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ON THE BRAUER GROUP OF Z

ROBERT A. MORRIS

Two dimensional Amitsur cohomology is computed for
certain rings of quadratic algebraic integers. Together with
computations of Picard groups, this yields information on the
Brauer group B(S/Z), for S quadratic algebraic integers, with-
out resort to class field theory.

The classical Brauer group of central simple algebras over a field
10, X, Sec. 5] has been generalized to the Brauer group B(R) of
central separable R-algebras over a commutative ring R [2]. One can
prove, using class field theory, that the Brauer group B(Z) of the
integers, is trivial. The proof is apparently well known but not in
the literature, although it does appear in the dissertation of Fossum
[9].

This paper is devoted to our attempt to establish this result using
only an exact sequence of Chase and Rosenberg [7, p. 76]. We are
able to show that if S is the integers of Q(V'm) for m = + 3, — 1, 2,
or 5, the subgroup B(S/Z) of B(Z) consisting of elements split by S,
vanishes.

In §2 we develop some technical results on norms which we use
in § 3 to show that the Amitsur cohomology group H*(S/Z, U) is zero
whenever S is the ring of integers of a quadratic extension of the
rationals. In §4 we use a Mayer-Vietoris sequence of algebraic K-
theory to show that the Picard group Pic(S® ,S) = 0 for S the integers
of QvVm), m= +8,—1,2, or 5. In §5 we use this result and an
exact sequence of Chase and Rosenberg [7, p. 76] to show B(S/Z) =
0 for these rings.

Dobbs [8] has results relating B(S/Z) to H*S/Z, U) which
together with the triviality of B(Z) imply our results.

§ 2. Norms. If S is a commutative algebra over a commutative
ring R, S™ denotes S S--+ ® S, n times (here and throughout, ®
means Qz), and £: 8" — 8", 4 =0, -+, 0, isgiven by £, Q) +++ Q @,
2@ R QIR 2, QR o+ Q2,,. These maps satisfy &;¢; =
;1.6 for 1 < j. For any ring A, U(A) denotes the group of units of
A. All unexplained notation and terminology is an in [7].

THEOREM 2.0. Let M/K be a galois extension of commutative rings
[6], with group G, and let F be an additive functor on a full sub-
category & of the category of commutative K-algebras, and suppose
M and MQx M lie in . Then for any @ in F(M), y = 3, in ¢ F9(x)
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620 ROBERT A. MORRIS
lies in Ker(Fe, — F&e).

Proof. By Theorem 8.1 of [6] there are orthogonal idempotents
e, (9 in G), in MQx M with e, =1 and sQ1=2,1Rg(s)e,  In
the above notation this becomes: ¢&,(s) = > ,6.(9(s))e, for all s in M.

Now >,e, = 1 implies that M Qx M = I(M Qx M)e, as K-algebras.
Thus, if 7, denotes the projection of the ¢* component, we have 7,
= 7,59 as maps M — (M Qi M)e,. Now y = > i ¢ Fh(z) is trivially
invariant under Fg so we obtain Fr Fs,(y) = Fr, Fe,Fg(y) = Fr, Fe,(y)
for each ¢ in G. By the additivity of F, this implies Fe,(y) = Fe,(y)
as was to be shown.

Now let R be the ring of integers of an algebraic number field
K. Let M be a finite galois field extension of K with group G and
S its ring of integers and let M: K = n. For each ¢ = 0 there is a
map #n;: U(S*™)— U(S*Q R) given by n,(X#,Q ++ - Qu;) = 11, 1n ¢ >0, R
Qi Q g(s).

Now S+ is projective, hence faithfully flat as an S*® R module.
By [7, Lemma 3.8] S°® R = Ker(S** 2=5 S+ ®j 8525 "), so applying
Thm. 2.0 to M**/(M* Qx K)(here M = M Qx M--- ®x M) noting that
the natural map S”— M" is injective for all n we see that the map

n; indeed has its image in S‘Q R.

DEFINITION. The ith norm map, N*: U(S*) — U(S?) is Cn; where
C:S'"® R— S* is the natural isomorphism. N°* is easily seen to be
an abelian group map.

