, \sigma, j) \cdots \theta(\alpha_{i-2}, \sigma, j) \alpha_{i-1, \sigma, j}] = \theta(\alpha_0, \sigma, j) \theta(\alpha_1, \sigma, j) \cdots \theta(\alpha_{i-2}, \sigma, j) \theta(\alpha_{i-1, \sigma, j}) \]

we therefore obtain

\[0 = \sum_{\sigma \in S^i} \sum_{j=1}^{a^i} \theta(\alpha_0, \sigma, j) \theta(\alpha_1, \sigma, j) \cdots \theta(\alpha_{i-1, \sigma, j}) \alpha_{i, \sigma, j} x_{\sigma_1(\sigma+1)} \cdots x_{\sigma_{i-1}(\sigma+1)} \alpha_{n, \sigma, j} \]

\[= f_i(x_{i+1}, x_{i+2}, \ldots, x_n) \]

and the induction step is proved.
In particular, we conclude for \(i = n \) that either \(f_n = 0 \) or there exists \(\mu \in \mathcal{M}_n \) with \(\text{Supp} \mu \cap \Delta_k \neq \emptyset \). However \(f_n \) is known to be a nonzero constant function and \(\mathcal{M}_n \subseteq \{0\} \). Hence we have a contradiction and we must therefore have \(|G: \mathcal{A}| < \infty \). By Lemma 2.3 this yields \(|G: \Delta(G)| < \infty \) and \(|\Delta(G)'| < \infty \) so the result follows.

3. Polynomial parts. Let \(E \) be an algebra over \(K \). We say that \(E \) has a polynomial part if and only if \(E \) has an idempotent \(e \) such that \(eEe \) satisfies a polynomial identity. In this section we obtain necessary and sufficient conditions for \(K[G] \) to have a polynomial part.

We first discuss some well known properties of the standard polynomial \(s_n \) of degree \(n \). Here

\[
s_n(\zeta_1, \zeta_2, \ldots, \zeta_n) = \sum_{\sigma \in S_n} (-1)^{\sigma} \zeta_{\sigma(1)} \zeta_{\sigma(2)} \cdots \zeta_{\sigma(n)}.
\]

Suppose \(A \) is a subset of \(\{\zeta_1, \zeta_2, \ldots, \zeta_n\} \) of size \(a \). Then we let \(s_a(A) \) denote \(s_n \) evaluated at these variables. This is of course only determined up to a plus or minus sign.

Lemma 3.1. Let \(a_1, a_2, \ldots, a_r \) be fixed integers with

\[
a_1 + a_2 + \cdots + a_r = n.
\]

Then

\[
s_n(\zeta_1, \zeta_2, \cdots, \zeta_n) = \sum_{A_1, A_2, \ldots, A_r} \pm s_{a_1}(A_1) s_{a_2}(A_2) \cdots s_{a_r}(A_r)
\]

where \(A_1, A_2, \ldots, A_r \) run through all subsets of \(\{\zeta_1, \zeta_2, \ldots, \zeta_n\} \) with \(|A_i| = a_i \) and \(A_1 \cup A_2 \cup \cdots \cup A_r = \{\zeta_1, \zeta_2, \cdots, \zeta_n\} \).

Proof. Consider all those terms in the sum for \(s_n \) such that the first \(a_1 \) variables come from \(A_1 \), the next \(a_2 \) variables come from \(A_2 \), etc. Then the subsum of all such terms is easily seen to be

\[
\pm s_{a_1}(A_1) s_{a_2}(A_2) \cdots s_{a_r}(A_r).
\]

This clearly yields the result.

Theorem 3.2. Let \(K[G] \) be a group ring of \(G \) over \(K \) which satisfies a polynomial identity. Then \(K[G] \) satisfies a standard polynomial identity.

Proof. If \(K \) has characteristic 0 then Theorem 1.1 of [3] and proof of (i) of that theorem show that \(K[G] \) satisfies a standard identity. If \(K \) has characteristic \(p > 0 \) then Theorem 1.3 of [3] and
a slight modification of the proof of (i) of that theorem show that $K[G]$ satisfies

$$s_{2n}(\zeta_1, \zeta_2, \ldots, \zeta_{2n})s_{2n}(\zeta_{2m+1}, \zeta_{2m+2}, \ldots, \zeta_{4m})\cdots$$

$$\cdots s_{2n}(\zeta_{2(m-1)m+1}, \zeta_{2(m-1)m+2}, \ldots, \zeta_{2mn}).$$

Of course it also satisfies this polynomial with all possible permutations of the $2mn$ variables. Thus by Lemma 3.1 $K[G]$ satisfies s_{2mn}.

