A GENERALIZATION OF A THEOREM OF F. RIESZ

FRANK NORRIS HUGGINS
A GENERALIZATION OF A THEOREM OF F. RIESZ

FRANK N. HUGGINS

In this paper, the concept of bounded slope variation, that of the derivative of a function with respect to an increasing function, and the Lane integral are used to obtain a generalization of a theorem of Frédéric Riesz.

In [3], R. E. Lane defined an integral which is an extension of the Stieltjes mean sigma integral defined by H. L. Smith [5]. If each of \(f \) and \(g \) is a real-valued function whose domain includes \([a, b]\) and \(D = \{x_i\}_{i=0}^{n} \) is a subdivision of \([a, b]\), then \(S_\sigma(f, g) \) denotes the sum

\[
\sum_{i=1}^{n} \frac{1}{2} [f(x_i) + f(x_{i-1})][g(x_i) - g(x_{i-1})].
\]

The concepts of singular graph, exceptional number and summability set are as in [3]. If each of \(f \) and \(g \) is a real-valued function whose domain includes \([a, b]\) and if there exists a summability set \(G \) for \(f \) and \(g \) in \([a, b]\), then the Lane integral \(\int_{a}^{b} f\,dg \) is the refinement limit

\[
\lim_{b \to a} S_\sigma(f, g).
\]

In case the entire interval \([a, b]\) is a summability set for \(f \) and \(g \) in \([a, b]\), the Lane integral \(\int_{a}^{b} f\,dg \) is the Stieltjes mean sigma integral \(M\int_{a}^{b} f\,dg \).

By Theorem 4.1 of [2], if \(f \) is quasicontinuous on \([a, b]\) and \(g \) is of bounded variation on \([a, b]\), then \(\int_{a}^{b} f\,dg \) exists. (A function \(f \) is said to be quasicontinuous at \((c, f(c))\) if both \(f(c+) \) and \(f(c-) \) exist.)

DEFINITION 1. The statement that \(f \) has bounded slope variation with respect to \(m \) over \([a, b]\) means that \(f \) is a function whose domain includes \([a, b]\), \(m \) is a real-valued increasing function on \([a, b]\), and there exists a nonnegative number \(B \) such that if \(\{x_i\}_{i=0}^{n} \) is a subdivision of \([a, b]\) with \(n > 1 \), then

\[
\sum_{i=1}^{n-1} \left| \frac{f(x_{i+1}) - f(x_i)}{m(x_{i+1}) - m(x_i)} - \frac{f(x_i) - f(x_{i-1})}{m(x_i) - m(x_{i-1})} \right| \leq B.
\]

The least such number \(B \) is called the slope variation of \(f \) with respect to \(m \) over \([a, b]\) and is denoted by \(V_\sigma^m(df/dm) \). [Note: \(V_\sigma^m(df/dm) = 0 \).]

The above sum is nondecreasing with respect to refinements.

In [4], F. Riesz proved that a necessary and sufficient condition
that a function F defined on the interval $[a, b]$ be the integral of a function of bounded variation on $[a, b]$ is that F have bounded slope variation with respect to I over $[a, b]$, where I is the function defined, for each x, by $I(x) = x$. In this paper, Riesz's result will be generalized using the Lane integral instead of the Riemann integral.

By Lemma 3.3 of [6], if f has bounded slope variation with respect to m over $[a, b]$ and $a \leq c < b$, then

$$D^+_m f(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{m(x) - m(c)}$$

exists and if $a < c \leq b$,

$$D^-_m f(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{m(x) - m(c)}$$

exists.

Lemma 1. If f has bounded slope variation with respect to m over $[a, b]$, c is a number in $[a, b]$, and m is continuous on the right (left) at $(c, m(c))$, then f is continuous on the right (left) at $(c, f(c))$.

Proof. Let ε denote a positive number and let c be a number in $[a, b]$. Suppose m is continuous on the right at $(c, m(c))$. Then $a \leq c < b$ and $D^+_m f(c)$ exists. Therefore there exists a positive number δ_1 such that if $c < x < c + \delta_1$, then

$$\left| \frac{f(x) - f(c)}{m(x) - m(c)} - D^+_m f(c) \right| < \varepsilon$$

from which it follows that

$$|f(x) - f(c)| < [\left| D^+_m f(c) \right| + 1] |m(x) - m(c)| .$$

Since m is continuous on the right at $(c, m(c))$, there exists a positive number δ_2 such that if $c < x < c + \delta_2$, then $|m(x) - m(c)| < \varepsilon/[\left| D^+_m f(c) \right| + 1]$. Let $\delta = \min. [\delta_1, \delta_2]$. Then if $c < x < c + \delta$,

$$|f(x) - f(c)| < [\left| D^+_m f(c) \right| + 1] |m(x) - m(c)|$$

$$< [\left| D^+_m f(c) \right| + 1] \cdot \varepsilon/[\left| D^+_m f(c) \right| + 1]$$

$$= \varepsilon .$$

Therefore f is continuous on the right at $(c, f(c))$.