LEMMMA 2.1. If €;: U(S*) — U(S***) denote the maps defined at
the begimning of the section, then Nit'e;(x) = e;N'(®) for 0 <j <1+ 1
and Nte, ., (x) = x", where n = M: K.

Proof. Clear

PROPOSITION 2.2. If d': U(S*™') — U(S™’) is the Amitsur cobound-
ary (given by di(x) = [[ite (@™"7)), then Ni+Hdi(x) = [ Ni(x)] (@) ",

Proof.

Ni+idi(g) = Ni+1ﬁ1 sj(x(—ni) — ﬁ N”‘s,-(x("'“j)
i=o0

j=0

= [l_i[ sti(x(—l)f)] (&™) (—1)8+1

by Lemma 2.1. The proposition then follows from the definition of
di—,
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COROLLARY 2.3. If for x in U(S™') we have d'(x) = 1, then (z™)°
= d"Y(Ni(x)). In particular, nH(S/R, U) =0 for 1 = 1.

REMARK. The above are all closely parallel to results of Amitsur
[1, Thm. 2.10] who defines a norm map via determinants whenever S/R
is finitely generated and free. In the that case, our norm maps agree
with Amitsur’s [1, Lemma 5.2].

We are primarily interested in two-cocycles:

COROLLARY 2.4. Let x in U(S®) have d*(x) = 1. Then N'N*(x) is
in UR)-1s.

Proof. By Corollary 2.3 with 7 = 2, 2" = d'(N*)) and so N*z")
= N (N*x)) = [’ N'N*«)]N*(x") by Proposition 2.2 with ¢ = 1. Hence
d’[N'N*z)] =1 in S S. Since S is projective, hence faithfully flat,
over R, it follows from Lemma 8.8 of [7] that N'N*x) is in R.1
say N'N*x) = r-15. A priori 7 is a unit in S, but not obviously so
in B. Let t be the inverse in S of 7.1y and let ¢ satisfy the integral
equation ™ + r 2™ + <+« 4+ in R[x]. So

O0=(@@"+rt™ 7 4 oo +r)r™ el =14+ 17+ coo + 72"

Hence » is a unit in R, completing the proof.
Henceforth we will suppress the superscripts on norm maps.
Finally we give a technical lemma of general application:

LEMMA 2.5. If R is any commutative ring and S o faithfully
flat R-algebra, then v two cocycle x in U(S?®) lies in SQR SR 1 if and
only if © is in 1QS Q1. In this case x is a coboundary.

Proof. One implication is trivial.

If zisin SS®1 we may write « = &(a) = a®1 for some a
in S®S. Thenl = d*x) = e (x)e,(xV)ey(x)es(x?). Since x = &(a), it is
clear that e,(x) = &,(x), so that

1 = g(m)e,(a7) = g8y(@)eex(a™) = e (a)ee(a™).

Since ¢, is a monomorphism, we have &(a) = ¢,(a). As in the previous
result, an application of Lemma 8.8 of [7] shows that a is in 1 ® S so
that r=a®1 is in 1QS®1. We must have ¢ = 1@ u for some
unit w of Sand so 2 =1QRQuR1 = d'1l R u) = d'(a).
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3. The cohomology of quadratic integers. In this section we
use the results of the last section for explicit computations of co-
homology groups. In this section R = Z and S is the ring of integers
of a quadratic field extension, K, of the rationals, Q. Thus K =
Q(v'm) for a square free integer m. The computations naturally divide
themselves into the cases m =2 or 3 and m = 1 (mod 4).

THEOREM 3.0. Let K = QV'm) with m =2 or 3 (mod 4). If S
denotes the ring of integers of K, then H*S/Z, U) = 0.

Proof. Let p =1"m. Then {1, 0} constitutes a basis of S over Z
[12, Thm. 6-1-1]. For any « and v in Z, the nontrivial @-automor-
phism takes x + yo to @ — yo, so that N + yo) = (x + yv/'m)(x —
yVm) = * — myt.

Now S° is free over S*! (acting on the first 4+ — 1 factors) with
generators 1 ®1 and 11 @, so that N Q1L+ yQp0) =@R1
+YRVm)rR1 —yQ@1Vm) =a* — my* for ¢« and y in S**. For
convenience, we call @1 — y ® o the conjugate of t @1+ yQ e in
St.

