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In this paper a coordinatizing semigroup is used to define
and characterize certain homomorphisms on a bounded poset
or semilattice. These homomorphisms are determined by their
kernels and in the semilattice case the ideals which occur as
such kernels are characterized.

1. Introduction. In [4] B. J. Thorne characterized certain con-
gruence relations on a bounded lattice by looking at AP homomor-
phisms on a coordinatizing Baer semigroup. We intend to carry out a
similar procedure for bounded posets and semilattices. It will turn out
that one of our semilattice results gives Thorne’s central result as a
corollary.

Our notation will be that of [4]. If S is a semigroup with 0 and
A S Swedefine L(A) ={xeS;2a=0 forallae A}, R(4) = {ze S;ax =
0 for all ae A}, LR(A) = L(R(A)), RL(A) = R(L(4)), and so forth. If
xeS we write L({x}) = L(x) and R({z}) = R(x). We define (S) =
{L(z); xe S} and & (S) = {R(x); xe S} and say that S coordinatizes a
poset P in case P = (S) when &°(S) is partially ordered by set
inclusion.

The coordinatization machinery which we will use is developed in
[2]. The following is a summary of the relevant material.

DEFINITION 1.1. A semigroup S with 0 and 1 will be called a pre-
Baer semigroup in case, for each x ¢ S, there exist elements z", 2’ ¢ S
such that LR(z) = L(z") and RL(x) = R().

Recall that a map ¢ of a poset P into itself is residuated if the
inverse image of a principal ideal is again a principal ideal or, equi-
valently, if ¢ is isotone and there is another isotone map ¢* (called a
residual map) of P into itself such that x¢*¢ < x < zgg* for all xe P.

LEmMmMA 1.2. If S 4s a pre-Baer semigroup and zeS, then
6,0 F(S)— £ (S) given by LR(x)g, = LR(xz) is residuated with
871 L(S) — L (S) given by L(x)¢; = L(zx) as its residual.

If P is a bounded poset we use S(P) to denote the semigroup of
residuated maps on P.

THEOREM 1.3. Ewvery bounded poset can be coordinatized by a pre-
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Baer semigroup. In particular, if P is a bounded poset, them S(P) is
a pre-Baer semigroup which coordinatizes P. If S is any other pre-
Baer semigroup which coordinatizes P, then z— ¢, is a homomorphism,
with kernel 0, of S into S(P) and the image of S in S(P) is a pre-
Baer semigroup which coordinatizes P.

DEFINITION 1.4. A pre-Baer semigroup S is a right Baer semi-
group in case for each xe S there exists an idempotent 2" S such
that R(x) = «"S, i.e., such that ¢y = 0=y =x"y. S is a left Baer
semigroup in case for each x ¢ S there exists an idempotent z' € S such
that L(x) = Sx’.

THEOREM 1.5. Ewery right (resp., left) Baer semigroup coordi-
natizes a bounded join (resp., meet) semilattice. Conwversely, every
bounded join (resp., meet) semilattice can be coordinatized by a right
(resp., left) Baer semigroup. In particuwlar, if P is a bounded join
(resp., meet) semilattice, then S(P) is a right (resp., left) Baer semi-
group which coordinatizes P. If S is any other right (resp., left) Baer
semi-group which coordinatizes P then the image of S in S(P) under
the homomorphism z+— ¢, is a right (resp., left) Baer semigroup.

REMARK. If S is a right Baer semigroup the join operation in
Z(S) is given by LR(x) \V LR(y) = L{(y"(xy"))) = LR(x)¢,-¢5». IfSisa
left Baer semigroup the meet operation in &°(S) is given by L(z) N
L(y) = LE((y'%)'y") = L(®)¢Lig,1.

2. Homomorphisms preserving r and L.

DEFINITION 2.1. A homomorphism ¢ of a pre-Baer semigroup S onto
a semigroup 7T is called »-preserving in case, for each xe S, LR(x$) =
L(x"g) for some choice of z". (Recall 2" is such that LR(z) = L(z").)
¢ is [-preserving in case, for each x ¢ S, RL(x¢) = R(x'¢) for some choice
of 2. (Recall #* is such that RL(z) = R(z%).) Notice that if ¢ is r-and
- preserving, then T is a pre-Baer semigroup.

