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Let 7 be a continuous representation of a Lie group G in
a finite dimensional real vector space V. Denote by H(G,V)
the cohomology with empty supports in the sense of Sze-tsen
Hu. If L is the Lie algebra of G, = induces an L-module
structure on V and there is the associated cohomology H(L,V)
of Chevalley-Eilenberg. Our main result is the construction
of an isomorphism H(G, V)=~ H(L, V).

This is preceded by a closer analysis of H-(G, V). It is clear
from the definition that to know H(G, V), it suffices to know
an arbitrary neighbourhood of 1 in G and its action on V. The
totality of neighbourhoods of 1 in G may be regarded as an object
of a more fine nature than a local group; we call it a group germ.
More precisely, a group germ is defined as a group object in the
category I' of topological germs [18]. The Eilenberg-MacLane defini-
tion [3] of the cohomology of an abstract group is carried over from
the category of sets to I" (i.e., from groups to group germs). Thus
for any group germs g, a, where a is abelian, and any g-action on a,
we have cohomology groups H(g, ). It turns out that Hy(G, V) =
H(g, @) for a suitable choice of ¢ and a, in all dimensions > 1. To
cope with dim 0 and 1 it seems convenient to introduce the concept
of an action of a group germ g on an abelian topological group A
and associate with this a cohomology H(g, 4). This is only a slight
modification of the previous H(g, @), so that both cohomologies coin-
cide in dimensions >1 and H'(g, 4) is a quotient of H'(g, a), if a is
suitably related to A. (H'(g, A) is the subgroup of g-stable elements
of A and H'(g, a) is always trivial). One now has H5(G, V) = H(g, V)
in all dimensions, for a group germ g corresponding to G.

We are grateful to W.T. van Est for his comments on an earlier
version of this paper which have resulted in many improvements.

1. Group germs. Let T be the category of pointed topological
spaces. For A, Be T write A ~ B if and only if there is a Ce T
which is an open subspace of both A and B. Denote by [A] the equiv-
alence class of A. For morphisms f: 4 — B,f: A’ — B in T write
S=f"if and only if A= A’, B~ B’ and there is a Ce T which is an
open subspace of both A and A’ such that f|C = f’|C. Denote the
equivalence class of f: A — B by [f]: [A] — [B]. There is now precisely
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one category I whose objects are the equivalence classes [A], the
morphisms are the equivalence classes [f]: [A] — [B], and such that
A [A4], f—[f] is a functor T— I". I will be called the category of
topological germs. (For a similar definition see [18]).

LEMMA. The functor T — I" preserves zero objects and finite
products.

We omit the straightforward verification. As a conclusion, all
finite products exist in I". Let S be a zero object in T, i.e., a one-
point set, and denote the zero object [S] in I" by e. Any morphism
in I" which factorizes through e¢ will be denoted by 0.

DEFINITION. A group object in 77 will be called a group germ.
The category of group germs will be denoted by GrI'.

We recall the definitions. A group object in I" is an object ge I”
together with morphisms p: g x g—g¢g, v: g — g such that gy x 1) =
1@ x ) (i.e., associativity), v* = id and

gx\emgxg‘me/xg *"\E,—n’ ng w7
AN # /=, 0\ JZ /0

(m; are the product projections; all diagrams drawn are assumed to
commute). A morphism g — ¢’ in Grl" is a @:g— ¢’ in I" such that
(@ X @) =pu and Vo = py.

Let 4 be the category of local topological groups. Following
(I8], p. 393) we mean by a local topological group an abstract local
group in the sense of Malcev [15] together with a topology on the
set @ of its elements such that the map (x, y) — xy~ is continuous
on the domain of its definition and that domain is open in @ X Q.
A morphism @ — Q' in 4 is an f:Q— Q in T such that f(x)f(y) is
defined whenever xy is defined, and if defined, f(x)f(y) = f(zy).

Define a functor U: 4 — GrI" as follows. Given Q¢ 4, let j(x) = &
and @z, y) = vy, the domain of @ being an open subspace D of @ X Q,
so that [D] = [Q] x [Q] (cf. Lemma). Let UQ be the topological germ
[Q] together with the morphisms v = [j]: [Q] — [Q], ¢ = [P]: [Q] x
[Q] — [Q] in I". Then UQe GrI’. For a morphism f in 4 put Uf = [f].