Suppose « in U(S®) is a two cocycleand let y = N(x) =a R1 + bR p
with @ and b in S. By Corollary 2.4, a* — mb* = N(y) = =1 in S.
We treat the two cases separately, letting @ = a, + a,0 and b = b, +
b0 with a;, b; in Z.

Case 1. N(y) = 1. Here one easily sees that y ' =a®1 - b p
the conjugate of y. Let M denote the ring homomorphism S® S — S
defined by M(c @ d) = c¢d for ¢ and d in S. Then the unit of S, M(y)
= a + bo has inverse M(y™) = ¢ — bo. Explicitly

@) M(y) = a + bo = a, + mb, + (2, + b)p
and
2) M(y™) = a — bo = a, — mb, + (a, — b)p.

Now NM(y) is in U(Z), so is ==1. If NM(y) =1 we see that
M(y™) = M(y)™* is the conjugate of M(y), that is M(y)™ = (a, + mb,)
— (a, + b)p. Using equation (2) we then have b, = a, = 0. Thus y =
Nx) =a,1Q®1+ 5,:1Q o = &(c) where ¢ = a, + b is in U(S) since
Y =aQ1l-0Qp =&l — bo).

Now by Corollary 2.3 x* = d"(N(x)) = d'(&,(¢c)) = &&o(c)ei&s(c)exE0(C))
= £,6,(€)&,64(€7)E26,(C) = &:65(€) = &5(¢) ® 1 = N(2) ® 1. On the other hand,
if we write t =a@®1+ gQ p with « and g in S?, then 2* = (a® +
mB) ® 1+ 2a8 R p and equating coefficients gives 2ag = 0 and a® +
mp* = N(x) = a® — mg* (by the definition of N). Hence mg* = 0. But
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since the natural map of S? into K*® is injective, S? is torsion free
with no nilpotents, so 8 =0. Thus z = a @1 and so is a coboundary
by Lemma 2.5.

In Case 1 there remains the possibility that NM(y) = — 1. With
the notation of the previous subcase we see that M(y)™ = — (a, + mb,)
+ (@, + b)p, the negative of the conjugate of M(y). Equation (2) here
leads toa, = b, =0 sothat y = N@) = a,0 Q1 + b0 R p. Hence NN(x)
= a0 + mbio® = aim + m*b; = m(ai + mbi). By Corollary 2.4, this must
be + 1;. Since a,, b, and m are integers, this happens only if m =
+1. If m =1, K is not a proper extension (and in any case m is
not congruent to 2 or 3 (mod 4)). We are thus, in Case 1, reduced
to considering the Gaussian integers and must consider solutions of
b, — a: = + 1. Thus in this subcase, 0 = 4. Returning to equation
(1), we have M(y) = — b, + a2 and we have assumed — 1 = NM(y) =
b2 — a = (b, + a,)(b, — a;) in Z. The only solutions of this are b, = 0
and a, = =1. Thus by Corollary 2.3, 2* = d'(N(x)) = d' (@2 ® 1) =
die(a:2)) = e&(an)es(a i Nee,(a:0) = € (ast) (since g6, = €:¢;) and so #?
=+1®1Q®1L. But +1X+®1 is not a square in S* else after apply-
ing the ring homomorphism a X b & ¢ — abe of S® to S, we would have
that =+ 4, and hence %, is a square in S.

Case 2. N(y) = —1. Here y' = —a®1 + bR e and we obtain

3 M(y) = a + bo = a, + mb, + (a; + b)p
and
4 My™) =—a+b0=—a + mb, + (b, — a)p.

Again NM(y) = =1in Z. Asin Case 1, NM(y) = 1 implies M(y™)
= M(y)~" is the conjugate of M(y), that is, M(y™) = (a, + mb,) — (a. + b)p.
Comparing cefficients with (4) gives a, = b, = 0. By computations similar
to the second subcase of Case 1, we are reduced to considering only
m = —1, (S the Gaussian integers) and a2 + 8 = 1 in Z. This equation
has the solutions @, =0 and b,= +1; ¢, = 1, ,=0. b, =0 and
a, = =+ 1 yields, parallel to Case 1, 2* = d'(N(®)) = d'(y) = d' (@t R 1) =
— (1 ® 1@ 1) which again cannot be a square in S°

In the subcase NM(y) = 1 there remains the possibility a, = 0, b
=1. Then again by Corollary 2.3, »* = d'(N(x)) = d'(y) = d'(bt ® 1) =
(1®1QNEERXIXNLEERIR®I) = —bb1RIRY]) = £1RQI1RIL.
That « is a coboundary then follows from Lemma 8.1 below, completing
the subcase NM(y) = 1.