LeEMMA 2.2. Let ¢ be a homomorphism of a pre-Baer semigroup
S onto a semigroup T.

(1) If ¢ 1is r-preserving, then @: < (S) — <~ (T) given by LR(x)® =
LR(xg¢) is well defined and isotone.

(ii) If ¢ is l-preserving, then @: F(S) — L (T) given by L(x)@ =
L(z¢) is well defined and isotone.

Proof. (i). Suppose that ¢ is »-preserving and that LR(x) & LR(y).
Choose " so that LR(yg) = L(y"¢). Then we have LR(x) & LR(y) —
ve LR(x) S L(y") =2y =0=24y"¢=0=2¢ € L(y"¢) = LR(y$) = LR(x¢) S
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LR(yg). This shows that @ is well defined and isotone. Finally,
LR(x)® = L(x"¢) € &£ (T).

(ii). Suppose that ¢ is I-preserving and that L(x) & L(y). Choose
z' so that RL(xg) = R(x'¢). Then we have L(x) & L(y) = RL(y) &
RL(x)=y e RL(y) & B(»") ="'y = 0=2'¢ys = 0=yg € R(2'¢) = RL(x$) =
RL(yg) S RL(x¢) — L(x¢) < L(yg). This makes ® well defined and
isotone.

REMARK. Notice that, in part (i) of the lemma, L(2)® = LR(x")® =
LR(x'¢). Hence L(x)® = L(z¢) for all x ¢ S iff ¢ is l-preserving. Simi-
larly, in part (ii), LR(x)® = L(x"$) and it is clear that LR(x)® = LR(x¢)
for all ¢ e Siff ¢ is r-preserving. If ¢ is r-and l-preserving, then the
mappings in parts (i) and (ii) of the lemma coincide.

If S is a pre-Baer semigroup and ¢:S—» T (i.e., from S onto T)
an r-preserving homomorphism, then the map defined in part (i) of
Lemma 2.2 induces an equivalence relation = on .&(S) by the rule
LR(x) = LR(y) iff LR(x)® = LR(y)® iff LR(x¢) = LR(y¢). It is this
equivalence relation we wish to examine.

DEFINITION 2.3. If S is a pre-Baer semigroup and ¢: S T an
r-preserving homomorphism, then the equivalence relation on .<2(S) just
described will be called the equivalence relation on £ (S) induced by ¢.

DEFINITION 2.4. An equivalence relation = on &°(S) where S is a
pre-Baer semigroup is S-compatible in case LR(x) = LR(y) — LR(x)¢, =
LR(y)¢, for all zeS. It is S*-compatible in case LR(x) = LR(y)=
LR(x)¢;7 = LR(y)¢; for all ze S.

DEFINITION 2.5. An equivalence relation = on a poset P is ordered
if P/= is partially ordered by the rule [z] < [y] = there exist elements
x, e [2] and y, € [y] such that z, < y..

REMARK. Congruence relations on lattices and semilattices are
ordered.

LEMMA 2.6. If = is an equivalence relation on Z(S), S a pre-
Baer semigroup, and £(S)/= 1is partially ordered in such a way that
LR(x) = LR(y) = [LR(x)] < [LR(y)], then the following are equivalent.

(@) [LR(x)p.] = [0] = [LE(z)] = [08]], for all zeS.

(b) [LE()] = [0] = [LR(x)$57] = [04], for all xeS.

M) LR(x) = 0= LR(x)¢;» = 0¢5» = LR(2), for all xeS.

Proof. (b) = (b’). This is only a difference in notation.
(a) = (b). Suppose [LR(x)] = [0]. Since LR(x)¢;:¢,» < LR(x), we
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have [LR(z)¢}5¢,-] = [0]. Now by (a), [LR(x)¢}] < [0¢5]. The reverse
inequality holds since 04;; & LR(x)¢}:.

(b) = (a). If [LR(x)¢,-] = [0], we have by (b) that [LR(x)¢.-6:] =
[0¢%]. Now LE(v) & LR(x)g.-¢) gives [LR(x)] = [LR(x)$.r6:] = [085].

THEOREM 2.7. If S is a pre-Baer semigroup and ¢: S T an r-
preserving homomorphism, the equivalence relation = on F(S) induced
by ¢ has the following properties:

(i) For each ze S, 2" can be chosen so that LR(x) = 0 = LR(x)¢} =
0gF% for all xeS.