PROPOSITION. For each ge Grl' there exists a Q€ A such that
g=UQ.

Proof. Suppose g = [A], Ae T and denote the base point of A
by 1. The definition of a group object in I" implies the existence of
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open neighbourhoods P, V, W of 1 in A such that PC VC W and
(i) there exists : W x W— A such that p = [¢],
(ii) there exists j: V— W such that v = [j],
(iii) @), 2) = e(x,j@) =1, P(x,1) = o(1,%) =x and both
Pz, (Y, 2)), P(P(x, ¥), 2) are defined and equal for all x,y,z¢ V,
(iv) j(P)c V and PW V—j—»P is the identity on P.

Put @ = PNy '(P). Then j(@) < @ and j° = identity on Q. Define
' = j(x). For any z,ye Q say that xzy is defined if and only if
®(z, ¥) € @, and if this is so, put zy = @(x, ¥). Then Qe 4 and g = UQ.

2. Cohomology of group germs. Let 7:g x g— g X g be the
transposition morphism of the product. Call ge GrI” abelian if g x
g9 X949 equals . Note that for such g and any be ', hom,(b, g)

has a structure of an abelian group (obtained by applying the functor
hom(b, —): I' — Sets to the diagrams defining g).

Given a, ge Grl', where a is abelian, call a: g X a — a a g-action
on ¢ if

gXTXCL(Ll)X—mngX&XQ1XT?1—>QXU/><‘QXCL
llxy iaXa
gxa a axa ,

a 7
ngX(lmng a
| | ]\

llex Jfr I \\1

l(o,n\

gX a——a , N
«

gxXa — a.
o

Given such g-action, put @™ = hom,(¢9", a), where g" = g X--+X g
(n = 1 times). Define 6,: " — @"*';4 =0, ---,n + 1, by putting for
each pc @,

OP:g X g —>g X a—a,
1Xe a

aig):gi_IXgZXgnui 1xpx1 g% P C(/;'l::l,"‘,%,

O P g" X g—— g" —a, (r, = first projection).
T1 ¢

Then each 0; is a morphism of abelian groups. (This is easily shown
for 7 > 0; for © = 0 one needs the first diagram in the definition of a
g- action). Now let ¢ = Dcicor(—1)%,2. By direct verification (or
by the proof of the Theorem in §4) one sees that ¢° = 0.
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DEFINITION. For any g-action on a, H(g, a) will denote the coho-
mology of 0 > O > /

0

REMARK. It is not hard to see that for any g-action on a one
can find Q, Ac 4, A abelian, and a Q-action on A in the sense of
([12], p. 40) such that g=UQ, a=UA and a=[m], where m(z, p)=2ap
whenever the latter is defined for xe Q, Pc A. Moreover H(g, a) =~
H,(Q, A) = the local cohomology defined in ([12], p. 42).

3. Cohomology with coefficients in a group. Suppose that
there are given Q< 4, an abelian topological group A and a morphism
mQ@x A—A in T. Then m will be called a Q-action on A if,
denoting m(x, p) by xp,

(i) a(p, + p) = 2p, + ap, for all xe Q; p, P, 4,

(ii) @,(x.p) = (x,2)p Whenever x,x, is defined in @Q,

(iii) 1p = p for all pec A.

Call such Q-action m on A equivalent to a @Q’-action m' on A if
and only if there is an Se 4 such that S is an open local subgroup
of both @ and @ and m|S x A =m'|S x A. An equivalence class
of Q-actions will be called a g-action, where ¢ is the common value
of UQ for all Q-actions in that class. Any Q-action in the class will
be called a representative of the g-action.

Given any g-action on 4, put «a = UA and let a:g x a—a be
equal to [m]: [Q] x [A] — [A] where m:Q X A— A is any of its re-
presentatives. Then « is a g-action on a. Define 6% A — @', where
@' = hom,(g, a), as follows. For m:Q x A— A as above, consider
the map A — hom,(Q, A) assigning to pe A the map Q — A given by
2 +— m(x, p) — p, for all xe @. The image of @ — A under the functor
T— T is in @' denote it by 6°p. Then 6° is a morhism of abelian
groups depending only on the g-action on A. Moreover one verifies
easily that 06° = 0, where 6: @' — @* was defined in §2.

