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Formulas are derived in this paper for the conjugates
of convex integral functionals on Banach spaces of measurable
or continuous vector-valued functions. These formulas imply
the weak compactness of certain convex sets of summable
functions, and they thus have applications in the existence
theory and duality theory for various optimization problems.
They also yield formulas for the subdifferentials of integral
functionals, as well as characterizations of supporting hyper-
planes and normal cones.

Let T be an arbitrary set, let .9~ be a o-field of subsets of T
(the “measurable” sets), and let d¢ denote a nonnegative, o-finite
measure on 7. We shall be interested in functionals of the form

1.1) I(w) = STf(t, witydt, wel,

where L is a linear space of measurable functions from T to R®,
and f is a function from 7 x R* to R'U {+ o} such that the function
fi = f(@&, +) is convex on R" for every te T. A functional of the form
I; is obviously convex (with values in R'U {+ o}), provided that it is
well-defined in the sense that, for every u e L, f(¢, w(t)) is a measur-
able function of ¢ which majorizes at least one summable function
of t.

In our preceding paper with the same title [16], rather general
spaces L were considered, but here the cases L = L3(T) and L = L.(T)
dominate. (We denote by L2(T) = Li(T, .7, dt), 1 < p < +oo, the
Banach space consisting of all (equivalence classes of) measurable
funetions u: T'— R" such that the realvalued function ¢ — |u(t) |, where
denotes the Euclidean norm in R", belongs to L*(T, 7, dt) the
norm of the function ¢ — |u(t)| in L°(T, .7, dt) being the L:(T)-norm
of u.)

We assume as in [16] that f is a normal convexr integrand on
T x R*, in other words,

(a) f: is for each ¢ a lower semicontinuous convex function
from R* to R'U {+ o} which is not identically + e, and

(b) there exists a countable collection U of measurable functions
from T to R*, such that f(¢, (f)) is measurable in ¢ for every u e U,
and U(t) N D(t) is dense in the (nonempty, convex) set

(1.2) D(t) = {we B*|f(¢t, ) < + oo}
439
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for every te T, where
1.3) Ut) = {u(t)|ue U} .

This assumption guarantees, in particular, that f(¢, () is a measurable
function of ¢ for every measurable function w:T— R" [16]. The
naturalness of the class of normal convex integrands is shown by a
number of characterizations in [17]. (A somewhat different approach
to the measurablity question has been taken by Ioffe and Tikhomirov
in [6], where (T, .7, dt) is a Lebesgue space but R is replaced by a
separable Banach space. Results in [17] indicate that the two ap-
proaches are equivalent where their domains overlap.)

Condition (b) is always satisfied if f, is actually independent of
t. It is equivalent, in the case where the interior of D({) is non-
empty for every ¢, to the condition that f(f, ) be measurable in ¢
for each xe R" [16]. Condition (b) is also satisfied, of course, in
the important case of a “discrete” measure space, where dt assigns
unit mass to each point of T; then the functional I, in (1.1) is given
by a series:

If(u) = ZteTft(ut) .
Let f* be the integrand conjugate to f, that is

(1'4) f*(ty LX}*) = sup {<x1 x*> - f(t, x) !x € Rn} ’

where (., *> denotes the inner product in R*. Then f* is a normal
convex integrand [16], and f is in turn the integrand conjugate to f*.
We have shown in [16, Theorem 2] that, if f(¢, w(¢)) is majorized by
a summable function of ¢ for at least one choice of we L:(T), and
similarly F*(t, u*(t)) is majorized by a summable function of ¢ for at
least one u* e L%(T), where (1/p) + (1/9) =1, then the convex func-
tionals I, on L2Z(T) and I;. on L%(T) are well-defined and conjugate to
each other with respect to the pairing

(1.5) G, w> = | ult), wivpat .
Thus one has

(1.6)  Ip(uw*) = sup {Ku, u*) — I(w) |we LT}, w*e LYT) ,
.7 I;(w) = sup u, w*) — Ln.(u*) |u* e Li(T)} , we Li(T) .

This result leaves an open question, however, in the case of p = oo,
since in general L.,(7T') cannot be identified with the dual space
L(T)* of L(T).

What is the nature of the convex function I} on L3(T)* which



INTEGRALS WHICH ARE CONVEX FUNCTIONALS, II 41

is eonjugate to I, on L3(T)? This question is of more importance
than might be expected judging from the “obscurity” of the space
L(T)*.

In applying the methods of functional analysis to optimization
problems, such as problems in optimal control and the calculus of
variations, one often finds it convenient to work in L7 (T) or one of
its subspaces (e.g., a space of continuous functions), where T is a
real interval or a region in R*. Many of the functionals and mappings
one encounters in such cases have nicer continuity or differentiability
properties with respect to the “uniform” norm on L3(T) than with
respect to the other L2(T) norms. Unfortunately, there is also a
disadvantage to working in L3(T): it is more difficult to use argu-
ments based on duality. This drawback is serious when dealing with
convexity, since duality methods are especially natural in such situ-
ations. Thus, even if L3(T)* is not a convenient space to work with
directly, it can be helpful to have a formula for I on L3(T)* in
terms of f, because this may facilitate reasoning based on the general
theory of conjugate convex functions.

By definition, one has

(1.8) I7(v) = sup {v(w) — I(w) [u e LAT)}, ve LA(T)*,

assuming that I, is well-defined on L3 (7). Formula (1.6) (when valid)
implies that I reduces to I,. on L.(T), if Ly(T) is identified in the
canonical way with a subspace of L3(T)*.

Our basic result below (Theorem 1) is that I} is the direct sum
of I, on Ly(T) and a certain “singular” component, which is a posi-
tively homogeneous, convex functional on the measure-theoretic com-
plement of LL(T) in L3(T)*. We give a condition, generalizing
Theorem 4 of [16], under which the “singular” component is trivial,
so that I} is identically + - outside of L.(T) and hence reduces entirely
to In. This property implies the weak compactness in L.(T) of all
the convex level sets of the functional I, (see Corollaries 2A and
2B). The sufficient condition for weak compactness which is obtained
in this way may be regarded as a generalization of Nagumo’s Theo-
rem [12] in the calculus of variations, and it is also related to recent
work of Olech [13, 14] in the same area. Furthermore, it generalizes
a result of Castaing [2, Lemma 7.1] as formulated by Valadier [21,
1.15]. The latter corresponds to the case where f, is for each ¢ the
support function (and f;* the indicator function) of a nonempty, com-
pact, convex subset of R". (For extensions in this case to spaces
more general than R", see [2], [3], and [4]). (Note added in revision:
since the writing of this paper, Valadier [22, p. 14-16] has inde-
pendently proved, in effect, a slightly weaker form of our compact-
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ness result, Corollary 2B, and Castaing [5, Theorem 6] has established
a generalization in which R” is replaced by a reflexive Banach space.
We have also proved a converse of Corollary 2B in [20].)

After establishing these basic results in § 2, we extend them in
§ 3 to the situation where 7T is a topological space, L3(T) is replaced
by a space of continuous, R"-valued functions on T, and L3(T)* is
correspondingly replaced by a space of R"valued measures on T.
The argument is based on a general theorem about the images and
inverse images of convex functions under continuous, linear trans-
formations between locally convex, topological vector spaces.

A refinement is then given in § 4 under the assumption that the
multifunction D:¢-— D(t) in (1.2) is “fully lower semicontinuous.”
A theorem of Michael [9] concerning continuous selections is essential
to the proof. The refined formula yields in § 5 a characterization of
the weak* closure of certain convex sets of measures on T (Corollaries
5B, 5C) and a corresponding compactness ecriterion (Corollary 5D).
The latter extends a lemma which Olech [13, 14] uses as the basic
tool in deducing the existence of solutions to problems in optimal
control.