(il) = 1s ordered.

(iliy = s S-compatible.
In part (i) any 2" such that L(z'¢) = LR(z$) suffices.

Proof. Recall that LR(x) = LR(y) « LR(x¢) = LR(yg).

(i). ~(S)/= ispartially ordered by [LR(2)] < [LE(y)] = LR(z¢) &
LR(y¢). Choose z" so that L(2"¢) = LR(2¢). Since LR(x) & LR(y)=—
LR(z¢) & LR(yp) by Lemma 2.2, we can apply Lemma 2.6. Since
LER(%)¢,» = 0= LR(x2¢) = 0=2¢2"¢ = 0 = 2¢ € L(Z"¢)—= LR(x¢) & LR(29)
for all xe S, part (a) of Lemma 2.6 is satisfied and part (b) is what
we are trying to prove.

(ii). It will suffice to show that LR(x¢) & LR(y¢) = there exists
9, € S such that LR(x) & LR(y,) and LR(y,¢) = LR(y$). If LR(x¢) &
LR(ys) = L(y"$), we have x4y’ = 0 = LR(xy"¢) = 0 = LR(zy") = 0.
By (i), LR(zy")¢)- = 0¢)- = LR(y). Since LE(zy")é;» = L(y'(xy’)) =
LR((y"(xy")")"), this says that LE((y"(xy")")'¢) = LR(y¢). Letting y, =
(y"(xy"))* finishes the proof since x ¢ L(y"(xy")") = LR(x) & L(y"(xy")") =
LE((y"(zy")'))) = LR(y,)-

(iii). LR(x) = LR(y) = LR(x¢) = LR(y¢) = LER(x¢z¢) = LR(y¢z¢) =
LR(x2¢) = LR(yz¢) = LR(x)¢. = LE(y)$..

The equivalence relation in Theorem 2.7 has another nice property.
It is determined by its kernel.

THEOREM 2.8. Let = be the equivalence relation of Theorem 2.7.
The following are equivalent.

(a) LR(x) = LR(y).

(b) If L(x"¢) = LR(x¢) and L(y"¢) = LR(y¢), then LR(x)¢, =0
and LR(y)¢. = 0.

Proof. (a)= (b). Since = is S-compatible, LR(x) = LR(y) =
LR(x)¢,» = LR(y)¢,- = 0. Similarly LR(y)¢.- = 0.

(b) = (a). Part (b) of Lemma 2.6 is satisfied by Theorem 2.7, so
by part (a) of Lemma 2.6, LR(2)¢,r = 0 = [LR(x)] < [04;7] = [LR(¥)].
Similarly LR(y)¢,- = 0 = [LR(y)] < [LR(x)]. Thus [LR(»)] = [LR(%)].
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We now wish to show that any equivalence relation on & (S) having
the three properties of Theorem 2.7 is induced on <~(S) by some r-pre-
serving homomorphism.

LEMMA 2.9. Let S be a pre-Baer semigroup and let = be an S-com-
patible equivalence relation on & (S). For each ze S define @,: <~ (S)/=
— F(S)/= by [LR(®)]®, = [LR(x)¢,] = [LR(x2)]. @, is well defined be-
cause of S-compatibility. Let S’ denote the semigroup gemerated by
{@,; z€ S} under composition. The map z+ @, is a homomorphism of
S onto S' and if = also possesses properties (i) and (ii) of Theorem
2.7, this homomorphism s r-preserving.

Proof. It is a clear that z+ @, is a homomorphism of S onto S'.
Let ze S and choose 2" to satisfy part (i) of Theorem 2.7. @,0,., =0
since 22" =0 so we have LR(?,) & L(9,,). To show that L(?,,) & LR(®,)
we suppose that @, e L(®,-) and show that @, e R(®,) implies ¢.,0, = 0.
Since @, = 0 we have [LR(1)]®?,.,- = [LR(z#")] = 0 and by Lemma 2.6,
which applies since we are assuming part (i) of Theorem 2.7, [LR(x)] <
[LR(z)]. Since = is ordered, the elements of S’ are isotone maps and
we have [LR(xy)] = [LR(»)]?, = [LR(?)]?, = [LR(zy)] = [LR(1)]?., =
[0]. Now [LR(1)]®., = [0] implies @,, = 0,0, = 0.

