Pacific Journal of

Mathematics

FIXED POINTS AND STABILITY FOR A SUM OF TWO
OPERATORS IN LOCALLY CONVEX SPACES

GEORGE LEE CAIN JR. AND MOHAMMED ZUHAIR ZAKI NASHED




PACIFIC JOURNAL OF MATHEMATICS
Vol. 39, No. 3, 1971

FIXED POINTS AND STABILITY FOR A SUM OF TWO
OPERATORS IN LOCALLY CONVEX SPACES

G. L. CaIN, JR. AND M. Z. NASHED

Some fixed point theorems for a sum of two operators are
proved, generalizing to locally convex spaces a fixed point
theorem of M. A. Krasnoselskii, for a sum of a completely
continuous and a contraction mapping, as well as some of its
recent variants.

A notion of stability of solutions of nonlinear operator
equations in linear topological spaces is formulated in terms
of specific topologies on the set of nonlinear operators, and a
theorem on the stability of fixed points of a sum of two opera-
tors is given. As a byproduct, sufficient conditions for a
mapping to be open or to be onto are obtained.

1. Introduction. Several algebraic and topological settings in the
theory and applications of nonlinear operator equations lead naturally
to the investigation of fixed points of a sum of two nonlinear opera-
tors, or more generally, fixed points of a mapping on the Cartesian
product X x X into X, where X is some appropriate space.

Fixed point theorems in topology and nonlinear functional analysis
are usually based on certain properties (such as complete continuity,
monotonicity, contractiveness, ete.) that the operator, considered as a
single entity must satisfy. We recall for instance the Banach fixed
point theorem, which asserts that a strict contraction on a complete
metric space into itself has a unique fixed point, and the Schauder
principle, which asserts that a continuous mapping ¥ on a closed con-
vex set K in a Hausdorff locally convex topological vector space X into
K such that F(K) is contained in a compact set, has a fixed point. In
many problems of analysis, one encounters operators which may be split
in the form T = A + B, where A is a contraction in some sense, and
B is completely continuous, and T itself has neither of these properties.
Thus neither the Schauder fixed point theorem nor the Banach fixed
point theorem applies directly in this case, and it becomes desirable
to develop fixed point theorems for such situations. An early theorem
of this type was given by Krasnoselskii [12]: Let X be a Banach
space, S be a bounded closed convex subset of X, and A, B be operators
on S into X such that Ax + Bye S for every pairz,y€S. If Aisa
striet contraction and B is continuous and compact, then the equation
Az + Bx = x has a solution in S. The proof of this theorem is quite
simple, given the Schauder principle.

Krasnoselskii’s theorem is an example of an algebraic setting which
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leads to the consideration of fixed points of a sum of two operators.
In this setting, a complicated operator is split into the sum of two
simpler operators which have been well investigated and for which fixed
point theorems abound. For recent contributions to fixed points of
this type, see Remark 3.1.

There is another setting which also leads naturally to the investi-
gation of fixed points of a sum of two operators. This setting arises
from perturbation theory. Here the operator equation Az + Bx = x is
considered as a perturbation of Ax = & (or of Bz = %), and one would
like to assert the existence of a solution of the perturbed equation,
given that the original unperturbed equation has a solution. In such
a setting, there is, in general, no continuous dependence of solutions
on the perturbations. If, however, one requires such continuous de-
pendence, then we have a general problem of stability of solutions,
where stability is defined in terms of certain topologies on the class
of operators under consideration.

The purpose of this paper is to prove some fixed point theorems
in the two settings mentioned above.

2. Definitions and preliminaries. Throughout this paper, X will
denote a Hausdorff locally convex topological vector space, and & a
family of seminorms which generates the topology of X. For pe &7 and
r > 0, the set {z|p(@ — x,) < r} is denoted by S,(%,, 7). The closure of
this set is denoted by S,(x,, 7), and its boundary by 8S,(x,, ). We shall
also sometimes use V(p) to stand for S,(0,1). A continuous mapping
F: X — X is said to be p-completely continuous for p e &7 if the closure
of F[S,(0,n)] is compact for each positive integer n. F will be
called completely continuous if it is p-completely continuous for
every pe ~.