If m is continuous on the left at $(c, m(c))$, a similar argument will show that f is continuous on the left at $(c, f(c))$.

Definition 2. Suppose m is an increasing function on $[a, b]$, f is
A function whose domain includes \([a, b]\) and \(c\) is a number in \([a, b]\). The statement that \(f\) has a derivative with respect to \(m\) at the point \((c, f(c))\) means that

\[
D_m f(c) = \lim_{x \to c} \frac{f(x) - f(c)}{m(x) - m(c)}
\]

exists.

Theorem 1. If \(f\) has bounded slope variation with respect to \(m\) over \([a, b]\), then \(D_m f(x)\) exists for each \(x\) in \([a, b] - E\), where \(E\) is a countable set.

Proof. Since \(f\) has bounded slope variation with respect to \(m\) over \([a, b]\), \(D_+ f(x)\) exists for each \(x\) in \([a, b]\) and \(D_- f(x)\) exists for each \(x\) in \((a, b]\). Let \(E_1\) denote the set of all numbers \(x\) in \([a, b]\) such that \(D_- f(x) < D_+ f(x)\) and let \(E_2\) denote the set of all numbers \(x\) in \([a, b]\) such that \(D_- f(x) > D_+ f(x)\). Let all rational numbers be arranged in a sequence \(r_1, r_2, r_3, \ldots\). Then if \(c\) is a number in \(E_1\) there is a smallest positive integer \(k\) such that

\[
D_m f(c) < r_k < D_+ f(c)
\]

There is a smallest positive integer \(h\) such that \(r_h < c\) and

\[
\frac{f(x) - f(c)}{m(x) - m(c)} < r_k
\]

for \(r_h < x < c\) and a smallest positive integer \(n\) such that \(r_n > c\) and

\[
\frac{f(x) - f(c)}{m(x) - m(c)} > r_k
\]

for \(c < x < r_n\). These two inequalities together give

(1) \[f(x) - f(c) > r_k [m(x) - m(c)]\]

for \(r_h < x < r_n, x \neq c\). Thus to every number \(c\) in \(E_1\) there corresponds a unique triad \((h, k, n)\) of positive integers. Suppose some two numbers \(x_1\) and \(x_2\) of \(E_1\) correspond to the same triad \((h, k, n)\). Then, on putting \(c = x_1\) and \(x = x_2\) in (1), we have

\[
f(x_1) - f(x) > r_k [m(x_2) - m(x_1)]
\]

and, on putting \(c = x_2\) and \(x = x_1\),

\[
f(x_1) - f(x_2) > r_k [m(x_2) - m(x_1)]
\]

or
This involves a contradiction. Therefore no two numbers of E_i correspond to the same triad. Since the set of triads of positive integers is countable, it follows that E_i is countable. A similar argument will show that E_2 is countable. Therefore $E = E_i \cup E_2$ is countable.

Theorem 2. If the function m is increasing on $[a, b]$, each of the functions f and g is continuous on $[a, b]$ and $D_m f(x) = D_m g(x)$ for each x in $[a, b] - H$, where H is a countable set, then $f(x) = g(x) - g(a) + f(a)$ for each x in $[a, b]$.

Proof. Let F be the function defined, for each x in $[a, b]$, by $F(x) = f(x) - g(x)$. Then F is continuous on $[a, b]$ and $D_m F(x) = 0$ for each x in $[a, b] - H$. Let ε denote a positive number and let c be a number in $[a, b]$. Let $H \cap [a, c] = \{p_1, p_2, \ldots, p_n, \ldots\}$. Since F is continuous on $[a, b]$, for each positive integer n there exists a positive number δ_n such that if x is in $(p_n - \delta_n, p_n + \delta_n) \cap [a, c]$, then

$$|F(x) - F(p_n)| < \frac{\varepsilon}{2^n}.$$

Let $h_n = (p_n - \delta_n, p_n + \delta_n)$. It follows that if x_1 and x_2 are numbers in $h_n \cap [a, c]$, then

$$|F(x_1) - F(x_2)| < \frac{\varepsilon}{2^{n+1}}.$$

For each n, choose some particular h_n satisfying the above conditions. Now consider any number t in $[a, c] - H \cap [a, c]$. Then $D_m F(t) = 0$. If t is in (a, c), there is a positive number δ_t such that $(t - \delta_t, t + \delta_t)$ is a subset of (a, c) and if x is in $(t - \delta_t, t + \delta_t)$ and $x \neq t$, then