REMARK. If an S-compatible equivalence relation = possesses pro-
perties (i) and (ii) of Theorem 2.7, and if we denote the kernel of
z2— @, by I, then z+— @, is the homomorphism studied by R. S. Pierce
in [3]. To prove this we must show that @, = @, = axbe I iff aybe I.
Suppose @, = &,. Thenaxbel=0,,, = 0,00, =0=0,,, = 0,0,0, =
0 =aybeI. Now suppose axbe I iff aype I. Then @,,, =0iff 9,,, =
0 = [LR(zwvw)] = [0] iff [LR(zyw)] = [0] = [LR(2x)¢,] = [0] iff [LR(2y)D.] =
[0]. Setting w = (zx)", where (zx)" is chosen as in part (i) of Theorem
2.7, and using part (a) of Lemma 2.6 we have [LR(zy)] < [L((zx)")] =
[LR(zx)]. Similarly we have [LR(zx)] < [LR(zy)]. Thus [LR(22)] =
[LR(zy)] for all ze S, but this just says that @, = @,.

THEOREM 2.10. Let S be a pre-Baer semigroup and let = be an
equivalence relation on < (S) which possesses properties (i), (ii), and
(iii) of Theorem 2.7. Then = is induced on £ (S) by the r-preserving
homomorphism z+ @, described in Lemma 2.9. Furthermore, z+— @,
s the largest r-preserving homomorphism (considered as a congruence
relation on S) which induces =.

Proof. Consider the r-preserving homomorphism z+— @, of Lemma
2.9. We wish to show that LR(®,) = LR(®,) iff LR(x) = LR(y). Let
LR(®,) = LR(®,) and choose y” as in part (i) of Theorem 2.7. Then
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R(®,) = R(?,) and we have 0,0, = 0 since 0,0, = 0. @, = 0 means
[LR(x"y)] = [0] and by Lemma 2.6 [LR(x)] < [LR(y)]. Similarly we get
[LR(y)] < [LR(x)] and thus LR(x) = LR(y). Conversely, suppose
LR(x) = LR(y). Choose z" and y” such that L(®,,) = LE(®,) and L(0,.) =
LR(®,). By S-compatibility we have LE(zy")= LR(yy")=0and LR(yx")=
LR(xx") = 0. This means @,,, = @,,- = 0. Now 9,¢ L(9,,) = LR(®,)
gives LR(9,) < LR(?,) and @, ¢ L(®,-) = LR(?,) gives LR(®?,) = LR(®,).

Finally, suppose ¢ is another r-preserving homomorphism which
induces =. Then 2¢ = y¢ = 226 = zys for all ze S = LR(zx2¢) = LR(zys)
for all ze S= LR(2)¢, = LR(z)$, for all ze S= 0, = 0,.

REMARK. The r-preserving homomorphisms which induce = all
have the same kernel since, if ¢ is such a homomorphism, z¢ = 0 =
LR(x¢) = 0 = LR(z) = 0.

THEOREM 2.11. Let S be a pre-Baer semigroup and ¢:S-»T an
r-preserving homomorphism. Let @: . (S)— L (T) be the map des-
cribed in Lemma 2.2 (i), t.e., LR(x)® = LR(x¢). The following are
equivalent.

(@) ker ¢ e . (S).

(b) ker @ is a principal ideal.

(e) @: A (8) — A(T) is residuated.

Proof. (a) < (b). This follows from the observation that x € ker ¢ =
2¢ = 0 = LR(xg) = 0 < LR(x) € ker @.

(¢) = (b). This is clear.

(a) = (c). Suppose ker ¢ = LR(w). Define &+: & (T)— (S) by
L(xg)@* = L(xw"). @+ is well defined and isotone since when L(z¢) =
L(yg¢) we have z¢ L(zw") = zzw"=0=z2x c ker ¢ = 2929 = 0=2¢ ¢ L(x¢) =
L{yg) = z¢yp = 0=zy c ker ¢ = zyw" = 0 = z¢€ L(yw"), which says that
L(xw") & L(yw"). Choose " so that L(x"¢) = LR(xz¢). Now since x¢
L(z"w") we have LR(x) & L(x"w") = L(x"$)®* = LR(x¢)®+ = LR(x)0D+.
Now all that remains is to show that L(x¢)0*® < L(x¢). Since
(xw"'zw" = 0= (zw")'x c ker ¢ = (xw") gxd = 0 = (zw")'¢ € L(xg) we have
L(x$)0+*® = L(xw")® = LR((xw")'¢) & L(xs).