Several generalizations of Schauder’s fixed point theorem to locally
convex topological vector spaces have been made by Tychonoff [26],
Hukuhara [9], Yamamuro [28], Singbal [25], Nguyen-Xuan-Loc [17],
and others. In the present paper, we shall be interested in the fol-
lowing variants of Schauder’s fixed point theorem, which are listed in
order of increasing generality.

THEOREM 2.1. Let X be a Hausdorff locally convex topological
vector space.

(@) Let K be a nonempty compact convex subset of X and let F
be a continuous mapping of K into K. Then F has a fixed point in
K.

(b) Let K be a monempty closed convex set in X and let F be a
continuous mapping of K into K such that F(K) is contained in a
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compact set. Then F has a fixed point in K.

(¢) Let F be a p—cgmpletely continuous mapping of X int_q X. If
F maps 3S,(xy, r) into S,(x, r), then F has a fixed point in S,(w,, 7).

Part (a) is simply Tychonoff’s generalization of Schauder’s theorem
(For a proof, see Dunford and Schwartz [4] or Bonsall [1].). A simple
and interesting proof of (b) is given by Singbal [25]. Part (c) is a
generalization of Rothe’s version of Schauder’s theorem [22].

Let Dc X and pe &?. A mapping A:D— D is said to be a
p-contraction if there is a 7v,, 0 < v, <1, such that for all z,y in D,
p(Ax — Ay) < 7,p(® — ¥).

Let % be the neighborhood system of the origin obtained from
. Thus if Ue %, there is a finite number of seminorms »,, Psy *++, D,
in & and real numbers »,, 7y ++-, 7, such that U = N,V (p;), where
Vip) = {e|p@) <1}

THEOREM 2.2. Suppose D is a sequentially complete subset of X and
the mapping A: D — D is a p-contraction for every pe . Then A
has a unique fixed point T in D, and A*x — % for every xe D.

Proof. Let xe D and let U = N7, V(p;) be given. For any ye D
and k=1, we have

p(A'y —y) =1 —7)7"p(Ay —9), i =1,2,--+,m.
Choose m sufficiently large to insure that
7l — v) (A — ) < v, for ¢ =1,2, -., n.
Then for y = A™x, we have

pi(A" e — A™x) < (1 — 7)) 'p(A™e — A™x)
=71~ 7)) pi(Ar — @) < 7.

Thus {A*x} is a Cauchy sequence in D and so converges to a point &
in D. Clearly AZ = Z, and uniqueness of the fixed point follows as usual
since X is Hausdorff.

3. Fixed points of a sum of two operators in locally convex
spaces. We begin with a simple theorem which generalizes Krasnosel-
skii’s fixed point theorem [12] to locally convex spaces.

THEOREM 3.1. Let D be a convex and complete subset of X, and
A, B be operators on D into X such that Ax + Bye D for every pair
z,y€D. Suppose A is a p-contraction for every pe P, and B i3 con-



584 G. L. CAIN, AND M. Z. NASHED

tinuous and B(D) is contained in a compact set. Then there is a point
Z in D such that A% + BT = Z.

Proof. For each ye D, the mapping A defined by Az = Az + By
is a p-contraction for each p€ & and maps D into D, so by Theorem
2.2, it has a fixed point, Ly. In other words, Ly = A(Ly) = A(Ly) +
By. Thus for all w,v in D,

Lu — Lv = A(Lw) — A(Lv) + Bu — Bo.
So for each pe .?, we have
p(Lw — Lv) < v,p(Lw — Lv) + p(Bu — Bv),
or
3.1) o(Lu — Lv) £ 1 — v,)"'p(Bu — Bv).

It is clear from (3.1) that the operator L is continuous. To see
that L(D) is contained in a compact set, let {Lx,} be a net in L(D).
Then {Bz,} has a convergent subnet {Bx.}, since B(D) is contained in a
compact set. Thus {Bz;} is a Cauchy net, and by (3.1), so also is
{Lx;}. Hence L(D) is contained in a compact set, so L has a fixed
point Z in D, and

% = LT = A(L%) + B = A% + Bi.