DEFINITION. For any g-action on A, H(g, A) will denote the

cohomology of @:0 A > O . @? —

There is a description of H(g, A) using the local group cohomology
of W. T. van Est. For Qe 4, an abelian topological group A and a
Q-action m on A, let H(Q, A) be the cohomology defined as in [8] (or,
in terms of cotriads, in [19]), but based on continuous cochains. Any
Q'-action m’ on A such that @ CQand m|Q x A = m' will be called
contained tm m. If this is so, the restriction of cochains yields a
map H(Q, 4) — H(Q', A).

PROPOSITION. For any g-action om A, H(g, 4) = lim_, H(Q, A),
the direct limit being taken over the partially ordered by inclusion
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(and directed) set of all Q-actions on A representing the g-action.

4., Cohomology of enlargeable group germs. A group germ
g will be called enlargeable if and only if there exists a group Ge 4
such that ¢ = UG. Such G will be called an enlargement of g.

LEMMA. Suppose g is an enlargeable group germ and there is
given a g-action on an abelian topological group A. Then there exists
an enlargement G of g and a G-action on A which represents the
g-action.

Proof. Suppose m:Q x A— A, where Q¢ 4, represents the g-
action. Replacing @ by a sufficiently small neighbourhood of 1, if
needed, we may assume that @ is enlargeable (i.e., @ is a local
subgroup of a group; [8], p. 393). Let G be the abstract group with
the following presentation by generators and relations: @ is the set
of generators and for x,, «+-, %, € @, ..+, = 1 is a defining relation
if and only if this equality holds in the local group Q, after a suitable
placement of brackets. The enlargeability of @ implies that the
obvious map @ — G is injective; we use it to identify @ with a subset
of G. The topology on @ defines now a fundamental system of neigh-
bourhoods in G ([2], Chapter 2, §II) making G into a topological
group with the open subset Q. For each z¢ @, define 7™(x): A— A by
z™(x)p = m(x, p), for all pe A. Then 7™: Q — Aut (4) is a morphism of
the abstract local group @ into the automorphism group of A. The con-
struction of G implies that there is a group morphism 7: G — Aut (A)
such that 7 | Q =7n™. If x€ G, then © = 2,2, + vt 2, +++, %, € @, Whence
w(x) =a™(®)- -, T"(x,): A— A is continuous. The continuity of m is
now eagily seen to imply that the action m,: G x A — A given by
my(x, ) = 7(x)p is continuous. It evidently represents the g-action.

Given topological groups G, A, where A is abelian, and a G-action
on A, let H(G, A) denote the corresponding cohomology with empty
supports ([12], p. 42 and below).

THEOREM. Suppose g 1s an enlargeable group germ and there 1is
given o g-action on a finite dimentional real wvector space V. Then
Jor any enlargement G of g and any G-action on V representing the
g-action, H(g, V) = H;(G, V).

Proof. Recall first H-(G, V). Suppose m:G x V— V is the G-
action. Define 7: G — GL(V) by n(x)p = m(x, p). Denote by C the com-
plex of V-valued, continuous, inhomogenous cochains on G. That is,
C =6, C" where C°=V and C* is the set of continuous maps
from G X +++ X G (n times) to V, made into an abelian group by
the addition in V. 6:C°— C* is defined by (6p)(x,) = w(x)p — p for
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all peC®, and 6: C*— C***, (n = 1), by

(b\f)(xu ey Xpyy) = n'(xl)f(xzy ceey Lyiy)
=+ 152'5 (_l)if(xu Ce ey Biigy tty Tyry)

+ ('—1)%+1f($1, Tty xn)

for all feC". Call feC* locally trivial if there is a neighbourhood
@ of 1 in G such that f(x, .-+, 2, = 0 whenever all 2, -+, 2, are in
Q. The locally trivial cochains form a subcomplex C, of C. Let C be
the quotient complex C/C,. Its cohomology is by definition H(G, V).

Consider now, for each n = 1, the map C* — @" (see Definition, § 3)
given by f+— [f]. Let C°— @° be the identity. All these maps are
morphisms of abelian groups and they define a cochain map of C into
@. Since G X +++ X G is completely regular at 1 ([16], p. 29), each
C" — @™ is an epimorphism. Clearly its kernel is C?. Therefore the
cochain map C — @ induces an isomorphism C — @.