Throughout the paper, we give applications to the theory of
subgradients. If I, is regarded as a function on LZ(T), the sub-
gradients of I, at the point we L:(T), with respect to the pairing
(1.5) between L:(T) and Li(T), 1/p) + (1/9) = 1, are by definition the
elements u* ¢ Li(T) such that

1.9 ILw) = I(w) + {w' — u, u*) for every «,
or equivalently
(1.10) I ) = u, ¥y — L) .

The set of all such subgradients is denoted by 0;(x). Formulas (1.4)
and (1.6) (when the latter is valid) imply at once that a function
u* e L(T) belongs to dl,(u) if and only if

(1.11) FxE, w (@) = {u@), w*@#)) — f¢, w(@?)
for almost every ¢, or in other words,
(1.12) u*(?) € of,(u(t))

for almost every t.

If p =, and one considers the pairing between L3(7T) and
L3(T)*, rather than L,(T), the subgradient set 0I;(u) consists by
definition of the set of linear functionals ve L3(T)* such that

(1.13) IF) = v(u) — I(u) .



INTEGRALS WHICH ARE CONVEX FUNCTIONALS, II 443

The formula for I} on L3 (T)* yields a description of the sub-
gradients of I, in the more general case. Similarly, the conjugacy
formulas in § 3 and § 4 yield descriptions of the subgradients of inte-
gral functionals on spaces of continuous functions.

2. Basic results, Recall that, in analogy with the Lebesgue
decomposition of measures, every linear functional v in L3(T)* can
be expressed uniquely as the sum of an “absolutely continuous”
component v, and a “singular” component v,. The “absolutely con-
tinuous” linear functional v, corresponds to an element u* of LL(T),
in the sense that

@.1) vo(u) = S Cult), wr@®)pdt,  we L(T) .

On the other hand, the “singular” linear functional v, has the pro-
perty that, given any finite, nonnegative measure z equivalent to dt
and any ¢ > 0, there is a measurable subset S of T such that t(T\S) <,
and v,(u) = 0 for every u is L3(S). (Here we identify L3(S) with
the subspace of L3(T) consisting of the functions which vanish almost
everywhere outside of S). One has

@2 ol = loli + ol = | jw@ldt + o, -

The set of all “singular” functionals v, in L3(T) is a closed subspace
which may be regarded as the measure-theoretic complement of L.(T).

This decomposition of L3(T)* may be derived from general results
concerning Riesz spaces, but it also can be obtained by representing
L3(T) (via the theory of commutative Banach algebras, applied to
L=(T)) as the space of all continuous functions from 7 to R", where
T is a certain (extremally disconnected) compact Hausdorff space. In
the latter case, 7 and the elements of L3(T)* can be regarded as
finite, regular Borel measures on T, and the ordinary Lebesgue de-
composition theorem can be invoked.

As usual, we denote by 0, the indicator of a convex set C, that
is, the convex function which vanishes on C and is identically + o
outside of C. For Cc L3(T), the convex function 6; on L3(T)*
conjugate to d, is given by

2.3) 0F(w) = sup {v(u) |lueC}.

Thus 07 is the support function of C, and 6} is positively homo-
geneous.

THEOREM 1. Assume that f(t, w(t)) is majorized by a summable
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Sunction of t for at least one ue L3(T), and that f*i, w*(t)) is ma-
Jorized by a summable function of t for at least onme w*e Li(T).
Then I; is well-defined on L3;(T), and the convex function I} on
Lx(T)* conjugate to I, is given by

(2.4) I} (v) = L(u*) + 0% (v,) , we Ly(T)*,

where u* is the element of LL(T) giving the “absolutely continuous”
component of v, v, is the “singular’ component of v, and

(2.5) C={ueLyT)|I;(u) < +}.

Proof. As pointed out above, the hypothesis implies by [16,
Theorem 2] that I, and I,. are well-defined on L3(7T) and LL(T),
respectively, and that formulas (1.6) and (1.7) hold for p = -~ and
g = 1. Thus for every w* ¢ L, (T) and every measurable subset S of
T one has

[0 wr@yae = sup {{ [ty w0

(2.6)
— 6, u(®)ldt | w e L(S)

by (1.6) and the definition of f*. Fix ve L3(T)*, and choose any
real number « such that

2.7) a < Luu) = S FHE, w(t)dt

where u* satisfies (2.1). Let # be any element of LJ(T) such that
f(+, @(+)) is summable, i.e., any element of the set C in (2.5), and
let 6 > 0. Let ¢ be any finite, nonnegative measure equivalent to
dt. The “singularity” of v, implies the existence of a nondecreasing
sequence of measurable sets S, in T such that

o(T\Sy > 1/k ,

and v, vanishes on L3(S,). Taking S to be S, for k sufficiently
large, and S’ = T\S, we have

2.8) |7 w@nds < a,
@9) | Ka, w® - st ao)ldt > 5 .

We now calculate from (1.8) and (2.6) that
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Ir) = sup {o(w) — | ft, u®)dt — | s, u)at|we Lz(D)}

S’

= sup {u,(w) — [ fit, w®)dt|ue L(S))}
2.10) + sup {'va(u) + v,(u) — SS, £, w(t)dt | we L::(S')}
- gsf*(t, w*(t)dt + sup {vs(u)
+ | IKu), w)> — 1t wieplat|u e LS}

Taking % to be the element of L3(S’) which agrees with # on S’
but vanishes on S, we see from (2.10) that

L) 2 | £t v ®)it + 0,0
(2.11) N
+ | Ko, wr @) — ft, ae)de
and hence by (2.8) and (2.9)
(2.12) IYvyza+ v,(w) — 0.

Inasmuch as a was any number satisfying (2.7), and ¢ was any
positive number, we conclude from (2.12) that

I¥(v) = I(u*) + v,(%) .
Moreover, this holds for any #e C. Thus

I#(v) = I,(u*) + sup {v,(&) |we C}
= I.(u*) + 0§(v,) .

To prove the opposite inequality, we observe simply that
Lv) = sup K, w*> + v,(u) — L)
= sup {u, w*> — I (w)} + sup v,(«)
= Ip(u*) + 05 (v,) -
This establishes Theorem 1.
COROLLARY 1A. Assume, in addition to the hypothesis of Theo-

rem 1, that the convex set C is a cone. Then in formula (2.4) omne
has

I} (v) = In(u*) of vy(u) <0 for every ucC,
= + oo otherwise.
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Proof. If C is a convex cone, then the support function of C is
the indicator of C*, the convex cone polar to C.

A noteworthy case of Corollary 1A occurs when f(¢, +) is for
every t the support function of a nonempty closed convex set Q(t) C
R". Then C is a cone by the positive homogeneity of f(¢, -). The
function f*(, -) is the indicator of Q(¢), and hence I, on LL(T) is
the indicator of the convex set W consisting of all summable func-
tions u* such that w*(t) € Q) for almost every ¢. The hypothesis of
Theorem 1 is satisfied if and only if W = @, in which event I, on
L3(T) is the support function of W (regarded as a subset of L3(T)%),
so that If is the indicator of the closure of W in the weak topology
induced on L3(T)* by L3(T). Thus, if W+ @, the latter closure
of W is by Corollary 1A the direct sum of W and a certain “singular
cone.” A different version of this result will be given in Corollaries 5B
and 5C.

Another important case of Corollary 1A occurs when C is all of
L7(T). We shall cover this case in a slightly stronger way (by
avoiding a direct summability assumption on f*) in Corollary 2A.

