CONCERNING WEB-LIKE CONTINUA

JOHN WALTER HINRICHSEN
The compact metric continuum M is said to be a web if and only if there exist two monotone upper semi-continuous decompositions G_1 and G_2 of M such that M/G_1 and M/G_2 are arcs and each element of G_1 intersects each element of G_2. It is shown that there exists in Euclidean 3-space a compact continuum M that is not a web but does have two monotone upper semicontinuous decompositions G_1 and G_2 such that (1) M/G_1 and M/G_2 are simple closed curves and (2) each element of G_1 intersects each element of G_2. Such continua are called pseudo-webs.

This solves a problem suggested to the author by Professor R. L. Moore. It is also shown that there do not exist pseudo-webs in the plane.

THEOREM 1. Suppose M is a metric chainable continuum, J is a simple metric closed curve, and g_1 and g_2 are mutually exclusive subcontinua of $M \times J$ such that if P is a point of M, then g_1 and g_2 intersect $P \times J$. Then no subcontinuum of $M \times J$ separates g_1 from g_2 in $M \times J$.

Proof. Suppose there is a subcontinuum g of $M \times J$ which separates g_1 from g_2 in $M \times J$. Let ε denote a positive number less than the distances from g_1 to $g_2 + g$ and g_2 to $g_1 + g$. There exists an ε-map f from M onto $[0, 1]$. If P is a point of M and j is in J, let $T(P, j) = (f(P), j)$. T is an ε-map from $M \times J$ onto $[0, 1] \times J$. If P is a point of $[0, 1]$, $T(g)$, $T(g_1)$, and $T(g_2)$ are mutually exclusive continua intersecting $P \times J$.

By Theorem 29 of Chapter IV of [5], there exist two mutually exclusive arcs α_1 and α_2, each intersecting $0 \times J$ and $1 \times J$, such that (1) only the endpoints of α_1 and α_2 lie on $0 \times J$ and $1 \times J$, and (2) $\alpha_1 + \alpha_2$ separates $T(g)$ from $T(g_1 + g_2)$ in $[0, 1] \times J$. $(0, 1] \times J - (\alpha_1 + \alpha_2)$ is the sum of two mutually separated connected point sets, D and D' containing $T(g)$ and $T(g_1 + g_2)$, respectively. Let β denote $\bar{D}(0 \times J)$. β is an arc of $0 \times J$ that intersects $T(g_1)$ and $T(g_2)$ and does not intersect $T(g)$.

Let Z be a point of $T^{-1}(\beta)$. Let Z' denote the point of M such that Z is a point of $Z' \times J$. Let P_1 and P_2 denote points of $g_1'(Z' \times J)$ and $g_2'(Z' \times J)$, respectively. Since g separates g_1 from g_2 in $M \times J$, there exist two points X_1 and X_2 of g which separate P_1 from P_2 in $(Z' \times J)$. Then $T(X_1) + T(X_2)$ separates $T(P_1)$ from $T(P_2)$ in $(0 \times J)$. Then β contains
either $T(X_1)$ or $T(X_3)$. This involves a contradiction. Hence g does not separate g_1 from g_2 on $Z' \times J$. Therefore, there is a connected subset of $Z' \times J$ that intersects g_1 and g_2 but not g, and hence g does not separate g_1 from g_2 in $M \times J$.

Theorem 2. The Cartesian product of a metric chainable indecomposable continuum with a metric simple closed curve is a pseudo-web.

Proof. Let M denote a chainable indecomposable continuum in the xy-plane of E^3 and J denote a simple closed curve. It will first be shown that there exist two monotone upper semi-continuous decompositions, G_1 and G_2, of $M \times J$ such that each element of G_1 intersects each element of G_2 and $(M \times J)/G_1$ and $(M \times J)/G_2$ are simple closed curves. It will then be shown that there is no monotone upper semi-continuous decomposition of $M \times J$ which is an arc with respect to its elements.

Let L denote a line in the xy-plane parallel to the y-axis not intersecting M. $M \times J$ is homeomorphic to the point set obtained by revolving M about L. Let H_i denote the collection to which h belongs if and only if for some half-plane A with L on its boundary, g is $M' \cdot A$. Let P denote a point of L which is on a horizontal line intersecting M, and L' denote a line in the xy-plane distinct from L such that L' contains P and does not intersect M. L' is not perpendicular to L. Let H_2 denote the collection to which h belongs if and only if for some half-plane A with U on its boundary, h is $M' \cdot A$.