REMARK. The cohomology of C has been discussed in [4]-[7],
[9], [11], [12] and [17].

5. Cohomology of Lie group germs. A local topological group
@ will be called a local Lie group if the space @ admits an analytic
manifold structure such that the map (x, y) — xy~ is analytic on the
open submanifold of @ X @ on which it is defined. Any such mani-
fold structure on Q is unique ([10], p. 107).

Let ge Grl". We shall call g a Lie group germ if ¢ = UQ for
some local Lie group @. The Lie algebra of any such @ will be
called the Lie algebra of ¢g; it is easy to see that the latter is well
defined.

Given a Lie algebra L and an L-module V which is a finite
dimensional real vector space, let H(L, V) denote the Chevalley-
Eilenberg cohomology [1].

THEOREM 1. If g is a Lie group germ with Lie algebra L, then
for every g-action on a finite dimenstonal vector space V, H(g, V) =
H(L, V).

Here the L-module structure of V is defined by the g-action as
follows. Let m:Q X V— V, where @ is a local Lie group, be a
representative of the g-action. Define 7n™: Q — GL(V) by a™(®)p =
m(x, p). Then 7™ is a morphism of local Lie groups, thus it is
differentiable ([10], p. 107). Its differential at 1 € @ defines a morphism
of their Lie algebras =} L — gl(V), ([10], p. 102) which does not
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depend on the choice of @. Thus V becomes an L-module.

Since a Lie group germ is known to be enlargeable, it follows
from the considerations in § 4 that, under the assumptions of Theorem
1, there is a Lie group G with a continuous representation 7: G —
GL(V) such that H(g, V) ~Hy(G, V). Thus Theorem 1 will follow
if we show.

THEOREM 2. Given a Lie group G and 7: G — GL(V) a continuous
representation in a finite dimentional real vector space V, let w,: L —
g(V) be the corresponding morphism of Lie algebras, making V into
an L-module. Then Hy(G, V) = H(L, V).

6. Smooth cohomology with empty supports. For the proof
of Theorem 2 we shall need to know that the definition of H-(G, V),
as given in §4, yields the same cohomology if smooth (i.e., indefinitely
differentiable) cochains are used instead of continuous ones. Thus let
+0C C be the subcomplex of smooth cochains and put ,C, = ,CnC,
L = dC/ «Ci.

PROPOSITION. H(C) = HC) .

Proof. We shall modify a construction due to G. D. Mostow ([17],
p- 33) so that it becomes applicable modulo the locally trivial cochains.

Let K be the complex of V-valued, continuous, homogeneous
cochains on G with homogeneous coboundary (K™ = F*(G@, V) in the
notation of [17]). Let K, be the subcomplex of locally trivial cochains
and put K = K/K,. Denote by ,KC K the subcomplex of smooth
cochains and put ,K, = ;KN K,. Then ;K< K induces a cochain map
v of ;K = ,K/,K, into K. The standard isomorphism K ~ C ([3], p. 54)
obviously carries K, and ,K into C, and ,C respectively. Hence it will
suffice to prove that H(v): H(;K) — H(K) is an isomorphism.

Let % denote the family of neighbourhoods of 1 in G, and
choose a sequence @,, @,, @,, --- of real valued smooth functions on G
with compact supports and Haar integral 1 such that for every Qe %
there is a @, whose support is contained in Q. For every 4, define
a cochain map a;: K — ;K by

@)y ey ) = | oo fld, ooy 08000 2 iE )G+,
= | | s o) e s s,

for fe K"; n = 0. Also define maps u;: K — K of degree —1 by
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(uzf) (xo’ tt %y xn—l)
= é(_l)jga' * 'ng(woy vy Ly xj-—fj’ ctey xn—-lgn)@i(éj)
.. '@i(fn)dfj‘ . odg,

for fe K*;n =1, and by u,f =0 for fe K°.
It is easy to see that if fe K;, then there is an ¢ such that «,f
and u;f are in K;. One verifies the identities

(*) f—a%f:5u1f+u%5f’ 7::0:1,2’°"

(see [5], §4).