COROLLARY 1B. Under the hypothesis of Theorem 1, an element
ve Ly(T)* belongs to the subgradient set 0l.(u) if and only if (1.12)
holds, where u* is the function in LL(T) corresponding to the “abso-
lutely continuous” component v, of v as in (2.1), and the “singular”
component v, of v attains its maximum over the convexr set C in (2.5)
at the point u.

Proof. In view of formula (2.4) and the general inequalities

I7(v) =z v(u) — I;(u) ,
05(v) = v(u) if T(u) < +oo,

which follow from the definitions, relation (1.13) holds if and only if
(1.11) (or equivalently (1.12)) holds, and, at the same time, the
supremum in (2.3) is attained at the given point u.

THEOREM 2. Assume that #we L3(T) and r > 0 have the property
that f(t, w(t) + x) ts a summable function of t whenever (x| < r, x e R
Then f*(t, u*(t)) is majorized by a summable function of t for at
least one uw* e LL(T), so that the hypothesis of Theorem 1 1is satisfied.
Moreover, in this case I, is continuous (in the L3(T) morm) at u
whenever ||u — u|| < r, and in formula (2.4) one has

(2.13) 05 (ve) = v(@) + 7| vl .
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Proof. Let ' be any number in the open interval (0, r). Let
x,, +++, 2, be elements of R" with |z;| <7, such that the convex hull
P of {x, -+, z,} includes every x such that |x| < +'. Let

Then k is summable on 7. If we R" satisfies |w — %(t)| < ' for a
certain ¢, then w — #(f) e P, and there exist nonnegative real numbers
Ay, *++, A, such that A, + <+« 4+, = 1 and

w = M) + ;) + oo 4+ N (U(E) + 2,) -
The convexity of f, then implies
(2.14)  f(t, w) = MS(E, TR + ) + 200+ NS ult) + x) S k()
Thus, whenever u ¢ L,(T) satisfles ||u — #|| < v, we have
(2.15) S, u(t)) < k() for almost every ¢ .
Now for each ¢ let Q(t) = 9f,(%(t)), in other words,
(2.16) Q) = {x* e R™| f*(t, x*) = {u(t), 2*> — f(t, u(t))} .

Since f, is finite on a neighborhood of #%(t) in R*, Q(f) is nonempty
compact convex set whose support function is given by

05n(7) = max {Cx, ©*)[@* € QD)) = f(¢t, u(t); v)
(2.17) = 1)131 [F@, a@t) + o) — f(E, w@)]/>

< ft, at) + x) — f(t, %)

[15, §23]. Since the limit of a sequence of measurable functions is
measurable, formula (2.17) implies that d},,(x) is for each fixed x a
(finite) measurable function of ¢. It follows then from [17, Theorem
3] that the multifunction Q:¢— Q(t) is measurable in the sense of
Castaing [2]. According to a selection theorem of Kuratowski and
Ryll-Nardzewski [8] (quoted as Corollary 1.1 in [17]), there exists a
measurable function »*: T— R"™ such that «*(¢) ¢ Q(¢) for every t. In
view of (2.17) and the fact that f(t, w) < k() if |w — u(@®)| < 7', we
have

Qu*(t), x) < 06w (w) < k(E) — f(E, a(t))
whenever || < 7'. Therefore

(2.18) 7' [u*() | = sup I<u*(®), 2y | = k() — f(2, () .

Since k& and f(-, #(-)) are summable, we may conclude from (2.18)
that w*e LL(T). Furthermore, according to the definition (2.16) of
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Q(t), u* satisfies
S, w (@) = <u(), w*@)> — f(, u(t)) -

Thus f*(-, w*(+)) is summable, and the hypothesis of Theorem 1 is
satisfied by this #* and the function #.

In particular, I; is a well-defined convex functional from LZ(T)
to R'U {+}. If welLy satisfies ||u — %|| < ¢, then (2.15) holds,
so that I;(u) < a, where

a = kit < +eo .

Therefore I, is bounded above on a neighborhood of u, if ||u — #|| < 7/,
and it follows that I, is continuous at every such we L3(T) [1,
Chap. 2, p.92]. Of course, ' was any number such that 0 < <,
and hence we may conclude that I, is finite and continuous at wu, if
lu — #|| < r. In particular, ||u — %|| < r implies that u e C, so that

90(v,) = sup {v,(w) | u e C}
= sup {v,(u) | l|w — #l| <7} = v,(@) + 7ol .

Theorem 2 is thereby proved.
The following corollary generalizes Theorem 4 of [16], where we

imposed the more restrictive condition that f(¢, #) be (finite and)
essentially bounded as a function of ¢ for every xe R".

COROLLARY 2A. Assume that f(t,x) is a summable function of
teT for every xe R". Then I, on Ly(T) and I, on Li(T) are well-
defined convex functionals conjugate to each other with respect to the
pairing (1.5), and I, is finite and continuous throughout Li(T).
Furthermore, the conjugate function I} on L3(T)* reduces to I;. on
L.(T), in the sense that

I7(v) = In(u¥)

if v s an “absolutely continuous” functional corresponding to a
Sumnction u* e LL(T), while I}(v) = + oo for every other v.

Proof. The hypothesis of Theorem 2 is satisfied in this case
with #(t) = 0 and r arbitrarily large.

COROLLARY 2B (Weak Compactness). Let g be a normal convex
integrand on T x R™ whose conjugate g* has the property that g*(t, y)
is summable in t for every ye R". Then I, is a well-defined convex
Sunctional from L,(T) to R'U {+ o}, not identically +co. Moreover,
for every ae Ly(T) and ae R' the convex level set
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(2.19) fue LL(T) | [(w) + <u, &) + a < 0}

is weakly compact (that is, compact with respect to the weak topology
wnduced on L, (T) by L3(T)).

Proof. Let f=g*, Then g = f* and Corollary 2A may be
applied. Let ae L3(T) and e R'. Since I; is continuous at a, the
set

(2.20) {fve Ly(T)* | IF(v) + v(a) + a < 0}

is weak* compact in L3(T)*. According to a result proved simultane-
ously by J. J. Moreau [11] and the author [19]. In view of Corollary
2A, the set (2.20) can be identified with the set (2.19). The weak
topology on the space L.L(T), regarded as a subspace of Ly(T)*, is
the restriction of the weak* topology on L3(7T)*, and hence the set
(2.19) is weakly compact in L.(T).

REMARK. Corollary 2B can also be derived, using special convexity
arguments, from the Dunford-Pettis criterion for weak compactness
in LY(T). This has been shown recently by Valadier [22, p.14-16].
Still another method of proof can be based on the lemma of Olech
[13, 14] which is discussed below (see the remark following Corollary
5D). If T is a compact subset of R™ and dt¢ is Lebesgue measure,
Olech’s lemma, slightly generalized, can be applied to the epigraphs
Q(t) of the functions ¢g(¢, -), and one can deduce in this way that the
set (2.19) is compact relative to the weak topology on L.(T) induced by
the elements of L3 (T) corresponding to continuous on 7. Corollary 2B
itself can be obtained by an extension of this argument, if dt is
replaced by an equivalent finite measure, and LZ(T) is identified with
a space of continuous functions on a compact space T as described at
the beginning of this section.

COROLLARY 2C. The subgradient formula given in Corollary 1B
18 also valid if there exists a function %e L3(T) satisfying the hy-
pothests of Theorem 2. Moreover, for every such % the subgradient
set 0I(u) may actually be identified with a nonempty, weakly compact
subset of L.L(T): a functional ve Ly (T)* belongs to 0l,() if and only
if the “singular” component of v wawishes, and function uw*e L,(T)
corresponding to v satisfies (1.12).