This completes the proof.

The various forms of the Schauder-Tychonoff theorem stated in
Theorem 2.1 require a priori that a certain closed ball (or its boundary)
be mapped into itself by the operator. In his work on integral equa-
tions, Dubrovskii [3] used an alternative approach of finding conditions
on a completely continuous operator which guarantee the existence of
some closed ball which is mapped into itself by the operator. In
the next theorem, we use this technique in the setting of a sum of
two operators to prove a fixed point theorem which contains as a special
case a new variant of the Schauder-Tychonoff theorem in locally convex
spaces. Before proceeding to the theorem, we shall give some needed
definitions.

For an operator T, a point z,€ X, and a real number » > 0, define

for each pe 7,
R,(%o, T, 7) = r~sup {p(Tw — Tay)| plx — @) =< 7}
and

Qp(x()! T, a) = {rlRp(xov T,r) < a}-
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Now consider Q,(x, T, a) as a subset (possibly empty) of [0, <], the
one-point compactification of [0, ), and let e¢l(Q,(#,, T, @)) denote the
closure of Q,(x,, T, a) relative to [0, ««]. Define

Bo(®ey T) = inf {a| oo € el(Q,(x,, T, a))}.

We shall say that T is p-quasibounded at z, if g,(x, T) exists. T is
called quasibounded at «, if it is p-quasibounded at z, for each pe 7.
Note that this notion of quasiboundedness generalizes that of Granas [8].
The following theorem generalizes Theorem 8 of Nashed and Wong [16].

THEOREM 3.2. Suppose the mapping S is a p-contraction for every
pin P, with contraction constants v,, and suppose the mapping T is
continuous and T(X) is compact. If X is complete and if there is an
x, in X and a pe P such that T is p-quasibounded at x, and

A/p+Bp<1’

then (I — S — T)x = z always has a solution.

Proof. Choose @ so that v, + a <1 and oo € cl(Q,(%, T, a)). Let
#, = (I — S — T)x,, and choose ¢ so that ¢ > p(z — u)[1 — (v, + a)]7,
and ce Q,(%, T,a). Then R,(x, T,c) < a. Now define the set

D ={zeX|plx — x) = c}.
It follows that for « and % in D, Sx + Ty + 2z is in D:

pSx+ Ty + 2 — ) = p(Se + Ty + 2 — u, — Sz, — T,)
= p(Sz — Sw)) + p(Ty + To) + Pz — )
=vc+ac+ [1— (v, + a)]e < e

It now follows from Theorem 3.1 that there is an ¥ in D such that
ST+ Tx + 2z =Z.

REMARK 3.1. For various fixed point theorems for a sum of two
operators in Banach and Hilbert spaces, see Krasnoselskii et al. [13],
[14], Browder [2], Edmunds [5], Fuéik [6], [7], Kirk [11], Nashed and
Wong [16], Petryshyn [18], [19], Sadovskii [23], and Webb [27]. In
some of this previous work, the theorems are formulated for a mapping
F(x, y), not necessarily of the form Ax + By. Nadler [15] considered
mappings defined on the Cartesian product of two metric spaces which
are contractions in one variable or in each variable separately and
proved that under certain conditions, such mappings have fixed points.

Essentially the same proof as that of Theorem 3.1 yields the fol-
lowing result.
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THEOREM 3.1'. Let D be a convex and complete subset of X and
suppose F: D x D — D 1is such that for each pe P, there is a constant
Vs 0 § T < 1, so that

p(F(x, y) — Fzx,2)) < 7,0y — 2)

forally, zin D. Suppose further that B: D — D is continuous, B(D)
18 contained in a compact set, and

p(F (@, y) — F(z,y)) < p(Bx — Bz).

Then there is a point T D for which F(Z,Z) = &.

REMARK 3.2. Examining the proof of Theorem 3.1, one sees that
if D = S,(x,r), and X is complete, then we need only require that B
be p-completely continuous. (We invoke 2.1¢ to obtain a fixed point
of the operator L.)