For fe K, let f be its image in K, and if f is a cocycle, let
{f} e HK) be its class.

To prove that H(v) is epimorphic, suppose that there is given a
cocycle fe K. Then df € K, whence for a suitable 7, f—a;f—ou.f ¢ K.
Therefore {f} = {a;f}. But a;f ¢ K.

To show that H(v) is monomorphic, suppose that f €, K is such
that {f} = 0. Then there are he K,ge K, such that f— oh =g.
Hence (x) implies

f = a;0h + a,g + ou.f + w09 = o(ah + u;f) + (a; + u;0)g. Thus,
for suitable ¢, f — d(a;h + u.f) € K;, and since a;h + u;f € ,K, it follows
that the cohomology class of f in H(,K) is zero.

7. A spectral sequence. Suppose G, 7w, V and L satisfy the
assumptions of Theorem 2. By the result of §6, Theorem 2 will
follow if we show that H(,C) = H(L, V). We shall consider a bicom-
plex F, similar to the one defined in [4], §10, and we shall show
that the quotient complex F obtained by factoring out the locally
trivial cochaing is such that

(i) the initial term of the first spectral sequence is

‘B¢ = H(,C) and "Ef =0 for all » >0,
(ii) the initial term of the second spectral sequence is
"E=H(L,V) and "Ef=0 forall s>0.

As well known, this implies H(,C) =~ H(L, V).

We begin by defining F =, ,.,/”F°. Let L,, --., L, be r copies
of L and G, --+,G,, s copies of G. Then, for r,s=1,"F° is the
vector space of all smooth maps

L X oo XL, XG X 2o+ X G, >V

which are r-linear and alternating in the first » variables. For every
s = 1,°F* is the subspace of ;,C° composed of those cochains f which
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satisfy the following local normalization condition: for each fe°F,
there is a Qe % such that f(x, ---,2,) = 0 whenever x, -+, 2, €@
and at least one x; equals 1. "F° is, for each » = 1, the space of
V-valued r-linear alternating functions on L, and °F° = V.

For each e G, let p,: G— G be the right translation yr— yz.
Denote by p} the induced map on the tangent bundle. We shall
identify L with the tangent space to G at 1. For each Xe L, X
will denote the right invariant vector field (i.e., satisfying o; X = X
for all #) taking at 1 the value X.

Occasionally an fe"F* will be interpreted as a differential form
on G, depending on the parameter (z,, ++-,2,)eG X -+ X G which,
for fixed value of the parameter, takes at X,--., X, and #,¢G the
value f(X,, -+, X,, %, +++,2,). The morphisms

dl: rFs — 'r-HFs’ d2: rFs —_— rFs+1

are now defined as follows.
If fe"F°, let d.f be given by the formula

(@uf)(Xsy vy X)) = n-ll— = 5 ()R X)AK " Ko

1
n+1

+

Z (‘Diﬂf([Xiy Xj]) X1'/'\'! Xn+1)

for every X, -+-, X,,, € L.
Let fe"F*;s=1. For any fixed x,, -+-,x,€ G consider the diff-
erential form w, for which identically

wf(le M) Xry xx) - ﬂ(xfl)f(Xn ) Xr’ Lyy ***y fl}'s) .

Let d.f be the (r + 1)-form whose value at #, is 7(x,)dw;, d being the
exterior derivative ([10], p. 21). One sees easily that d,f e ™ F'".

Let d,: °F'*—°F*+' be the coboundary o of § 4. Finally, let d,: "F'*—
rFet; r =1, be given by

(d2f)(X1y ct %y Xra Lyy =y xs+1)
= Z ('"1)if(X1: coey Xy Dyy e, By, o0 e xs+1)
+ (_1)5{.lf(Xu ct XM Lyy ooy xs) .

This completes the definition of F'.

One has dd,=dd, and d: =d; =0 ([4], §10). Moreover the
complex

L r 70 r 1L
F:0 Fszd2

has for » = 1 a contracting homotopy wu:"F*+' — "F'*® given by
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(uf)(Xn ) Xn Lyy o0y xs) = _f(Xu c Xry 1) Ly "'9xs)

(4], 89).