Proof. The first assertion follows from (2.4), just as in the
proof of Corollary 1B. The second assertion is obvious from (2.13)
and the fact that, since I, is finite and continuous at % by Theorem
2, the set 0I,(#) is nonempty and weak* compact in L3(T)* [10].
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3. Application to spaces of continuous functions. Henceforth
we assume that 7 is a o-compact, locally compact Hausdorff space,
that 7~ is the o-field of Borel sets, and that d¢ is a (nonnegative)
regular Borel measure on .. (The theorems below, and their corol-
laries, remain true if .7~ is replaced by its completion relative to dt,
although the wording of the proofs then needs to be changed slightly.)
We denote by C,(T) the space of all continuous functions u: T — R™
vanishing at <o, under the norm

lui] = max {[u(®)| | te T} .

The dual of the Banach space C,(T) is identified as usual with M, (T),
the space of all finite, regular, R"-valued Borel measures on 7. Un-
less otherwise stated, the absolute continuity or singularity of a
measure in M,(T) refers to its relationship to the measure dt.
Suppose I, is well-defined on L3(T). Then the functional

3.1) T = | ft, wwyde,  wec,r),

is also well-defined and, being a convex functional on C,(T), it has
a certain conjugate on the space M,(T), namely the convex functional
J# defined by

3:2) I3 = sup{| w(tydp — | b, we)dt |ue CAT}, pre MA(T) .

Our aim is to derive a formula for J} from the formula for I on
Lz(T)*.

Let A be the mapping which assigns to each function we C,(T)
the corresponding equivalence class in L3(T). The adjoint of A is
the linear transformation A* which assigns to each ve L}(T)* the
unique measure e M,(T) such that

v(Au) = S udp, u e Co(T) .
T
Regarding I, as a functional defined for equivalence classes, rather
than individual functions, we have
Jr=IA (composition) .

Therefore J* can be obtained from I and A* by the following
general result, which is a corollary of theorems proved in [18] and
basic facts about conjugate functions (for the finite-dimensional case,
see [15, §16]).

THEOREM 3. Let F and G be arbitrary, locally convex Hausdorff
topological vector spaces with duals F'* and G*. Let g be a lower
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semicontinuous convex function from G to R'U {+ =}, and let g* be
the conjugate of g on G*. Let A be a continuous linear tramsfor-
mation from F to G, and let k= gA. Let A*g* be the convex
Sunction on F* defined by

3.3) (A*g*)(y*) = inf {g*(2*) | A*2* = y*},

(where the infimum is + oo by convention if {2* | A*2* = y*} is empty).
If k 1s mot identically + oo, the convex function k* on F* con-
jugate to k is given by

(3.4) k*(y™) = lim inf (A*g™)(y?) ,

where the limit is taken over all mets converging to y* in the weak*
topology (or any other topology on F'* compatible with the duality
between F and F*). If there is a point in the range of A at which
g 1s finite and continuwous, them k* = A*g*, and the infimum in
(3.3) is attained for each y* such that the set in (3.3) is monempty.

Proof. Since g is lower semicontinuous, ¢ is in turn the con-
jugate of g*, in other words

g(z) = sup {z*(2) — g*(z*) | 2* € G*} .
It follows from this that

9(Ay) = sup {(A*2*)(y) — g*(z*) | z* € G*}
= sup {y*(y) — (A*g*)(v*) |y* e F*} .

Therefore the function & = gA is the conjugate on F of A*g* on F*.
If & is not identically + <o, we may conclude from the fundamental
theory of conjugate convex functions [10] that k* is the lower semi-
continuous hull of A*g* so that k* is given by (8.4). If ¢ is finite
and continuous at some point of the range of A, we obtain the
formula
k*(y*) = sup {y*(y) — 9(Ay) [y e F}
= min {g*(z*) | 2* € G*, A*z* = y*}

from the special case of Theorems 1 and 3 of [18] in which the
function f in those theorems is taken to be the linear functional y*.

COROLLARY 3A. Under the hypothesis of Theorem 3, if there
is a point of the range of A at which g 1is finite and continuous,
then for every ye F the subgradient set ok(y) C F'* is the tmage of
the subgradient set dg(Ay) in G* under the transformation A*.

Proof. The inequalities
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E*(y*) = y*() — k(y) ,
g*(z*) = 2*(2) — 9(2) ,

hold by definition, with equality if and only if y* € 0k(y) and z* € 9¢(z).
On the other hand, here we have

k(y) = g(Ay) ,
k*(y*) = min {g*(z*) | z* € G*, A*2z* = y*} .
Thus y* belongs to ok(y) if and only if there exists a z* e G* such
that 4*z* = y* and

g*(z*) = (A*2*)(y) — 9(Ay) = 2*(Ay) — g(Ay) ,
that is, 2* ¢ dg(Ay).

THEOREM 4. Assume that e C,(T) and r > 0 have the property
that f(t, w(t) + x) 1is a summable function of t whenever |x| <,
xeR*. Then J, is o well-defined, lower semicontinuous, convex
Junctional from C,(T) to B' U {+ <}, and J; is finite and continuous at
every we C,(T) such that ||u — #|| < r. Furthermore, J¥ on M (T)
satisfies

g 70 = min Lndudy) + 03(x — )] ¢ € M(T) abso. contin)

> STW” — J @) + v,

where v 1is the singular component of t and

(3.6) E={ueCyT)|Ju) < +oo} .

Proof. The first assertion is clear from Theorem 2. (I, is lower
semicontinuous on L;(T), since (1.7) holds for p = « and ¢ =1).
To prove (3.5), we apply Theorem 3 with F = C,(T), G = Ly3(T), and
A taken to be the canonical mapping from C,(T) to L3(T) described
at the beginning of this section. This yields the fact that

- TH() = (LA () = AT (1)
| = min {I#(v) | ve L3(T)*, A*v =y} .
Using the formula (2.4) for I, we can rewrite the last expression as
min {I.(w*) + 05(v,) |ve Ly(T), A*v = 1},

where w* e LL(T) corresponds to »,. Of course A*v, = t/, where ' is
the absolutely continuous measure in C,(7') with dg¢//dt = w*. Thus

(8.8)  JH(¢) = min {I..(dg/dty + K(pe — )| ' € C,(T) abso. contin.},
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where
K(pe — ') = min {6%(w) | we L3(T)* singular, A*w = ¢ — '} .

Here the singularity restriction on w can be omitted without affecting
the value of K; this follows from (3.2) and the fact that for any
u e C,(T), any absolutely continuous ' e M, (T), and any we L3(T)*
with A*w = ¢ — ¢/, we have

STu(t)dy — STf(t, w(®)dt = <Au, dJdt> — T(Au) + w(Au)
= I.(der'/dt) + 64 (w) .

‘We now apply Theorem 3 again, but with I, replaced by the indicator
function d,. Our hypothesis implies that A# is an interior point of C,
so that d, is finite and continuous at a point belonging to the range
of A. Since 0z(u) = §,(Au), we therefore have

D3t — 1) = (BoA)(it — ) = (A*03)(1t — 1)
— min {33(w) | we LI(T)*, A*w = 1 — g1} = Kt — 1) .