For the operators considered in this section, the equation

3.2) Ax + Bx ==z

has a solution in particular when A or B is the zero operator. Thus
equation (3.2) may be considered as a perturbed equation associated
with

(3.3) Ax = x, or Bx = .

Theorems 3.1 and 3.2 state sufficient conditions under which the ex-
istence of a solution of either of the operator equations (3.3) is pre-
served with a perturbation of the operator in a certain class. We do
not, however, have any information on how much of a change results
in the solution. In particular a slight perturbation of the operator A
by an operator of type B need not necessarily produce only a slight
change in the solution. In other words, in the algebraic setting of
Theorems 3.1 and 3.2, one does not necessarily have continuous de-
pendence of solutions of Az = x on perturbations of A by operators of
the type B (or vice versa). We shall turn our attention in the next
section to this question of continuous dependence of the solutions.

4, Stability of fixed points and solutions of nonlinear operator
equations. In [10], Kasriel and Nashed formulated and investigated a
notion of stability of solutions of some classes of nonlinear operator
equations in Banach spaces in terms of specific topologies on the set
of nonlinear operators, and obtained some results on the openness of
cetain mappings as a byproduct. In this section, we extend these for-
mulations in several directions and prove a theorem on the stability
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of fixed points for the sum of two operators.

Let .97~ be a collection of continuous maps on X whose domains
are such that if A,e .9, 2, € domain of A,, then S,(x,, ) < domain of
A, for » sufficiently small. Let .~ be a topology on .%". Suppose
Aye 57, y,e X and A, = Y.

DEFINITION 4.1. The solution x, of Au = ¥, is called p-stable with
respect to (%7, 77) if for each » > 0 there exist d > 0 and a neigh-
borhood 2 of A, such that for all ye S,(y,, d) and Ae 2, there exists
an x ¢ S,(x,, ) such that Az = y. The solution x, is said to be a stable
solution with respect to (27, 77) if it is a p-stable solution for every
pE A,

For Ae 27, (2, A4, r) will be called a p-admissible triple if S,(x., 7)
is contained in the domain of A.

Let .24, be the class of all continuous maps B from open subsets
of X into X which are such that I — B is p-completely continuous.
If (x,, By, ) is a p-admissible triple and & > 0, then 2,(x,, B,, 7, p, b)
will denote the collection of all Be .9, such that (x,, B, r) is a p-admis-
sible triple and p(Bx — Bx) < b for all TeS,(x, r). Let .7, be the
topology on 2%, generated by taking the collection of all such 2, as
a subbase.

Now define

R, (o, T, 7) = rsup {p(Tx — T | pl& — ) = 7},
and
7o T) = inf {r| R, (z,, T, 7) < 1}.

Note that stability for the class 9% can be reduced to considera-
tion of equations of the form Az = 4.

THEOREM 4.1. Let B, € 5%, and suppose Bx, = 0. If 1,(x,, [— By)=
0, then x, is a p-stable solution of By = 6 with respect to (5%, T,).

Proof. Let e >0 be given. There is an r, 0 < r < e, such that
R=R,@,I=B,r) <1l. Letaand d be positive numbers such that
a+d< (11— Ryr. Let BeQy(x, B, 7, p,a) and ye S,(0,d). Consider
the mapping F on S,(x,, ) defined by Fz = « — Bx + y.

Clearly F' is p-completely continuous since Be .%,;. If F maps
08,(xy, r) into S,(x,, 7), it has a fixed point #e S,(x,, #) Then BF = v,
with Z € S,(x,, ) < S,(x, €), which proves the theorem. Now we show
that F indeed maps 9S,(x, r) into S,(x,, 7):

p(Fx — ) < pl@ — B — ) + p(Bx — Byx) + p(y),
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and
p(@ — Bt — %)) < R,(#,, I — By, 7)r = Rr.
Hence
pFx—ax)<Rr+a+d<Rr+r—Rr=r.