Call a bicochain fe"F'* locally trivial if there exists a @ € Z such
that f(X,, +++, X,y 2, *++,2) =0 for all X, ---, X, eL,%,---,2,€Q.
Let F be the quotient of F' by the sub-bicomplex of locally trivial
cochains. Then F is a bicomplex with operators d,, d, induced by
d,, d.. We shall show that it has the properties (i), (ii) stated at the
beginning of this section.

For each » let "7 be the complex 0 —"F°—"F'— ... with
coboundary d,, and let for each s, F'* be defined similarly.

To obtain (i), one shows first that the inclusion °F C ,C induces
an isomorphism H(CF) — H(,C). This is a consequence of the two
facts

(a) if fe,C and 6f is locally trivial, then f is cohomologous in
.C to some he'F,

(b) if fe'F and f — dg is locally trivial for some ¢g¢,C, then
there exists an he°F such that f — 6k is locally trivial.

The proof of (a) and (b) is easily obtained from that of Lemmas
6.1 and 6.2 in [3], p. 62. One concludes that °E: = H*(,C), for the
first spectral sequence. Since each "F,» =1, has a contracting
homotopy # induced by u, "E: =0 for r = 1.

To prove (i) observe first that F° = F° and H(F°) = H(L, V), by
definition. Hence "E? = H"(L, V) for the second spectral sequence.

It remains to show that for each s =1, F’* is an acyclic complex.
Let feF* be such that d,f is locally trivial. Thus there is a Qe %
such that for each 2, ++-, 2, e @ the (r + 1)-form dw, vanishes identi-
cally on Q. We may assume that @ is diffeomorphic to a Euclidean
ball.

For » =0, the condition dw, =0 on @ implies that w(x ) (2, ««-, )
does not depend on x, when z,, +--, ¢, € Q. Consequently, by the local
normalization condition, f is locally trivial. Hence d,:°F°* —'F* is a
monomorphism.

For r = 1, and any &, ---, #, € G, the restriction @, |Q is a closed
r-form on Q. Hence the Poincaré lemma ([13], p. 87) implies the
existence of an (» — 1)-form x« on @ such that dy = ;. The proof
of Poincaré lemma shows that g depends smoothly on the parameter
(@ =+ 2, 2) €Q X +++ X @ (where smoothness is understood in the sense
of [7], §1). Let ® be a smooth real-valued function on G, identically
equal to 1 in some neighbourhood of the identity and vanishing outside
some neighbourhood of the identity whose closure is contained in Q.
For each x,, ---,2,€ G, let h be the (r — 1)-form on G which at z, e G
takes the value o()®(®,) --- @(z,)7(x)y when 2, .--,2,€¢Q and 0
otherwise.
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Recalling the interpretation of "F* as the space of »-forms depend-
ing on the parameter (%, ---,%,)€G x --+ X G, we see readily that
he™'F*. Moreover the construction guarantees that f — d.h is locally
trivial. Thus F* is exact at "F* and the proof of Theorem 2 is
complete.

8. Explicit form of the isomorphism. We shall describe the
isomorphism H(,C) =~ H(L, V), i.e., HCF) =H(F°). Let Tot F be the
total complex of F' ([14], p. 340). For fe'F*,n=1,1<j<n and
X e L denote by 0,(X)fe’F~" the derivative in the direction X with
respect to the jth variable at z; = 1. Define maps ™" °F" — "F"™,
r=20,1,--+,n by ° = identity, and for » = 1

(Tn’rf)(Xn M) Xr! Lrtry 70 % x")
— (Z sgn (’L'l, oee, ﬁr)al(X”) oo aT(Xi1.)f)(xrf1y cee, xn) y

where > ranges over all psrmutations of (1, --.,7). It is shown in
[4], p. 500 that the maps 7° = D .7 "F" — (Tot F7)* define a
cochain map 7: °F — Tot F'. Let 7: °F — Tot F be induced by . Denote
by B,, 7. the projections Tot FF— F°, Tot F — °F. These are evidently
cochain maps and from the behaviour (i), (ii) of the spectral sequences
it follows that H(p,), H(p, are isomorphisms. Now p,Z is the identity,
thus H(7): HCF) — H(Tot F') is an isomorphism, whence the same is
true about H(p,7): HCF) — H(F°). Clearly p,7 | F* =7™",
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