M'/H_1 and M'/H_2 are simple closed curves. There exist an arc H'_i of elements of H_i and an arc H'_2 of elements of H_2 such that each element of H'_i intersects each element of H'_2. For each $i = 1, 2$, let G_i denote the collection to which g belongs if and only if g is a separating element of H'_i or g is $(H_i - H'_i)$. G_1 and G_2 are two monotone upper semi-continuous decompositions of M such that each of M/G_1 and M/G_2 is a simple closed curve and each element of G_i intersects each element of G_2.

Therefore, in order to prove that $M \times J$ is a pseudo-web, it will be sufficient to show that there is no monotone upper semi-continuous decomposition of M which is an arc with respect to its elements.

Suppose there exists a monotone upper semi-continuous decomposition G of $M \times J$ such that M/G is an arc. Suppose g is a separating element of G and there is a point P of M such that g does not intersect $P \times J$. Let M_s denote the set of all points Q of M such that g intersects $Q \times J$. Since g is closed and connected, M_s is closed and connected. Therefore, since M_s is a proper subset of M, M_s is a subset of some composant C of M. Hence, g is a subset of $C \times J$.

But $(M - C) \times J$ is connected and $(M - C) \times J$ is $M \times J$. Therefore,

Let \(g \) and \(g_2 \) denote two separating elements of \(M/G \), and let \(g \) denote an element of \(G \) between \(g \) and \(g_2 \). \(M, J, g_2 \), and \(g \) satisfy all the conditions of Theorem 1. Therefore, \(g \) is not a continuum. This involves a contradiction. Therefore, there is no monotone upper semi-continuous decomposition \(G \) of \(M \times J \) such that \((M \times J)/G\) is an arc. Hence, \(M \) is not a web and therefore, \(M \) is a pseudo-web.

REMARKS. It can also be shown that there exists an example of a pseudo-web that contains no essential continuum of condensation. Also, in the plane, a square disc \(D \) is a web. But since \(D \) is unicoherent, it follows that if \(G \) is a monotone upper semi-continuous decomposition of \(D, D/G \) is not a simple closed curve.

Furthermore, a 2-torus does not have a dendratomic subset and therefore, by Theorem 48 of chapter V, part 1, of [5], a 2-torus is a web. However, one might wonder if the Cartesian product of a circularly chainable indecomposable continuum that is not chainable with a simple closed curve is a pseudo-web.

THEOREM 3. There is no plane pseudo-web.

Proof. Suppose \(M \) is a pseudo-web in the plane \(\Sigma \). Then there exist two monotone upper semi-continuous decompositions \(G_1 \) and \(G_2 \) of \(M \) such that (1) each of \(M/G_1 \) and \(M/G_2 \) is a simple closed curve and (2) each element of \(G_1 \) intersects each element of \(G_2 \).

For each point \(P \) of \(M \), let \(g_P \) denote the component containing \(P \) of the common part of the continuum of \(G_1 \) that contains \(P \) and the continuum of \(G_2 \) that contains \(P \), and \(G \) denote the collection of all continua \(g_P \) for all points \(P \) of \(M \). Then by Theorem 7 of Chapter V, part 2, of [5], \(G \) is a continuous curve with respect to its elements.

Let \(G' \) denote the collection to which \(g' \) belongs if and only if \(g' \) is an element \(g \) of \(G \) together with all the points not in \(M \) which are separated from an element of \(G \) by \(g \), if there are any. Let \(S' \) denote the collection of all continua \(P' \) such that \(P' \) is either a continuum of the collection \(G' \) or a point which neither belongs to a continuum of \(G' \) nor is separated by any continuum of \(G' \) from any other continuum of \(G' \). Let \(S \) denote the set of all points of \(\Sigma \) and \(\Sigma' \) denote \(S/S' \). Then \(\Sigma' \) is topologically equivalent to \(\Sigma \) or to a sphere. \(G' \) in \(\Sigma' \) is a continuum.