If S is a pre-Baer semigroup and ze S, notice that <#(S) is dual
isomorphic to %°(S) and the residuated map on <Z(S) given by
RL(x) — RL(zx), considered as a map on &(S), is ¢;. (See Lemma
1.2.) Bearing this in mind and applying left-right duality to the results
obtained thus far, we find that every l-preserving homomorphism on
a pre-Baer semigroup S induces on &(S) an ordered S*-compatible
equivalence relation = with the property that, for each ze S, 2' can
be chosen so that LR(x) = 1 = LR(x)¢,1=1¢, for all e S. Further-
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more, every such equivalence relation on .&(S) is induced by some
l-preserving homomorphism on S. We now have

THEOREM 2.12. Let ¢ be an r-and l-preserving homomorphism on
a pre-Baer semigroup S. The ordered equivalence relation on 2(S)
induced by ¢ is S- and St-compatible. Furthermore, every S- and S*-
compatible ordered equivalence relation on < (S) is induced by some
r- and l-preserving homomorphism on S.

Proof. This follows from previous results and the remarks pre-
ceding the theorem if we make the following observation: If an
ordered equivalence relation = on .&2(S) is S- and S*-compatible, then
D, F(S)/== ¥ (S)/= given by [LR(x)]®, = [LR(x)$,] is residuated
with residual @;: & (S)/== £ (S)/= given by [LR(x)]®} = [LR(x)®}].
Since residuated maps uniquely determine their residuals and vice versa,
the r-preserving homomorphism z+ @, (considered as a congruence on
S) coincides with the [-preserving congruence on S associated with the
anti-homomorphism z+ @;.

3. RAP and LAP homomorphisms.

DEerFINITION 3.1. If Sis a right Baer semigroup, a semigroup homo-
morphism ¢: S —» T is right annihilator preserving or RAP in case
R(zp) = R(x)¢. Notice that R(z)¢ = (x"¢)T. Dually, if Sis a left Baer
semigroup, ¢ is left annmihilator preserving or LAP in case L(xg) =
L(x)¢. Finally, ¢ is annihilator preserving or AP if it is both RAP
and LAP.

REMARK. Any RAP homomorphism is -preserving since LR(xg) =
L((z"¢)T) = IL(x"¢). Dually, any LAP homomorphism is l-preserving.

LEMMA 3.2. In a right Baer semigroup S we have

(i) LR(x) V LR®)¢, V LR(W)p, = LR(y) V LR(x)$,r \/ LR(Y)$r.
(ii) LR(zy) V LR(xy) = LR(zx"y) \V LE(xy).

(ili) LR(x) V LR(y) V LR(zy") = LR(y) \V LR(xy").

Proof. It is shown in [2] that, in a right Baer semigroup S, R(x)N
R(y) e Z2(S) and that the join operation in &°(S) is given by LR(x) V
LR(y) = L(R(x) N R(y)).

(i). It is enough to show that R(x) N R(zy") N R(yx") = R(y)N
R(zy") N R(yx"). If ze R(x) N R(xy") N R(yx"), then z = 2"z and yz =
yz'z = 0 so ze R(y) N R(xy") N R(yx"). The other inclusion follows by
symmetry.

(ii). It is enough to show R(zy) N R(xy) = R(zx"y) N R(xy). This
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follows from the observation that if xyw = 0, then yw = a2"yw so that
zyw = 0 = zx'yw = 0.

(iii). It is enough to show that R(y)N R(zy) & R(x) N R(y) N R(zy").
If yw =0, then w = y™w so that zy™w = 0 =zw = 0.

LEmMMA 3.38. If S is a right Baer semigroup and = is an S-com-
patible equivalence relation on F(S), the following are equivalent.

(a) = s a join congruence.