$$|F(x) - F(t)| < \frac{\varepsilon}{12[m(c) - m(a)]}$$

or

$$|F(x) - F(t)| < \frac{\varepsilon |m(x) - m(t)|}{12[m(c) - m(a)]} < \frac{\varepsilon \cdot V(t)}{12[m(c) - m(a)]}$$

where $V(t)$ is the variation of m over $[t - \delta_t, t + \delta_t]$. If $t = a$, there exists a positive number δ_a such that if $x \neq a$ and x is in $(a - \delta_a, a + \delta_a) \cap [a, c]$, then

$$|F(x) - F(a)| < \frac{\varepsilon \cdot V(a)}{12[m(c) - m(a)]}$$

where $V(a)$ is the variation of m over $[a, a + \delta_a]$. If $t = c$, there exists
a positive number δ, such that if $x \neq c$ and x is in $(c - \delta, c + \delta) \cap [a, c]$, then

$$|F(x) - F(c)| < \frac{\varepsilon \cdot V(c)}{12[m(c) - m(a)]}$$

where $V(c)$ is the variation of m over $[c - \delta, c]$. It follows that if t is in $[a, c] - H \cap [a, c]$ and x_1 and x_2 are numbers in $(t - \delta, t + \delta) \cap [a, c]$, then

$$|F(x_1) - F(x_2)| < \frac{\varepsilon \cdot V(t)}{6[m(c) - m(a)]}.$$

Let $g_t = (t - \delta, t + \delta)$. For each t in $[a, c] - H \cap [a, c]$, choose some particular g_t satisfying the above conditions. Let G denote the collection to which g belongs if and only if either (1) for some positive integer n, $g = h_n$ or (2) for some t in $[a, c] - H \cap [a, c]$, $g = g_t$. G is a collection of open intervals covering $[a, c]$, hence there exists a finite sub-collection G' of G that covers $[a, c]$. Choose a finite chain \(\{R_1, R_2, \ldots, R_k\} \) of intervals of G' covering $[a, c]$ and having the property that if $R_i \cap R_j \neq \emptyset$, then $|i - j| = 1$. Let $a = x_n, x_1$ be a number in $R_1 \cap R_n$, x_2 be a number in $R_1 \cap R_n$, \ldots, x_{k-1} be a number in $R_{k-1} \cap R_k$, and $x_k = c$. Note that if for every $i \leq k$, R_i is g_t for some t in $[a, c] - H \cap [a, c]$ and $V_i = V(t)$ for that t, then

$$\sum_{i=1}^{k} V_i < 3[m(c) - m(a)].$$

Now

$$F(c) - F(a) = \sum_{i=1}^{k} [F(x_i) - F(x_{i-1})].$$

Therefore

$$|F(c) - F(a)| \leq \sum_{i=1}^{k} |F(x_i) - F(x_{i-1})|$$

$$= \sum_{i=1}^{k} |F(x_i) - F(x_{i-1})|$$

where the first sum is the sum of those terms for which R_i is some h_n and the second sum is the sum of those terms for which R_i is some g_t. Now x_{i-1} and x_i are in R_i so that

$$|F(x_i) - F(x_{i-1})| < \begin{cases} \frac{\varepsilon}{2^{i+1}} & \text{if } R_i = h_n \\ \frac{\varepsilon \cdot V(t)}{6[m(c) - m(a)]} & \text{if } R_i = g_t \end{cases}.$$
Hence

$$\sum_{i=1}^{\infty} |F(x_i) - F(x_{i-1})| < \sum_{i=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \varepsilon/2$$

and

$$\sum_{i=2}^{\infty} |F(x_i) - F(x_{i-1})| < \frac{\varepsilon}{6[m(c) - m(\alpha)]} \sum_{i=1}^{k} V_i,$$

$$< \frac{\varepsilon \cdot 3[m(c) - m(\alpha)]}{6[m(c) - m(\alpha)]} = \frac{\varepsilon}{2}.$$

Therefore $|F(c) - F(\alpha)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Thus $F(c) = F(\alpha)$. But c was any number in $(\alpha, b]$. Hence for each x in $[\alpha, b]$, $F(x) = F(\alpha)$ or $f(x) = g(x) - g(\alpha) + f(\alpha)$.

Theorem 3. In order that the function F defined on $[a, b]$ be the Lane integral of a function f of bounded variation on $[a, b]$ with respect to a continuous, increasing function m on $[a, b]$, it is necessary and sufficient that F have bounded slope variation with respect to m over $[a, b]$.