The subcase NM(y) = — 1, by similar computations leads to b, =
a. = 0. As in the first subcase of Case 1, an application of Corollary
2.3 and Lemma 2.5 shows that « is a coboundary, completing Case 2
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and the proof, except for the following Lemma.

LEMMA 3.1. Let S be the Gaussian integers and x in U(S®) a two
cocyle. If o = +1 in S® then x is a coboundary.

Proof. Consider first 2* =1 ®1&® 1. The following are eight solu-
tions in S +x1®I®L, +1RIRE, 1®1R4 and iR R 1.
We claim this exhausts the solutions of the equation in S3. To see
this note that if K = Q(7), then distinct solutions in S*® are also distinct
in K®, K ®, K, since the natural map SR SRS — KR, KR, K is
monic. Since K/Q is galois, K Q, K Q. K is isomorphic to a direct
product of copies of K. Comparing @ dimensions yields K&, K ®, K
=~ K x Kx K x K. Since the only solutions in K of * =1 are *+ 1,
it follows that there are exactly 16 solutions in K ®, K Q, K.

Let x; denote the eight above mentioned distinct solutions which
liein S*andlet y = (1/2)ARIR]L -1 RIR1I—-1RIRT + 1R IR ).
Then it can be seen that %* =1 and {x;, x,y} are solutions of 2* =1
in K&y KXy K. We claim these are distinct and that the z;y do not
lie in S. For both claims it suffices, since the x; are in U(S?), to
show that y cannot lie in S% This follows easily from the fact that
1R1RL, i®i®1, t®1X7and 1 ®17i ¢ are linearly independent
over Z and that 1/2 does not lie in Z.

Thus the x; exhaust the solutions in S® of #* = 1. Now among
these solutions a simple computation shows that the only cocycles are
1®1®1and —1&®11 and these are, respectively d'(1 ®1) and
d'(—1®1). Similarly among the solutions of 2* = -1 ®1&®1 only
+IRIRPL £i1®IR1, L1R1®1 and 1®1QY: lie in S* (the
remaining eight comprise the multiples of these by the element y given
above and again cannot lie in S). The only cocycles are + 1 ®i1®1
and these are coboundaries of 1 ® ¢ and i ® 1 respectively. Thus the
lemma, and so Theorem 3.0, is proved.

THEOREM 3.2. Let K = Q(V'4k + 1). If S denotes the integers of
K, then H*S/Z, U) = 0.

Proof. Let p = (1 + V'4k + 1)/2. Then {1, p} is a basis of S over
Z [12, Thm. 6-1-1]. The nontrivial Q-automorphism of K, since it must
preserve the roots of «* = 4k + 1, takes 4k + 1 to — 4k + 1 and
so takes @ + bo to a + b((L — V/4k + 1)/2) = a + b(1 — p). Hence, N(z)
= a* — b’0* + ab + b*o. Since o> = p + k, we have N(z) = o> — b’k + ab.

As in the previous theorem, the structure of S°as S '-algebra is
analogous to the ring structure on S. That is 15 and 1,:— X p are a
basis and Na® 1+ bR o) = a* + ab — b’k for a,b in S*.

Computations closely paralleling those of the previous theorem show
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that if « is a two cocycle in U(S? then z is in S*® 1 and so by
Lemma 2.5 is a coboundary. As before the computation divides itself
into two cases, NN(x) =1 or NN(x) = — 1. Various subcases lead
either to the desired result or to an equation in integers of the form
2 = a® — 4k. Since a square integer is never congruent modulo four
to two, the theorem is proved.