If 9%, is the class of all continuous operators B from open subsets
of X into X which are such that I — B is completely continuous, and
if .7, is the topology on .%%; generated by taking as a subbase the
sets Q,(x,, By, 7, p, b) for all pe &, then we have the following

COROLLARY. If B,e 2%; and By, = 8, and if ,(x,, I — B,) = 0 for
every pe P, then x, is a stable solution of By = 6 with respect to
(%6 T 6)-

We next turn our attention to the question of stability of sums
of operators.

If 2,e X, A, is a continuous operator, and Uec %, then we shall
say (o, A, U) is an admissible triple if x, + U < domain A,. (Recall
that % is the neighborhood system of the origin obtained from .Z2.)
Let &, be the collection of all continuous operators A which are such
that I — A is a p-contraction for every pe &”. (Hereafter called simply
a contraction.) For A4, in &, pe . Z,a and b real numbers, and
(@ Aoy U) an admissible triple, we define 2,(,, 4,, U, p, a, b) to be the
collection of all A in &, such that

(i) (2, A4, U) is an admissible triple,

(ii) p((A — A)x — (A — A)x) < bp(x — x) for all xew, + U,

(i) p(Az, — A = a.

We define 7] to be the topology on &, obtained by taking all such
2, as a subbase.

Let &, be the collection of all continuous operators B which are
such that I — B has its range contained in a compact set. For
B,e & pe P, r a real number, (x,, B;,, U) an admissible triple, we
define 24(z,, B,, U, p,7) to be the collection of all Be %, such that

(i) (%, B, U) is an admissible triple, and

() p(Bx — Bx,) < r for all xex, + U.

We define .7, to be the topology on %, with all such 2, as a subbase.

Next let € = &, X &, be the Cartesian product of &, and <&
endowed with the product topology 7~ = 77 x 5 Suppose K, is an
operator such that I— K, =8, + T, for I — S,, I — T, in &.

DEFINITION 4.2. The solution %, of Ku = v, is called stable with
respect to (&, .77) if for each Ue %/, there is a neighborhood 2 of
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I—S8S,I—1T,) and a WeZ such that for all yey, + W and
(I—8S,I— T)e®, there exists an zex, + U so that Kx =y, where
I-K=S+T.

Recall the definition of R,(x,, T,, ) and Q,(x,, Ty, @). For p in F#
define

a, (%, T) = inf {a |0 € cl(Q, (@ Th» )}

THEOREM 4.2. Let X be complete. Suppose K, = Y, Where
I-K, =8 + T, for I— S, I—T)inz. If v,+ a, <1 for every
p in P, then x, is o stable solution with respect to (&, 7). (v, is
p contraction constant of S; and a, = a,(x,, T0).)

Proof. Once again we shall, without loss of generality, take y, =
6. Let U= Nr:V(p))eZ be given. Foreach 1 =1,2, .-+, n, there
is a & > 0 such that &, + v; < 1 and 0 € cl(Q;(x,, T\, &;)), where v; denotes
Ypis ete. Choose s; < r; so that R;(x,, T\, s;) < &. Now choose positive
constants a;, b;, ¢;, d;, for each 2 =1,2, +-+, %, so that

bisi+a; +2¢;, +d; <A — & — 7)sie
Let

B=1I-Te n Qo I — Ty, U, ps, 3,
and

A=1- Seﬁgl(xO’I— Soy U: Diy Ay bz)'

Also, let W = Nrd;V(p,).
Suppose y € W and consider Sx + Tz + y for all x and z in o, + U*,
where U* = cl(\rs; V(p;)). We shall show that Sx + T% + yea, + U*:

Sx+ Tz+y— 2, =8Sx+ Tz + y — Sty — Tz,
= (Sz — Siz) + (T2 — Toxy) + ¥
— (A — Ay — (A — A)w, + Su — Sy
+ (A - Ao)xo + (Tz - Toz) + (Toxo - 0)
+ (Toz — Toxo) + 9,

where 4, =1 — S,. Now for each 7 =1,2, -+, n, we have

p:(Sx + Tz + y — x) = p:i((A — A)x — (A — Ao)x,)
+ 2i(Sox — Seity) + Pi((A — Ay
+ 0Tz — T2) + piTow, — Ty
+ pi(Tr — Tyxo) + ps(y)
< bipi(@ — @) + Tipi(® — @) +a; + e+ oo
+ Ri(,, T, 8:)8; + i (y)
SA =& =78+ (i + &)si = sie
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So for every x,zecw, + U*, we have Sz + Tz + yex, + U*; thus by
Theorem 3.1, there isa point Zex, + U* sothat ST + T% + vy = &, or
K% =y, where I — K=S + T.