Proof. It is easy to see that the condition is necessary. Suppose that F has bounded slope variation with respect to m over $[a, b]$. Then F is continuous on $[a, b]$. Let f be the function defined, for each x in $[a, b]$, by

$$\begin{cases} f(x) = D_{\alpha}F(x) & \text{for each } x \text{ in } [a, b) \\ f(b) = D_{\alpha}F(b) & \end{cases}$$

Then f is of bounded variation on $[a, b]$ and is therefore quasicontinuous on $[a, b]$. Moreover, $D_mF(x) = f(x)$ for each x in $[a, b] - E$, where E is a countable set. Let G be the function defined, for each x in $[a, b]$, by $G(x) = \int_{a}^{x} f dm$. Then G is continuous on $[a, b]$ and $D_mG(x) = f(x)$ at each number x in $[a, b]$ such that f is continuous at $(x, f(x))$. Since f is quasicontinuous on $[a, b]$, $D_mG(x) = f(x)$ for each x in $[a, b] - K$, where K is a countable set. Therefore $D_mF(x) = D_mG(x)$ for each x in $[a, b] - H$, where H is a subset of $E \cup K$. It follows from Theorem 2 that $F(x) = \int_{a}^{x} f dm + F(a)$ for each x in $[a, b]$.

That is, F is the Lane integral of a function f of bounded variation on $[a, b]$ with respect to a continuous, increasing function m over $[a, b]$.

It should be noted that if $m = I$, then the Lane integral reduces to the Riemann integral so that Theorem 3 contains Riesz's theorem as a special case.
A GENERALIZATION OF A THEOREM OF F. RIESZ

REFERENCES

Received November 3, 1970 and in revised form February 17, 1971.

THE UNIVERSITY OF TEXAS AT ARLINGTON
William O’Bannon Alltop, 5-designs in affine spaces .. 547
B. G. Basmaji, Real-valued characters of metacyclic groups .. 553
Miroslav Benda, On saturated reduced products .. 557
J. T. Borrego, Haskell Cohen and Esmond Ernest Devun, Uniquely representable
semigroups. II .. 573
George Lee Cain Jr. and Mohammed Zuhair Zaki Nashed, Fixed points and stability
for a sum of two operators in locally convex spaces ... 581
Donald Richard Chalice, Restrictions of Banach function spaces 593
Eugene Frank Cornelius, Jr., A generalization of separable groups 603
Joel L. Cunningham, Primes in products of rings .. 615
Robert Alan Morris, On the Brauer group of Z ... 619
David Earl Dobbs, Amitsur cohomology of algebraic number rings 631
Charles F. Dunkl and Donald Edward Ramirez, Fourier-Stieltjes transforms and
weakly almost periodic functionals for compact groups .. 637
Hicham Fakhoury, Structures uniformes faibles sur une classe de cônes et
d’ensembles convexes .. 641
Leslie R. Fletcher, A note on Cθθ-groups .. 655
Humphrey Sek-Ching Fong and Louis Sucheston, On the ratio ergodic theorem for
semi-groups ... 659
James Arthur Gerhard, Subdirectly irreducible idempotent semigroups 669
Thomas Eric Hall, Orthodox semigroups .. 677
Marcel Herzog, Cθθ-groups involving no Suzuki groups .. 687
John Walter Hinrichsen, Concerning web-like continua .. 691
Frank Norris Huggins, A generalization of a theorem of F. Riesz 695
Carlos Johnson, Jr., On certain poset and semilattice homomorphisms 703
Alan Leslie Lambert, Strictly cyclic operator algebras .. 717
Howard Wilson Lambert, Planar surfaces in knot manifolds .. 727
Robert Allen McCoy, Groups of homeomorphisms of normed linear spaces 735
T. S. Nanjundiah, Refinements of Wallis’s estimate and their generalizations 745
Roger David Nussbaum, A geometric approach to the fixed point index 751
John Emanuel de Pillis, Convexity properties of a generalized numerical range 767
Donald C. Ramsey, Generating monomials for finite semigroups 783
William T. Reid, A disconjugacy criterion for higher order linear vector differential
equations ... 795
Roger Allen Wiegand, Modules over universal regular rings .. 807
Kung-Wei Yang, Compact functors in categories of non-archimedean Banach
spaces ... 821
R. Grant Woods, Correction to: “Co-absolutes of remainders of Stone-Čech
compactifications” .. 827
Ronald Owen Fulp, Correction to: “Tensor and torsion products of
semigroups” ... 827
Bruce Alan Barnes, Correction to: “Banach algebras which are ideals in a banach
algebra” .. 828