4. Pic(S® S). Let R be an integral domain whose quotient
field, K, has characteristic not 2. Let S be an integral quadratic exten-
sion of R, that is, S = R[o] where the minimal polynomial of o over R
is p(®) = 2* + ax + b. Let p be the second (and distinet) root of p(x).
Note that S is an integral domain with quotient field K(o), and that o
is in S as a consequence of the familiar formula 0 + o = — a. The
main theorem of this section characterizes the Picard group [5, Ch.
II, Sec. 4] Pic(S ®z S) of rank one projective S @ S modules in terms
of the units of S and of S/(0p — p)/S. Henceforth & means @, and
S’ denotes S/(0 — p)S.

LEMMA 4.0. S® S =S x5 S. That is, in the notation of [3, IX
Sec. 5, p. 478], there are maps h,, h. making

S®s-M.s
® wo
S — 8

a cartesian square (here the unlabelled maps are the natural projec-
tions).

Proof. By assumption, S is free over R on 1 and p, so S® S is
free on 1 and 1 & o when regarded as an S module on the first factor.
For s and ¢in S, define 2,(s Q1 + t @) = s + to and k(s 1 + t R p)
= s+ t0. Then A(a) — hy(a) =t(0o — p) forany e =s@1+t®p in
S® S. Conversely, suppose s, = s, (mod(o — p)S), i.e., s, — s, = s;(0
— 0) for some s, in S. Then taking ¥y = s, and z = s, — s,0 gives s,
=x+yo=hER®l+yRp ands, =2+ yd=h@x®@1+ yQ ). Thus
{(s;;s2) In S x S|s;=s, (mod(o — p)S)} = {(h(a), k(@) e is in S& S}.
Since S is an integral domain, it follows that a — (k.(a), h(a)) is a
monomorphism of S& S into S x S so the square (1) satisfies the de-
finition of cartesian.

REMARK. Let R be the ring of integers of an algebraic number
field, K, with class number 1, and S the integers of a quadratic exten-
sion, L of K. S is finitely generated projective over R (cf. 12, p. 158).
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If {x;, 4;} is a projective coordinate system, the map f:S — R given
by f(x) = 3¢:(x, ;) is a split R-module epimorphism, so that S =
Rl1@® ker F. Since R is a PID, ker f is free and a simple rank argu-
ment (e.g. passing to L) shows kerf= R.p for some p in SE L.
Clearly such a p must satisfy a quadratic monic polynomial over R,
so that S is quadratic over R in the above sense.

THEOREM 4.1. Let S = R|p] be a commutative integral quadratic
extension of an integral domain R, let D be the conjugate of o and let
S = S/(p — p)S. Then the following sequence is exact:

0— USX®S)— US) x US)— US) — Pic(SQ S) — Pic S x Pic S
— Pic §'.

Proof. In view of Lemma 4.0 the above sequence is given by
Theorem 5.3 [3, IX Sec. 5, p. 481].

REMARKS. The maps of the above sequence are those of the Mayer-
Vietoris sequence of [3, VII Sec. 4]. In particular, U(S & S) — U(S)
x U(S) is given by u — (h,(w), hy(w)™") where h; are the maps in Lemma
4.0, and U(S) x U(S) — U(S") is given by (s, t) — n(s)m(t) where 7: S
— S’ is the natural projection. Clearly the image of U(S) x U(S) —
U(S') is the same as the image of 7 restricted to U(S).

COROLLARY 4.2. With R and S as in Theorem 4.1, Pic(S&® S) =
0 if and only if Pic S = 0 and the natural projection U(S) — U(S') is
surjective.

Proof. The R-algebra map 6:S—S & S glven by x——>x® 1 is
split by the map M: x ® y — xy. Hence Pic S P (SR S) =3 P1c S
is identity, so that Pice, is a monomorphism, i.e., Pic S & Pie(S® S).
The corollary is then immediate from Theorem 4.1 and remarks following
it.

Now let K = Q(v/m) be a quadratic field extension of the rationals,
and S be its ring of integers. Asin §3, S = Z[p] where p = 1V'm or
(1 + Vm)/2 according to whether m = 2 or 8 or m =1 (mod 4). We
can easily compute S’:

LEMMA 4.3. If m =1 (mod 4), then S'=Z/mZ.