Thus 0% can be substituted for K in (3.8), and this establishes the
desired equality (3.5).
To get the inequality in (3.5), we note first that the inequality

1.apejar) = | <a, dpejanya - | s, w)ar

holds for any absolutely continuous ¢ M,(T). On the other hand,
we have

o8 — ) = | wdlp — 1) + il — 2]

because uwe F whenever wcC,(T) and ||u — #|| < r. Adding these
inequalities, we see that

(3.9 L@t + o5 — ) = | adg = T + ol — ]

for every absolutely continuous g'. The inequality in (3.5) follows
from the equation in (3.5) when both sides of (3.9) are minimized
with respect to /.

COROLLARY 4A. Assume that f(t, x) is a summable function of ¢
for every xe R*. Then the functional J, on C,(T) is well-defined,
finite, continuous and convex. The conjugate functional JF on M, (T)
18 given by
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(3.10) T = | o, apanat

if pe M,(T) s absolutely continuous, whereas JF () = +oco if p s
not absolutely continuous.

Proof. The hypothesis of Theorem 4 is satisfied for 7u(t) =0
and every r > 0. Then d}(¢t— p) is + oo if ¢/ 5+ g and 0 if ¢/ = pe.

COROLLARY 4B. Under the hypothesis of Theorem 4, a measure
re M (T) belongs to the subgradient set 0J:(w), where we C,(T), #f
and only if there exists an absolutely continuous measure p' e C,(T)
satisfying

(3.11) %(t) ¢ of,(u(t)) for almost every t,

such that the linear functional on C,(T) corresponding to p — p
attains its maximum over the set E at u.

In fact, if u has the property that the function f(t, u(t) + x) is
summable in t for every x in some neighborhood of 0 in R™, then the
set 0J(u) is nonempty and weak* compact in M(T), and it consists
of all the absolutely continuous measures [t satisfying

3.11) %ut—(t) € of,(u(t)) for almost every t.

Proof. This is obtained from formula (8.5) by an imitation of
the proofs of Corollaries 1B and 2C.

ExampLE. Let T be compact (and hence of finite measure), and
let @ be the continuous, real-valued, convex functional on C/(T)
defined by

(3.12) D(u) = logﬂ e0dt,  weC(T) .

The convexity of ¢ is clear from the fact that

(3.13) o) = —1 + min{J(u + a) — alaec R},

where f is the (normal) convex integrand on T x R' given by
(3.14) ft,x) =e .

What is the functional on M (T) conjugate to #? From (3.18) and
the definition of the conjugate functional @*, we have
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o*(¢) = sup {gTud;t — q)(u)}

ue 0y (T)

=1+ sup supl{STudp — J(u + a) + a}

ueCy(T) acR

=1+ sup sup {&T(u’ — a)dp — J (') + a}

aeRY u’ e0(T)
— 1+ supa[l — p(T)] + sup {S wdp — Jf(u')} :
aeR! u’ €0 (T) T
and consequently

o*(p) =1+ JF(p) if (T) =1,

(3-15) = oo if (T)#1.

We now calculate J* from Corollary 4A. The integrand conjugate
to f is given by
f*(¢, x*) = a*(loga* — 1) if x* > 0
(3.16) =0 if z* =0,
= 4o if 2*<O0.

Therefore J}(#t) = + o, unless ¢ is nonnegative and absolutely con-
tinuous, in which case

JE(e) = | p(®)llog p(t) — 1at
(3.17) !
= | »(t) log pit)at — (1),
where p = dy/dt (0 log 0 interpreted as 0). It follows that

O* (1)

[l

g () log p(t)dt if pe P, p = dyjdt
3.18 ’
(318) = 4o if pgP,

where P is the set of all absolutely continuous probability measures
in M(T). The integral

(3.19) [, (0 log [Lp(®lat = —| p(t) log p(t)at ,

where p is a probability density, plays an important role, of course,
in information theory and statistical mechaniecs.

We note, incidentally, that the set of probability density functions
p satisfying

[0 log [1/p(t1at = «
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is for each real number o a weakly compact convex subset of Li(T).
This is seen by taking ¢ in Corollary 2B to be the normal convex
integrand f* in (3.16).

REMARK. Theorem 3 and Corollary 8A can also be used to derive
from the results in § 2 various theorems concerning the “continuous™
infimal convolution of convex functions, as studied by Ioffe and
Tikhomirov [6, 7] and Valadier [22]. In this case one takes ¥ = R"
and G = L3(T), and A is the mapping which assigns to each ze¢ R
the corresponding constant function w(¢f) = x in L3(T). Then I;A =
@, where

P(x) = STf(t, x)dt, re R"™.

4. Integral representation of the singular component. The
formula for JF in Theorem 4 can be improved in cases where a
special expression is available for d3. When the multifunction

D:t— D(t) = {xe R* | f(t, x) < + o}

is suitably well-behaved (see below), such an expression can be given
in terms of integrals of the recession function of f*. The latter is
by definition the function 2 on T x R" such that

(4.1) It w) = lim [F5(2, @* + M) — £5(t, @*)]/n
2 +oo

whenever x* ¢ R* satisfies f*(¢, %) << + . The fact that f*(¢, -) is

a lower semicontinuous, convex function, not identically -+ oo, implies

that h(¢, -) is a well-defined, lower semicontinuous, positively homo-

geneous, convex function from E” to R'U {+ -}, vanishing at 0 [15,
§ 8]. Indeed (¢, -) is the support function of D(¢):

(4.2) h(t, w) = 05 (w) = sup K2, w) | v e D(t)}

[15, Theorem 13.3].

LEMMA 1. The recession function h of f* is a mormal convex
wntegrand on T <X R™.

Proof. Since f is a normal convex integrand, the multifunction
t—G(0) = {z,0) | f(t, ) < a < o}

is measurable from ¢ to R"™* [17, Theorem 3], and hence there exists
a countable collection of measurable functions
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t — (z:(t), as(t)), iel,
such that G(¢) is the closure of

{(x:(8), ai(?)) [1e I}

for each ¢ [17, Theorem 1]. Then the set {x;(t)|ie I} is a dense
subset of D(t) for each ¢. From (8.11) we have

h(ty ’Zl)) = Sup <xz(t)s w> ]
1el
and this implies the normality of 2 [17, Theorem 4].

COROLLARY. If there exists a bounded, measurable function wu
such that w(t) € D(t) for every t, then the integral

STh(t, w(t))do

is well-defined for every monmegative measure 0c M,(T) and every
measurable function w: T — R™ summable with respect to 6.

Proof. One has h(t,0) = 0 and A*(¢, u(t)) = 0, so that the inte-
gral I, on the L! space associated with ¢ is well-defined by [16,
Theorem 2].

To state the main result of this section, we recall that the
multifunction D: ¢ — D(t) is said to be lower semicontinuous from T
to R" if, whenever U is an open subset of R™ and ¢, is an element
of T such that D(t) N U == @, there exists a neighborhood V of ¢,
such that D) N U = @ for every tc V. We shall say that D is
Jully lower semicontinuous if D is lower semicontinuous and, in ad-
dition, one has z,¢cl D(t,) whenever there are neighborhoods U and
V of %, and ¢, such that the set {te V| D(t) D U} is dense in V. If
the multifunction ¢ — cl D(t) is upper semicontinuous (that is, the set
{(¢, ) | x € el D(t)} is closed in T X R"), lower semicontinuity of D implies
full lower semicontinuity. In particular, D is fully lower semicon-
tinuous if cl D(t) is a fixed set independent of ¢.

