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In the terminology of G. Ήigman, a finite group with
order divisible by 3 in which centralizers of 3-elements are
3-groups is called a Cθθ-gronp.

The aim of this paper is to classify simple C##-groups
which involve no Suzuki simple groups.

Although simple C#0-groups have been studied by several
authors, their general classification remains an unsolved
problem.

We will prove the following

THEOREM. Let G be a simple Cθθ-group and suppose that G in-
volves no Suzuki simple groups. Then G is isomorphic to one of the
following groups: P S L ( 2 , 4 ) ; P S L ( 2 , 8 ) ; P S L ( 3 , 4 ) ; PSL(2, 3 " ) , n > l

and PSL(2,q), q such that (q + l)/2 or (q — l)/2 is a power of 3.

It follows immediately from the Theorem that the following
characterization of PSL(2, 8) holds:

COROLLARY 1. Let G satisfy the assumptions of the Theorem and
suppose that no element of G of order 3 normalizes a nontrivial 2-
subgroup of G. Then G ~ PSL(2, 8).

The Theorem leads also to a complete classification of simple
Cθθ-groups whose order is divisible by at most four distinct primes.
We have

COROLLARY 2. Let G be a simple Cθθ-group and suppose that
\π(G)\ = 3. Then G is isomorphic to one of the following groups:
PSL(2, 4), PSL(2, 7), PSL(2, 8), PSL(2, 9) and PSL(2,17),

and

COROLLARY 3. Let G be a simple Cθθ-group and suppose that
π(G) I = 4. Then G is isomorphic to one of the following groups:

PSL(3f 4) and those among PSL(2, 3*)> n > 1 and PSL(2, q), q ± 1 =
2 3% r > 1, which are divisible by exactly four distinct primes.

2. Proof of the Theorem* We will prove first the following
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PROPOSITION. Let G be a nonsolvable Cθθ-group. Then at least
one of the following statements holds.

( i ) Whenever a section K/M of G is isomorphic to a minimal
simple group L, then either L is a Suzuki group or M — {1} and L
is PSL(2, 8).

(ii) Some nontrivial 2-subgroup of G is normalized by an ele-
ment of order 3.

Proof of the Proposition. Let G be a counter-example. Then
there exist subgroups K and M of G, M normal in K, such that K/M
is isomorphic to a minimal simple group L which is not of Suzuki
type and if M = {1} then L is not PSL(2, 8). By Thompson's theorem
[5, Corollary 1] L is one of the following: PSL(2, 2P), p any prime,
PSL(2,3P), P any odd prime; PSL(2, p), p any prime exceeding 3
such that P 2 + 1 Ξ 0 (mod 5) and PSL(3, 3). Denote by Q the Sylow
3-subgroup of K. Since a Sylow 3-subgroup of a nonsolvable Cθθ-
group is abelian [1, Theorem 2.9], L is not PSL(S, 3) and Q is the
centralizer in K of each of its nonunit elements. Suppose that
there exists a normal complement S of NK(Q) in K. Since M is a
maximal normal subgroup of K, it follows that either K = NK{Q)M or
K — SM, and consequently L — K/M has a normal (possibly trivial)
Sylow 3-subgroup, a contradiction. Thus NK(Q) has no normal com-
plement in K and by [2, Theorem 2.3.e] the fact that 3 divides the
order of L implies that 3 does not divide the order of M. It follows
then by the results of Stewart1, [4, Propositions 3.2 and 4.2] that
M = {1} if L = PSL(2, q), where q = 3P or q = p > 5 and M is a 2-
group if L = PSL(2, q), where q = 2P. Since no element of order 3
in G normalizes a nontrivial 2-subgroup of G, M= {1} in all cases
and L is not PSL(2, 8). It is well known that the Sylow 2-subgroups
of PSL(2, g), where q = 3P> p > 2 or q = p > 3, p a prime, are nor-
malized by an element of order 3. Consequently, L = PSL(2, 2P),
where p is a prime exceeding 3. Since the Sylow 3-subgroups in L
are the centralizers of each of their nonidentity elements, it follows
that 2P ± 1 = 3& for some k. This equation has no solution for p > 3
and consequently G does not exist.

We proceed with a proof of the Theorem. If case (ii) of the
Proposition holds, then it follows from the results of Fletcher and
Gorenstein [1, Corollary 3.2] that G is isomorphic to one of the groups
mentioned in the Theorem, PSL(2, 8) excluded. If case ( i ) of the
Proposition holds, but not case (ii), then we will show that G is an
iV-group and it follows then from Thompson's classification theorem of

1 The author is indebted to Dr. W. B. Stewart for communication of results prior
to publication.
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simple iSΓ-groups [5] that only PSL(2, 8) is a CΘΘ-gτovφ of the re-
quired type.

Let U be a ^-subgroup of G with a nonsolvable normalizer. By
our assumptions and by the Proposition N = NG{U) contains a sub-
group V isomorphic to PSL(2, 8). As Vf]U= {1}, VU/U is isomor-
phic to PSL(2, 8) and consequently U = {1}. Thus G is an iV-group
and the proof is complete.

3* Proof of the corollaries* Since PSL(2, 8) is the only group
mentioned in the Theorem without an element of order 3 normalizing
a nontrivial 2-subgroup, Corollary 1 immediately follows from the
Theorem.

If I π(G) I = 3 then G does not involve Suzuki groups and by the
Theorem and [3, Theorem 3] it is isomorphic to one of the following:
PSL(2,4), PSL(2,7), PSL(2, 8), PSL(2, 9) and PSL(2,Π).

Corollary 3 follows from the fact that 3 divides the order of G
and 3 does not divide the order of the Suzuki groups. Consequently,
as the Suzuki groups have orders divisible by at least 4 distinct
primes, G does not involve them. Corollary 3 follows therefore im-
mediately from the Theorem.
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