Proof. Let m = 4k - 1 so that o + 2k = (V“m)p, and write x +
yo =z — 2ky + y(0 + 2k) = © — 2ky + yV'mp = x — 2ky + yo(0 — p) where
%, y lie in Z. Hence z + ypo=2 — 2ky (mod (0 — p)S). Moreover, m =
Vmvm = (o — p)*=0 (mod S(o — p)). Thus if, for an integer a, @
denotes the coset of a mod m, we see that « + yo — = — 2ky is a ring
map of S onto Z/mZ whose kernel, J = {x + yo|x — 2ky = am} is con-
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tained in (0 — p)S. Conversely, since p — p = VVm = — 1 — 20 we have
p—p——1—4k = — m, so that (0 — p)S is contained in J. Thus
S' = Z/mZ.

LEMMA 4.4. Ifm =1 (mod 4) then ' = T = Z/2mZ + Z/2Z(V'm)
(where this ring has the obvious multiplication).

Proof. In this case p=VvVm and p — 7 = 2Vm. Let ~ and ™
denote reduction mod 2m and 2 respectively. Then for z, y in Z,
+ yo — &+ §V/m is a ring map whose kernel is {2ma + 2bo|a, b are
in Z}. Since 2ma + 260 = 2Vm(V'ma + b) = (0 — p)(V'ma + b), this
kernel is just (0 — p)S and the lemma is proved.

Now & is finite in either case; It follows from Proposition 5 of
[5, Ch. 2, Sec. 5, No. 4] that any semi-local ring has trivial Picard
group, hence Pic(S’) = 0 under the hypotheses of Lemmas 4.3 or 4.4.
Suppose that Pic S = 0 and let 7: U(S) — U(S’) denote the map induced
by the projection S — §’. Then employing the remarks following Theo-
rem 4.1 the exact sequence of that theorem becomes in this case

(2 0—-Imnm— US)—Pic(SKQ S) — 0.

THEOREM 4.5. Let K = Q(1'm) be a quadratic extension of the
rational numbers, Q, with m a square free integer. If S denotes the
integers of K, then Pic(S® S) =0 for m = + 3, — 1, 2, and 5 but for
no other value of m.

Proof. For the given values of m, S is a euclidean domain [12,
Propn. 6-4-1] hence a PID, or equivalently [cf. 5, See. 5, No. 7] Pic S
= 0. Referring to Lemmas 4.3 and 4.4 we may easily verify the fol-
lowing table by direct ealculation

m S U(s)

2 ZIAZ + Z2Z2V2 {+=1,+1+ 12}
3 Z)2Z + Z|22V3 (+1,£2+ 173}
5 Z/5Z 1,2,3,4}

where ~ denotes the coset mod 4,6, or 5 respectively.

Now by the Dirichlet units theorem [12, Sec. 6-3], U(S) = {* &'|¢
in Z} where the fundamental unit, ¢, is 1+ 12,2+ 13, or (1L +
1V'5)/2 respectively [11, ““Tables”’]. Referring to Lemmas 4.3 and 4.4
for the definition of = we find in case m = 2 that z(s) =1 + V2,
T(—e)=—-1—-1vV2==-14+12in&. In all cases 7(—1) = —1
and 7(1) = 1. Since  is (the restriction of) a ring map, we see that
7 is onto when m = 2. Similarly when m =3, 7n(e) = 2+ 13 and
(-8 =—-2—-13=—-24+13 and when m =5 7(e) = —2=3
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which generates the cyclic group of units of S’ = Z/5Z. Thus also in
these cases 7 is onto.

If m = — 8 then U(S") = U(Z/3Z) = {+ 1}. = is again onto because
it is the restriction of a ring map. If m = — 1 then U(S) = {1, V' — 1}.
By definition #(v/— 1) = v/ — 1 so that the fact that x is the restriction
of a ring map again implies 7w is onto. That Pic(S® S) = 0 for the
given m now follows from Corollary 4.2.