REmMARk. If we take T, = 0 in Theorem 4.2, we get a stability
theorem for the fixed point of a contraction mapping on a complete
locally convex Hausdorff topological vector space X. We note, however,
that it is possible to formulate other notions of ‘‘contraction’’ for which
the fixed point is not necessarily stable. Let W, be an open neighbor-
hood of e X, x,e X,and W =2, + W,. Let F: W— X. We say that
F is a weak contraction if there exists a convex, closed and bounded
V < W, such that ,ye Wand y — x e AV imply F(y) — F(x) e MaV for
some 0 << 0. Let F be a weak contraction on W into X, and
F(x) — 2,6 (L — a@)V. Then there exists a unique fixed point Z of F,
Tewx + V. However, this fixed point is obviously not necessarily stable.

5. Applications. The fixed point theorems of § 3 can be applied
to obtain existence theorems for mixed nonlinear integral equations of
Urysohn-Volterra and Hammerstein-Volterra types in locally convex
spaces in the same manner as the fixed point theorem for a sum of two
operators in Banach spaces were used in [16].

We now obtain as an application of Theorem 3.1, a sufficient con-
dition for a mapping to be open, which generalizes conditions given in
[10], [20], and [21]. Recall that a mapping F: X — Y is open at a
point %, € F(X) if v, is an interior point of F(X); that is, if there is
a neighborhood N of y, such that N < F(X). It follows easily from
Definition 4.2 that if Ku = y, has a stable solution with respect to
(&, 7)), then K is open at ¥, The hypothesis of Theorem 4.2 thus
also insures the openness of K at ¥, We can, however, find much
weaker conditions which insure that K is open at ¥, To this end,
define

Py, T) = inf {0|Qp (25 T @) # O},

and suppose K is asin §4; thatis, I—- K=8S+ Tfor(I— S, I—-T)
in #.

THEOREM 5.1. Assume X is complete. If Kx, = y, and for some
p in P it is true that v, + P, <1, then K is open at ¥,.

Proof. We may without loss of generality take y, = 6. Choose
£ so that Q,(w,, T, &) * @ and 7, + £ < 1. Let se Q,(%, T, &) and choose
d< (@1 —¢&—v,)s. We shall now show that S,(4, d) is contained in the
range of K.
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_ Let ueS,(6,4d) and consider p(Sz + Ty + u — @,) for « and y in
S, 8):

p(Sx + Ty + u — x) = p(Sx + Ty + u — Sx, — Tx,)
= p(Sz — Sxp) + p(Ty — Tx) + p(w)
Vs + &+ d< s

A

Thus by Theorem 3.1, there is an Z € S,(x,, s) such that ST + T% + u =
Z, which proves the theorem.

An immediate application of this result is the following theorem
giving sufficient conditions for certain operators to be onto maps.

THEOREM 5.2. Let B: X — X be a continuous operator such that
T(X) is contained in a compact set, where T = I — B. Suppose for
each xe X, there is a pe P such that @, (x, T) < 1. Then the range
of B is X.

Proof. B is open at each point of B(X) from the previous theorem,
so B(X) is an open subset of X. We shall show that B(X) is also a
closed subset of X, and hence B(X) must be all of the connected space
X.

To show B(X) is closed, let ¥ be an accumulation point of B(X)
and let {y,} be a net in B(X) such that y, —Z. Let x, be such that
Bz, = y,. Then {Tx,} has a convergent subnet, say {Tx,}. Since Bx,=
x, — Tx;, and {Bx,} and {T%;} converge, we then know that {x;} con-
verges. But Bz, —Z, so Ze B(X). Thus B(X) is closed, and the
theorem is proved.
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