THEOREM 5. Assume that T is a compact space with no nonempty
open sets of measure zero, and that the multifunction D:t— D(t) is
Jully lower semicontinuous, with int D(t) = @ for every t. Assume
Surther that

|17t o)t <+

whenever V is an open subset of T and x is a point of R having a
netghborhood U such that U c D(t) for all te V.
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Then J; is a well-defined, lower semicontinuous, convex functional
SJrom C(T) to R* U {+}. The convex set K in (3.6) has a nonempty
interior consisting of the functions ue C,(T) such that

(4.3) w(t) € int D(t) for all te T,

and J; is continuous on this interior. Furthermore, J¥ on M,(T) s
given by the formula

(4.4) HOE S F*(¢, dpjdt)dt + STh(t, dv/d6)de ,

where h 1s the recession function of f*, v is the singular component
of with respect to dt, and 6 is any nonnegative measure in M(T) with
respect to which v is absolutely continuous.

The proof of Theorem 5 uses the following characterizations of
lower semicontinuity and full lower semicontinuity, as well as an
auxilliary representation theorem, stated below as Theorem 6.

LEMMA 2. Let D:t— D(t) C R" be a multifunction such that D(t)
18 for each t a convex set with int D(t) = &, and let

(4.5) G = {(t, ) |zeint D(t)) c Tx R*.

(@) D 1is lower semicontinuous if and only if G = int G;
(b) D is fully lower semicontinuous if and only if G = intcl G.

Proof. (a) Suppose that D is lower semicontinuous, and let
x,€int D(¢,). It is possible to choose open subsets U; of D(t), ¢ =
1, -+-, m, such that the set
(4.6) U =int N cofx, -+, x,}

z,elUj;
is a neighborhood of xz,. Since D is lower semicontinuous, there are
neighborhoods V; of ¢, such that D) N U; = Q for te V. Let V=
V.n -+ NV, For tcV we can find points z,¢c D(t) N U; for © =
1, ---, m, and then

Dit)yocofz, ++-,z,} 2 U,

the first inclusion holding because D(t) is convex. Thus V x U is a
neighborhood of (¢, #,) in G, and we may conclude that G is open.
Conversely, suppose that G is open. Let U be an open set such
that D(t) N U = @. Since D(t,) is convex and has a nonempty in-
terior, there is a point @, in [int D(¢,)] N U. The open set G N [T x U]
contains (f, %,), and hence it contains (¢, #,) for all ¢ in some neighbor-
hood of #,, Thus there is a neighborhood V of ¢, such that DN U = &
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for every te V. This shows that D is lower semicontinuous.

(b) Suppose that D is fully lower semicontinuous. Then G = intG
by (a), so that to prove G = int cl G it suffices to prove that G DintclG.
Let (t, x,) €intcl G. We can find points z, «--, 2, in R” such that

x,€intecofz, <, 2.},
(t, z;)eint el G for all ¢ .

Then we can choose open neighborhoods U,; of z; and V of ¢ such that
V x U;cecl G and the set U in (4.6) is a neighborhood of x,. The set

is dense in V because V x U,cel G, and V; is also open by the lower
semicontinuity of D. Since the intersection of a finite family of open
dense subsets of V is again dense in V, the set

V' ={teT|D®)NU, %= @ for i =1, -+, m}

is dense in V. Of course D(t) DU for te V', as already argued in (a).
Thus V X U is an open set such that {te V| D(#) DU} is dense in V,
and it follows from the definition of full lower semicontinuity that
x,ecl D(t) for every z,¢ U and t, ¢ V. In particular U C cl D(¢,), and
since D(t,) is convex this implies %, € int D(t,), i.e., (£, %) € G.

We assume now that G = intel G, and we prove from this that
D is fully lower semicontinuous. Our assumption implies of course that
G is open. Therefore D is lower semicontinuous by (a). Let (¢, @)
have an open neighborhood V x U such that the set {te V|D({) DU} is
dense in V. Then V x UcelG, so that V x UcintelG = G. Thus
(%, %) € G and a fortiori x,€ cl D(t). Therefore D is fully lower semi-
continuous.

Proof of Theorem 5. First we show that there exist functions
w € C,(t) satisfying (4.3). Suppose that ¢, is any point of T, and that
x, € int D(¢;). The multifunction ¢ —cl D(t) is lower semicontinuous,
since D is, and hence by E. Michael’s theorem on continuous selections
[9, Theorem 3.2] there is a function w e C,(T) such that u(¢) = x, and

4.7) u(t)eel D(t) for all teT.
Then for some neighborhood V of ¢, we have
(4.8) u(t) € int D(t) for all te V

by Lemma 2(a). Thus T can be covered by a collection of open sets
V, for each of which there is a function u € C,(T) satisfying (4.7) and
(4.8). The compactness of T allows us to extract a finite subcovering
Vi, -+, V.. Let
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= (1/m)(u, + - + uy) ,

where u,; € C,(T) satisfies (4.7) and (4.8) for V,. For each ¢ the points
u;(t) all belong to cl D(t), and at least one belongs to int D(¢). From
the convexity of D(t) we therefore have wu(z)cint D(t), so that w
satisfies (4.3).

We demonstrate now that, if u satisfies (4.8), the function f(¢, u(t))
is summable in te T. Let ¢, be any point of T. Since u(t,) € int D(t,)
and D is lower semicontinuous, there exist by Lemma 2(a) a neighbor-
hood V of t, and an » > 0 such that [u(t,) + z]e€int D(f) whenever
teV and |x| < 7. Then, according to the hypothesis of the theorem,
f @&, u(t) + x) is summable in t€ V whenever |z| <7r. Let S be a
closed neighborhood of ¢, S V, such that |[u(f) — u(t,)| < » for te S,
such a neighborhood exists because T is compact and « is continuous.
The hypothesis of Theorem 4 is satisfied with T replaced by S and
w(t) = u(t,), and from the fact that |ju — @ || <» in C,(S) we may
conclude that f(f, w(f)) is summable in te€ S. Thus each point ¢, of T
has a neighborhood S over which the function #— f(¢, u(t)) is sum-
mable. T can be covered by a finite number of such neighborhoods,
because of compactness, and therefore f(¢, u(¢)) is summable in ¢e T
as claimed.

Observe next that each w € C,(T) satisfying (4.8) actually possesses
the stronger property that, for some » > 0, one has

4.9) [u(t) + x]€int D(t) for all x such that (2| < r.

This follows from Lemma 2(a). In this event f(¢, u(t) + ) is summable
in te T for |z| < r, as we have just proved. Thus the hypothesis of
Theorem 4 is satisfied if the @ in that hypothesis is taken to be any
function satisfying (4.3). In this way we obtain the fact that J, is
a well-defined, lower semicontinuous convex functional from C,(T) to
R' U {+ o} such that J; is finite and continuous at each element u
of C.(T) satisfying (4.3).

Our next step is to show that the functions satisfying (4.3) con-
stitute the interior of the set £ in (3.6). They are certainly contained
in int E by the above. On the other hand, let # be a function int E.
Then there is an » > 0 such that f(¢, u(f)) is summable in te T for
every ueC,(T) with |ju — %} <r. Fix any t,eT. Let x, ---, @,
be elements of R" such that |x;| < » and

(4.10) i(t,) € int co{@(t,) + @, = -+, W(t) + T} -
Since # is continuous, there is a neighborhood V of ¢, such that the set

(4.11) U =int N co{@(t) + =, -, u(t) + 2.},

teV
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is a neighborhood of #%(t). We have f(¢, #(t) + »;) summable in te T
because || (@ + x;) — % || < r, so that f(¢, w(¢) + ;) is finite for almost
every t. Thus the set

(4.12) {te Via() + x;€ D(t) for 1 =1, «-+, m}

has complement of measure zero in V. In view of our hypothesis
that T contains no nonempty open sets of measure zero, the set (4.12)
must be dense in V. Of course, if ¢ belongs to (4.12) we have

D(t) Dcola(t) + x, «++,u(t) + x,} DU .