Now suppose m is not one of the listed integers. By Corollary
4.2 we need only consider integers m for which S isa PID. If m <
— 5, the Units Theorem shows U(S) = = 1. Now §' contains Z/mZ
or Z/2mZ according to whether m =1 (mod 4) or not. Let m =
— PP, +++ p, With p; distinct primes, and consider first m = 1 (mod 4).
Then Z/mZ = Z|p,Z X --+ X Z|p,Z with p; odd primes. There being
only two units in S, if 7 is to be onto we must clearly have » =1
and p, = 3, so 7 is not onto. Similarly, if — 5 <m = 3 (mod 4), Z/2mZ
= Z2Z X Z|p.Z X +++ X Z]p,Z which has the same units as Z/mZ and,
as above 7 is not onto. If m =2 we take p, = 2, so that Z/2mZ =
ZIAZ X Z|pZ X +++ X Z|p,Z. Again, if 7 is to be onto there can be
no factors other than p,, since Z/4Z has 2 units, so that for no m <
— 5 can m be onto.

Consider now m > 5. For any unit a + bo in S we have that the
norm

N(a + bo) = (e + bo)(a + bp)
is a unit in Z, so
+1=(a+ bo)(a + b9) = (a + bo)*(mod(p — P)S).

Squaring shows that for any unit v in §' = S/(0 — p)S we have v* =
1. Now the Units Theorem shows that U(S) is the direct product of
the cyclic group < -— 1> of order two, generated by —1 with an in-
finite cyclic group < ¢ > for some unit ¢, called the fundamental unit.
It then follows that Im w e U(S’) is a group of exponent dividing four,
generated by two elements, one, namely 7(— 1), of order at most two.
In particular Im 7= has at most eight elements.

Suppose first that m = 2p, - -+ p, with p; distinet odd primes. Then
S 2 Z2mZ = ZJAZ x Z[p,Z x «-+ X Z|p.Z. If this ring is to have at
most eight units we must clearly have p; < 5. Indeed m = 6 or m =
10 are the only possibilities, since m = 30 produces more than eight
units. However, if m = 6 or 10, S is not a PID [11, ‘‘Tables’] so
by Corollary 4.2 we can not have Pic(S® S) = 0. Thus in all possible
remaining cases, n = 2k implies 7 is not onto and again Corollary 4.2
shows Pic(S® S) = 0.

Consider next m = 8 (mod 4) and write m = p, -+ p, as the product
of distinet odd primes. Then
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S' 2Z2mZ = Z|2Z X Z|pZ X +++ X Z|p,Z.

In order to have at most eight units we must have each p, < 7. But
some p; = 7 would entail a unit of order three which can not happen.
Since m > 5, we see that 7 is onto possibly only if m = 15. But
in this case S is not a PID [11, ‘“‘Tables’’] so again we can not have
Pic(S® S) = 0.

Finally there remains the case m =1 (mod 4). If m = pp, -+ p,,
then the units of S = Z/mZ = Z/p,Z x -+« x Z|p,Z are the same as
those of Z2mZ = Z/2Z x Z|p,Z X «++ X Z[p.Z s0 the same argument as
above for m = 3 shows that Pic(S Q S) = 0 only for the listed values
of m =1 (mod 4), completing the proof.

5. B(S/Z). All notation is as in [7].

THEOREM 5.0. Let K = Q(V'm) with m a square free integer and
Q@ the rationals. Let S be the ring of integers of K. Then the split
Brauer group B(S/Z) is zero when m = — 3, —1,2,8 or 5.

Proof. In each case S is euclidean [12, Propn. 6-4-1] hence a PID.
Thus as remarked in §4, Pic S = 0, so that H°(S/R, Pic), being a sub-
group of Pic S, is zero. By Theorem 4.3, Pic(S® S) = 0, hence
H'(S/Z, Pic), which is a homomorphic image of a subgroup of Pic(S& S),
is zero. It then follows from Theorem 7.6 of [7] that B(S/Z) =
H*S/Z, U) and the result follows from Theorems 3.0 and 3.2.

Using the global class field theory, one can prove that in fact
B(S/Z) = B(Z) = 0 [9]. Dobbs [8] has exploited this fact to obtain
an improvement of our Theorems 3.0 and 3.2. Of course the conclu-
sion of Theorem 4.5 is more than is needed to show B(S/Z) =0. It
would suffice to prove directly that H'(S/Z, Pic) = 0 or that the map
H\(S/Z, Pic) — H*(S/Z, U) given in Theorem 7.6 of [7] is a monomor-
phism. However, HY(S/Z, Pic) does not seem amenable to computation
at the present time.
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