(b) LR(x) V LR(2) = LR(y)\V LR(z), LR(z) = 0 = LR(x) = LR(y).

Proof. (a) = (b). Since LR(z) =0, we have LE(x) = LE(z) Vv 0 =
LR(x)VVLR(z) = LR(y) V LR(z) = LR(y) V 0 = LR(y).

(b) = (a). Suppose LR(x) = LR(y). If LR(z)e <(S), we have,
using Lemma 3.2, that LR(%) V LR(z) V LR(%)¢,- V LR(y)$.,» = LR(y)
LR(z) \V LR(%)¢,» \V LR(y)¢,~. To show that LR(x) vV LR(z) = LE(y) V
LR(z) it will suffice, by (b), to show LE(%)¢, V LR(y)¢,- = 0. Since
= is S-compatible we have LR(%)¢,-= LE(y)¢,-=0 = LE(%)¢,» = LE(Y)¢.-.
Using (b), LR@®)¢,r V LR(Y)¢» V LR(Y)¢,- = LR(x)¢,» V LE(y)é,» and
LR(Y)¢,» = 0 = LR(x)¢,» V LR(y)¢.- = LR(%)¢,» = 0.

THEOREM 3.4. Let S be a right Baer semigroup and ¢: S — T an
RAP homomorphism. Then the equivalence relation = induced on F(S)
by ¢ (recall LR(x) = LR(y) iff LR(x¢) = LR(yg)) is an S-compatible join
congruence.

Proof. S-compatibility was proven in Theorem 2.7. By Lemma
3.3 it is sufficient to show that LR(x) \V LR(z) = LR(y) V LR(z) and
LR(z¢) = 0 = LR(x¢) = LR(yp). Now LRE(z¢) = 0 means that RE(z¢) =
#ZH)T = T,s0 1¢ = 2°¢lp = 2’¢. Since LR(xz") = (LR(x)\ LR(2))¢,r =
(LR(y) V LR(?))¢.- = LR(yz"), we have LR(z¢) = LR(xz"¢) = LR(yz"¢) =
LE(yg).

An S-compatible join congruence is determined by its kernel in
the following manner.

THEOREM 3.5. If S 1is a right Baer semigroup and = 1s an S-
compatible join congruence on (S), the following are equivalent.
(@) LR(z) = LR(y).
(by LR(x)¢,» v LR(WY)d, = 0.
(¢) There is an LR(z) = 0 such that
LER(z) V LR(z) = LR(y) Vv LR(2).

Proof. (a)= (b). If LR(x) = LR(y), then LR(x)¢, = LR(y)¢, =
0 = LR(»)¢,» = LR(y)¢,- and hence LR(x)¢, V LR(¥)é,» = 0.
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(b) = (c). Follows from part (i) of Lemma 3.2.
(¢c) = (a). Follows from Lemma 3.3.

COROLLARY 3.6. Amn S-compatible join comgruence = has the pro-
perty that, for each ze S, any choice of #~ gives LR(x) = 0 = LR(x)¢5 =
065 for all xze S.

Proof. Since a join congruence is ordered, it is sufficient by Lemma
2.6 to show that LR(xz") = 0 = [LR(x)] < [LR(2)]. Since by part (iii) of
Lemma 3.2 we have LR(x) \V LR(z) \V LR(xz") = LR(z) \V LR(xz"), it
follows from the theorem that when LR(xz") =0, LR(z) \V LR(z) = LR(z).
Since = is a join congruence, this says that [LR(x)] < [LR(?)]-

THEOREM 3.7. If S is a right Baer semigroup and = is an S-com-~
patible join congruence on F(S), then the homomorphism z— @, des-
cribed im Lemma 2.9 is RAP.

Proof. We wish to show that R(®,) = @S’ or, in other words,
that 0,0, = 0= 9@, = 0,,0,. Notice that 0,9, = 0 = [1]9,0, = [0] =
[LR(xy)] = [0] = LR(zy) = 0 and that @, = @,.0, = LR(zy) = LR(zx"y) for
all ze S. Since it is clear that ¢, = 90,0, = @,0, =0, we will be
done if we can show that LR(xzy) = 0 = LE(zy) = LR(zx"y) for all ze S.
Since LR(zy) V LR(xy) = LR(2x"y) V LR(zy) by part (ii) of Lemma
3.2, LR(xy) = 0 implies by Theorem 3.5 that LR(zy)= LR(zx"y) for all
zeS.