Theorem 3.3. Let $K[G]$ be a group ring of G over K. Then the following are equivalent.

(i) $[G: \Delta(G)] < \infty$ and $|\Delta(G)'| < \infty$.

(iii) $K[G]$ has polynomial part.

(iv) $K[G]$ has a central idempotent e such that $eK[G]$ satisfies a standard identity.

Proof. (iv) \Rightarrow (iii). This is obvious.

(iii) \Rightarrow (ii). Let e be an idempotent such that $E = eK[G]e$ satisfies a polynomial identity. By Lemma 3.2 of [3], E satisfies an identity of the form

$$g(\zeta_1, \zeta_2, \ldots, \zeta_n) = \sum_{\sigma \in S_n} b_{\sigma \xi_{\sigma(1)} \xi_{\sigma(2)} \ldots \xi_{\sigma(n)}}.$$

If $e \in K[G]$ then of course $eae \in E$. This shows immediately that $K[G]$ satisfies the multilinear generalized polynomial identity

$$f(\zeta_1, \zeta_2, \ldots, \zeta_n) = \sum_{\sigma \in S_n} b_{\sigma e^{\xi_{\sigma(1)}} e^{\xi_{\sigma(2)}} e \ldots e^{\xi_{\sigma(n)}} e}.$$

Moreover f is nondegenerate since $b_\sigma \neq 0$ for some σ and then

$$f^a(1, 1, \ldots, 1) = b_\sigma e \neq 0.$$

(ii) \Rightarrow (i). This follows from Theorem 2.4.

(i) \Rightarrow (iv). Suppose first that K has characteristic 0. Let $H = \Delta(G)'$ so that H is a finite normal subgroup of G. Set

$$e = \frac{1}{|H|} \sum_{x \in H} x \in K[G].$$

Then e is a central idempotent in $K[G]$ and $eK[G]$ is easily seen to be isomorphic to $K[G/H]$. Now G/H has an abelian subgroup $\Delta(G)/H$ of finite index so by Theorem 3.2 and Theorem 1.1 of [3],

$$eK[G] \cong K[G/H].$$
satisfies a standard identity.

Now let K have characteristic $p > 0$ and let $A = C_{A(G)}(A(G'))$. Then A is normal in G, $[G : A] < \infty$ and $A' \subseteq A(G)'$ so A' is central in A. Let H be the normal p-compliment of A' and define e as above. Then again e is central in $K[G]$ and $eK[G] \cong K[G/H]$. Since G/H has a p-abelian subgroup A/H of finite index it follows from Theorem 3.2 and Theorem 1.3 of [3] that $K[G/H]$ satisfies a standard identity. This completes the proof of the theorem.

REFERENCES

Received January 28, 1971.

UNIVERSITY OF WISCONSIN
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edward Arthur Bertram, Permutations as products of conjugate infinite cycles</td>
<td>275</td>
</tr>
<tr>
<td>David Blair, Almost contact manifolds with Killing structure tensors</td>
<td>285</td>
</tr>
<tr>
<td>Bruce Donald Calvert, Nonlinear equations of evolution</td>
<td>293</td>
</tr>
<tr>
<td>Bohumil Cenkl and Giuliano Sorani, Cohomology groups associated with the $\bar{\partial}$-operator</td>
<td>351</td>
</tr>
<tr>
<td>Martin Aaron Golubitsky and Bruce Lee Rothschild, Primitive subalgebras of exceptional Lie algebras</td>
<td>371</td>
</tr>
<tr>
<td>Thomas J. Jech, Two remarks on elementary embeddings of the universe</td>
<td>395</td>
</tr>
<tr>
<td>Harold H. Johnson, Conditions for isomorphism in partial differential equations</td>
<td>401</td>
</tr>
<tr>
<td>Solomon Leader, Measures on semilattices</td>
<td>407</td>
</tr>
<tr>
<td>Donald Steven Passman, Group rings satisfying a polynomial identity. II</td>
<td>425</td>
</tr>
<tr>
<td>Ralph Tyrrell Rockafellar, Integrals which are convex functionals. II</td>
<td>439</td>
</tr>
<tr>
<td>Stanislaw Sławomir Świerczkowski, Cohomology of group germs and Lie algebras</td>
<td>471</td>
</tr>
<tr>
<td>John Griggs Thompson, Nonsolvable finite groups all of whose local subgroups are solvable. III</td>
<td>483</td>
</tr>
<tr>
<td>Alan Curtiss Tucker, Matrix characterizations of circular-arc graphs</td>
<td>535</td>
</tr>
</tbody>
</table>