Thus the set {te V|D(t) DU} is dense in V. Since Vx U is a
neighborhood of (¢, #%(%,)), this implies that #%(z,) € int D(¢,), because D
is fully lower semicontinuous. Here ¢, was any point of T, so it follows
that # satisfies (4.3).

Using these facts, we now show that the desired formula (4.4)
for J} can be reduced to a more special representation result, which
we establish separately below as Theorem 6. Let

K ={ueC,T) |ut)ecl D(t), vte T} .

Clearly u belongs to int K if and only if « satisfies (4.3), and thus,
by what we have just proved, int £ = int K. Therefore 65 = ¢}, and
the formula in Theorem 4 gives us

(4.13) J}(¢) = min {I.(dg'/dt) + 65(ze — ) £ € M(T) abso. contin.}

Theorem 6 furnishes an integral representation of 6% which can be
substituted in (4.13):

(4.14) 0 — 1) = | dto e — pryjaonas

where Q(t) = ¢l D{t), and ¢ is any nonnegative measure in M(T)
with respect to which g — g/ is absolutely continuous. Since p is
absolutely continuous with respect to d¢, we can take df#’ be of the
form dt + df, where 0 is an arbitrary, singular, nonnegative measure
in M,(T) with respect to which the singular part v of y is absolutely
continuous. By virtue of (4.2) and the fact that o}, = 0%, the
right side of (4.14) then becomes

(4.15) STh(t, dpejdt — dpejdtydt + STh(t, dy/dg)do .

The second integral here actually remains unchanged if 6 is replaced
by a measure which is not singular. Thus if 6 is an arbitrary, non-
negative measure in M(T) with respect to which v is absolutely
continuous, the expression (4.15) gives o%(¢t — o). Substituting this
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in (4.13), we see that
JF() = min {I.(w*) + L,(dp/dt — w*) | w* e LL(T)}

(4.16) v STh(t, dv/d6)do .

The proof of formula (4.4) is completed by the observation that
SH(E, w (@) + h(¢, dpefdt — w*(t))

= [, w () + (dy/dt — w*(t)) = F*(¢, u* () ,
since & is the recession function of f* [15, Corollary 8.5.1], and hence

(4.18) Lu*) + L(dp/dt — u*) = I.(d/dt)

(4.17)

for every w*e L\(T).

ExXAMPLE. Let v be an atomic measure in M, (T) assigning
“weights” a; € R" to the points ¢; for 1€ I (a finite or countable index
set). Under the hypothesis of Theorem 5, if the points ¢; have
measure zero with respect to d¢, one has

Jrw) = —inf {J,(u) |ue C,(T)} + g} h(t;, a;) .
This is seen, for instance, by taking ¢ to be a probability measure

in M,(T) such that 0(¢;) > 0 for every te I. Since v is singular with
respect to ¢, one has

Tre) = | £, 0dt + 3 it 0t)~ o)
by formula (4.4). On the other hand, one has
|, £*(t, 0t = J7(0) = —int (Jw) |ue CT))

by (4.4) and the definition of J#, while
h(ti, 0(ti)_lai) = ﬁ(ti)—lh(ti, al)

by the positive homogeneity of the recession function 4.
We proceed now to establish the auxilliary representation theo-
rem that was employed in the proof of Theorem 5.

THEOREM 6. Assume T is compact. Let Q: T— R™ be a lower
semicontinuous multifunction such that Q(t) is for every t a non-
empty, closed convex set. Let f, = f(t, -) be the indicator of Q(t), so
that f* s the support function of Q(t), and let

(4.19) K = {ueCyT) | u®) e Qt), vte T} .
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Then K is a nonempty closed convex subset of C.(T), f and f* are
normal convex integrands on T x R™ and the support function of K
on M,(T) is given by the formula

(4.20) o) = | (¢, dpyidoyds, pee MAT)

where 0 1s any nonnegative measure in M(T) with respect to which
o 15 absolutely continuous.

Proof. It is obvious that K is closed and convex, and the non-
emptiness of K is asserted by the selection theorem of Michael [9,
Theorem 3.2]. To show that f and f* are normal convex integrands,
it suffices by [17, Theorem 3] to show that the multifunction @ is
measurable. The measurability of @ follows in fact from lower
semicontinuity, as has been observed by Castaing: for any closed set
W < R*, one has

teTIQON W= 2} =U QfteTIQW N W #0},

where W™ is the open set defined by
Wi = {ze R*3z€Q), [2| =k, |z — 2| <1/m} .

The sets {te T | Q) N W = &} are open, because @ is lower semi-
continuous, and hence {te T | Q(t) N W = &} is a Borel set.

Fix any p¢ and 6 as in the theorem. The functions f(¢, u(f)) and
f*(t, w(t)) are summable with respect to ¢ for any € K and w = 0,
so that I, on L3(T, .75 6) and I on L\(T, .7, §) are convex functionals
conjugate to each other. This implies in particular that

I.(dpe/dl) = sup {u, dpe/d0>, — I(w) | ue LT, 75 0)},

or, in other words,

S F(t, (de/do)(t)do = supg Cu(t), (dpe/dd)(t)>do
(4.21) T ue K T

= sup | <u), @an)(eyyas ,
wekK JT
where K’ is the set of all bounded, measurable functions w: 7 — R”

such that w(t) € Q(t) for every ¢.
On the other hand, let w,€ K’ and a < R* be such that

(4.22) a < | <u), @piaoyeyyao = | wp.

We shall construet a w e K such that
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a < | <utt), @manoydo = | wap,

and this will prove the theorem.
Let B > 0 be large enough that |u,(f})] < g for every ¢. Choose

any & > 0 such that
(4.23) a< S udpt — 28 .
T

There exists by Lusin’s Theorem a compact set S T, such that u,
is continuous relative to S, and

(4.24) Lup/dm o < ¢, 8" = T\S.

Let @: T — R™ be the multifunction defined by

Q1) = {uw ()} if teS§,
={zeQ@) |zl < g} if teS.

Then Q'(t) is for every ¢ a nonempty, convex set, ze @'({) implies
|z2| < B, and the multifunction cl Q': ¢ — cl Q'(¢) is lower semicontinu-
ous. (To see the latter, let U be any open set in R”, and let U,
be the open set consisting of all # € U such that |z| < 8. Then

{teT|UneclQ) # O}
={teT|IUNQT) + @}
={teT| QW) N U, = @\{teS]|u(t)e U} .

The latter set is open because @ is lower semicontinuous, S is closed,
and u, is continuous relative to S.)

In view of the lower semicontinuity of ¢l @', there exists by Michael’s
Theorem [9] a function u e C,(T) such that w(¢) € cl Q(¢) for every t.
In particular we K, ||u|] £ B, and u agrees with u, on S. We then

have
g udgt = S wuedpt + g (w — wp)dpe
T T S’
> S Uodpt — 23§ \dp/do|do > a
T S’
by (4.23) and (4.24).

REMARK. Another refinement of Theorem 4, differing somewhat
from Theorem 5, can be obtained by applying Theorem 6 to the
epigraph multifunction

Q:t—epif, = {(x,0) e B* X R'|a = f(¢, 9)} ,
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provided that this multifunction is lower semicontinuous and T is
compact. The support function of epif, can be expressed in terms
of f* and its recession function ki, as is well known, and this again
yields formula (4.4).

5. Corollaries of the representation theorems. We now intro-
duce some terminology for the purpose of stating a corollary of
Theorem 5 about subgradients.