For \(i = 1, 2 \), let \(G_i \) denote the collection to which \(g' \) belongs if and only if for some element \(g \) of \(G_i \), \(g' \) is the sum of all the elements of \(G' \) that intersect \(g \). The continuum \(G' \) together with the collections
G' and G_2' satisfy all the conditions of Theorem 1 of [1]. Hence G' is a simple plane web or simple web that is a subset of a sphere. Hence, there exist two monotone upper semi-continuous decompositions H'_1 and H'_2 of G' such that each of G'/H'_1 and G'/H'_2 is a dendron and if h'_1 and h'_2 are elements of H'_1 and H'_2, respectively, then $h'_1 \cdot h'_2$ exists and is totally disconnected. For each $i = 1, 2$, let H_i denote the collection to which h belongs if and only if for some h' in H'_i, h is the set of all points of M in Σ which belong to an element of h' in Σ. H_1 and H_2 are monotone upper semi-continuous decompositions of M such that (1) M/H_1 and M/H_2 are dendrons and (2) each element of H_i intersects each element of H_2. H_1 and H_2 satisfy the conditions of an equivalent definition of a web given on page 297 of [5]. Hence, by Theorem 41 of Chapter V of [5], M is a web.

In conclusion, the following questions may be raised. Does there exist a compact metric continuum M that is not a web but does have two monotone upper semi-continuous decompositions G_1 and G_2 of M satisfying the conditions of a pseudo-web except that M/G_1 is an arc and M/G_2 is a simple closed curve? Also, does every pseudo-web contain uncountably many mutually exclusive webs? Does every web contain an indecomposable continuum?

REFERENCES

Received April 15, 1970 and in revised form June 1, 1971.

Auburn University
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California

C. R. HOBBY RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY *
UNIVERSITY OF OREGON *
OSAKA UNIVERSITY *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
Pacific Journal of Mathematics
Vol. 39, No. 3 July, 1971

William O’Bannon Alltop, 5-designs in affine spaces 547
B. G. Basmaji, Real-valued characters of metacyclic groups 553
Miroslav Benda, On saturated reduced products 557
J. T. Borrego, Haskell Cohen and Esmond Ernest Devun, Uniquely representable semigroups. II .. 573
George Lee Cain Jr. and Mohammed Zuhair Zaki Nashed, Fixed points and stability for a sum of two operators in locally convex spaces 581
Donald Richard Chalice, Restrictions of Banach function spaces 593
Eugene Frank Cornelius, Jr., A generalization of separable groups 603
Joel L. Cunningham, Primes in products of rings 615
Robert Alan Morris, On the Brauer group of Z 619
David Earl Dobbs, Amitsur cohomology of algebraic number rings 631
Charles F. Dunkl and Donald Edward Ramirez, Fourier-Stieltjes transforms and weakly almost periodic functionals for compact groups 637
Hicham Fakhoury, Structures uniformes faibles sur une classe de cônes et d’ensembles convexes ... 641
Leslie R. Fletcher, A note on Cθθ-groups 655
Humphrey Sek-Ching Fong and Louis Sucheston, On the ratio ergodic theorem for semi-groups .. 659
James Arthur Gerhard, Subdirectly irreducible idempotent semigroups 669
Thomas Eric Hall, Orthodox semigroups 677
Marcel Herzog, Cθθ-groups involving no Suzuki groups 687
John Walter Hinrichsen, Concerning web-like continua 691
Frank Norris Huggins, A generalization of a theorem of F. Riesz 695
Carlos Johnson, Jr., On certain poset and semilattice homomorphisms 703
Alan Leslie Lambert, Strictly cyclic operator algebras 717
Howard Wilson Lambert, Planar surfaces in knot manifolds 727
Robert Allen McCoy, Groups of homeomorphisms of normed linear spaces 735
T. S. Nanjundiah, Refinements of Wallis’s estimate and their generalizations 745
Roger David Nussbaum, A geometric approach to the fixed point index 751
John Emanuel de Pillis, Convexity properties of a generalized numerical range 767
Donald C. Ramsey, Generating monomials for finite semigroups 783
William T. Reid, A disconjugacy criterion for higher order linear vector differential equations ... 795
Roger Allen Wiegand, Modules over universal regular rings 807
Kung-Wei Yang, Compact functors in categories of non-archimedean Banach spaces .. 821
R. Grant Woods, Correction to: “Co-absolutes of remainders of Stone-Čech compactifications” .. 827
Ronald Owen Fulp, Correction to: “Tensor and torsion products of semigroups” .. 827
Bruce Alan Barnes, Correction to: “Banach algebras which are ideals in a banach algebra” ... 828