Let N: T— R™ be a multifunction such that N(¢) is for each ¢
a convex cone containing the origin. A measure ve M, (T) will be
called N-valued, if one has (dv/df)(t) e N(t) except for a set of 6-
measure zero, where 6 is a nonnegative measure in M,(T) with
respect to which vy is absolutely continuous. (Note that this defi-
nition does not depend on the particular 6, inasmuch as N(t) is closed
under multiplication by nonnegative scalars.) We shall be interested
in the case where, for each ¢, N(t) is the nmormal cone [15] to the
convex set cl D(t) at a point wu(¢) € cl D(¢), in other words,

(5.1) N(t) = {z* e R" | {x — u(t), z*> < 0, Vx e D(t)} .

COROLLARY 5A. Under the hypothesis of Theorem 5, a measure
preM,(T) belongs to the subgradient set 0J:(u), where we C,(T), if
and only if dp/dt satisfies (3.11'), u(t) belongs to cl D(t) for every ft,
and the singular component v of p is N-valued in the above sense,
where N(t) is the normal cone (5.1) to cl D(t) at wu(t).

Proof. If 0J,(u) is nonempty, then w belongs to the convex set
E, and consequently

(5.2) u(t) ecl D(t) for every ¢,

because the interior of E is nonempty and consists of the functions
satisfying (4.3). Since the inequalities

(5-3) S, (dpfdt)(t) = <w(t), ([dp/di)(6)y — F(E, u(?))
(5.4) h(t, (dv/dO)(t)) = <u(t), (dv/dO)(t)>

hold by (1.4) and (4.2) for any function w satisfying (5.2), we see
from formula (4.4) that a measure g belongs to 0J.(u), i.e., satisfies

T = | wdp = I,

if and only if (4.7) is true, (5.3) holds with equality except for a set
of (dt-) measure zero, and (5.4) holds except for a set of f-measure
zero. Of course, equality in (5.3) means that (du/dt)(t) is a sub-
gradient of f(¢, -) at w(¢). Equality in (5.4) means (for u(t) € cl D(z))
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that (dv/df)(t) belongs to N(t), inasmuch as hk(t, -) is the support
function of D(t) by (4.2).

To state a corollary of Theorem 5 which characterizes the weak*
closures of certain convex sets of measures, we recall that the re-
cession cone of a convex set C in R"™ is by definition the set of all
vectors y € R" such that C + y <= C [15, §8]. (Some authors call this
the asymptotic cone of C.)

COROLLARY 5B. Let Q: T— R™ be a measurable multifunction
such that Q(t) is for each t a mnonempty, closed, convex set, and let
f. = f(t, <) be the support function of Q(t). Assume that the hypothesis
of Theorem 5 s satisfied by f (which is a normal convex integrand).
Let W be the convex subset of M,(T) consisting of all the absolutely
continuous measures p such that

(5.5) O(li—/;(t) € Q(t) for almost every t.

Then J; is the support function of W on C/(T), and the following
conditions on a measure pe M (T) are equivalent:

(a) p belongs to the weak*-closure of W;

(b) (5.5) holds, and the singular component of p is N-valued,
where N(t) is the recession cone of Q(t);

(c) for every we C,(T), one has

(5.6) STudy < S £ty u())dt -

Proof. The normality of the convex integrand f is equivalent
to the measurability of @ [17, Theorem 3]. The conjugate integrand
f* gives the indicator of Q(¢) for each ¢, and the recession function
h of f* gives the indicator of the recession cone N(¢) of @Q(t) for
each t [15, §14]. The equivalence of (b) and (c) then follows from
the formula for J} in Theorem 5. On the other hand, I, on L3(T)
and I;. on L.(T) are conjugate to each other by Theorem 2 (whose
hypothesis is satisfied by an interior element # of the set £ in Theo-
rem 5), so that

( [, £t witnae = sup {| <o), wr@>de — | o0 (wtat}
5.7)

= sup {STud/x | e W} .

Thus J; is the support function of W, and this implies the equiva-
lence of (a) and (c).
The recession cone N(t) in Corollary 5B is, of course, the polar
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of the effective domain D(¢) of the support function f, of Q(t). The
next corollary is an alternative form of Corollary 5B in the case
where N(¢) is independent of ¢ and contains no lines.

COROLLARY 5C. The conclusions of Corollary 5B remain wvalid
if, instead of assuming that Q is measurable, and that the hypothesis
of Theorem 5 1s satisfied by f, one assumes the following: T is com-
pact (with nmo nomempty open sets of measure zero),the set D(t) has a
nonempty interior which is independent of t, and for each x in this
wnterior f(t, x) is summable (measurable) function of t.

Proof. Since D(t) has a fixed nonempty interior D,, the multi-
function D:t¢— D(t) is fully lower semicontinuous. Furthermore, f
is a normal convex integrand: condition (b) of the definition of nor-
mality in § 1 is satisfied if U is taken to be the set of all constant
functions with values in D), where D is any countable, dense subset
of D,. The hypothesis of Theorem 5 is thus satisfied, and Corollary
5B can be applied.

These results enable us to describe a large class of weak* compact
subsets of M, (T).

COROLLARY 5D. Let the assump_tions of either Corollary 5B or
Corollary 5C be satisfied, and let W denote the set of all measures
pre M(T) for which condition (b) of Corollary 5B holds. Then the
set

(5.8) W,. = {;,e e W HTadp < a}

18 weak* compact in M, (T) for any ae C,(T) satisfying
(5.9) —a(t) eint D(t) for every te T,
and any real number .

Proof. To derive this from the preceding corollaries, one need
only verify that W,, is bounded. Let J denote the support function
of W,,on C(T). Then J < .J,. From Theorem 5 (whose hypothesis
is satisfied under the assumption in 5C as well as 5B, as just de-
monstrated) we see that J, is finite on a neighborhood of —a. On
the other hand, we have J(a) < « by hypothesis. The convexity of
J then implies that J is finite on a neighborhood of the origin. Thus
every linear functional on M,(T) corresponding to an element of C,(T')

is bounded above on W, ,, and hence W, , is bounded.

REMARK. Corollary 5D generalizes a lemma developed by Olech
[13, 14] for proving the existence of solutions to optimal control
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problems. If T is metrizable in Corollary 5D, then W,, is sequen-
ttally weak* compact; hence in particular every sequence of absolutely
continuous measures p, € M, (T) such that

(5.10) dg%’“(t) € Q(t) for almost every ¢,

(5.11) S a®)dp, < a for every k,
T

has a subsequence y,. converging in the weak* topology to a measure
£t which satisfies condition (b) of Corollary 5B. Olech’s lemma [14,
p. 515] states this fact in a slightly weaker form in the case where
T is the closure of a bounded Euclidean domain G, and the hypothesis
of Corollary 5C is satisfied. (Olech’s assumption (1.6) is ejuivalent
to the existence of a constant function a satisfying our condition
(5.9). He asserts only that the restrictions of the measures p,. to
G converge to the restriction of ¢ to G in the weak topology induced
on M, (T) by the closure of the subspace of C,(T) consisting of the
functions with compact support in G. However, his arguments imply
convergence as described above, and they can even be extended to
the case of arbitrary compact T, if sequences are replaced by nets.
These arguments do not cover the case where int D(t) is variable.)

We conclude by noting that Theorem 6 yields a result analogous
to Corollary 5A.

COROLLARY 6A. Under the hypothesis of Theorem 6, the normal
cone to the convex set K at a point we K 1is the set of all N-valued
measures pc M(T), where N(t) is for each t the mormal cone to Q(t)
at u(t).

Added in proof. See [23] for additional references and results
along the lines of this paper.
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