COROLLARY 3.8. If S is a right Baer semigroup, then any S-com-
patible join congruence = on F(S) is induced by an RAP homomor-
phism on S.

Proof. Since, by Corollary 3.6, = has property (i) of Theorem
2.7, the proof of Theorem 2.10 applies and says that = is induced on
Z(S) by the homomorphism z2+— @, on S. By Theorem 3.7, 2+ @,
is RAP.

COROLLARY 3.9. If S s a right Baer semigroup, then every S- and
St-compatible join congruence on F(S) s induced by an RAP and

l-preserving homomorphism on S.

Proof. This follows from Corollary 3.8 and from Theorem 2.12
and its proof.

CoROLLARY 3.10. If S is a left Baer semigroup, them any S*-
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compatible meet congruence on < (S) is induced by an LAP homomor-
phism on S.

Proof. This is the dual of Corollary 3.8. (See the remarks pre-
ceding Theorem 2.12.)

CoROLLARY 3.11 (Thorne). If S is a Baer semigroup, then every
S- and St-compatible congruence on (S) is induced by an AP homo-
morphism on S.

Proof. This follows from Corollaries 3.8 and 3.10 and from Theo-
rem 2.12 and its proof.

4. Kernels of S-compatible join congruences.

THEOREM 4.1. Let I be an ideal of a join semilattice L = Z(S),
S a right Baer semigroup. The following are equivalent.

(@) I is the kernel of an S-compatible join congruence.

b) Ip, <] for each ze S.

Proof. (a)=(b). If LR(z)e I, then LR(z) = 0 and by S-compati-
bility LR(x)¢, = 04, = 0, i.e., LR(x)p, € I.

(b) = (a). Suppose Ig, = I for each ze S. Define LR(x) = LR(y)
iff LR(x) Vv LR(w) = LR(y) V LR(w) for some LR(w)el. It is easy
to see that = is a join congruence. If LR(x) = LR(y), then LR(z) V
LR(w) = LR(y) V LR(w) with LR(w) € I and since ¢,, being a residuated
map, preserves join we have LR(@)¢, \V LP(w)¢, = LR(y)¢, V LR(w)g,.
Since LR(w)¢, e I it follows that LR(x)¢, = LR(y)¢,. Clearly = has I

as its kernel.

LEMMA 4.2. In any semigroup S with 0, if R(w) is a two-sided
ideal, for some we S, then LR(w) is a two-sided ideal. Hence, if S is
a pre-Baer semigroup, LR(w) is two-sided if and only if R(w) is two-
sided.

Proof. Suppose R(w) is two-sided. LR(w) is already a left ideal
so we must show that it is a right ideal. Let ze LR(w), ye S, and
ze€ R(w). We need xyz = 0. But yze€ R(w) since R(w) is two-sided and
hence zyz = 0. The second assertion follows from the first and its dual.

Theorem 4.1 characterized kernels of S-compatible join congruences.
We now look at principal ideals which occur as kernels of S-compatible
join congruences.
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THEOREM 4.3. Let S be a right Baer semigroup. The following
are equivalent.

(@) [0, LR(w)] ts the kernel of an S-compatible join congruence on
Z(8).

(b) LR(w) is the kernel of an RAP homomorphism on S.

(¢) LRw)¢, <= LR(w) for all xeS.

d) =xw™ = waw" for all xS and for any choice of w.

() LR(w) is a two-sided ideal.

(f) R(w) is a two-sided ideal.

Proof. (a) = (b). Since every RAP homomorphism ¢ on S induces
an S-compatible join congruence = on <~ (S) by the rule LR(x) = LR(y)
iff LR(x¢) = LR(y¢) and since every S-compatible join congruence arises
in this manner for some ¢, it suffices to notice that xcker ¢ = xgp =
0 = LR(x$) = 0 = LR(x) = 0.

(a) = (¢). Use Theorem 4.1.

(e) = (f). Use Lemma 3.2.

(d) = (f). This follows from the dual of Theorem 1 of [1].

(b) = (e). This is obvious.

(d) = (b). 2+ 2w is a homomorphism of S onto Sw" and it is
RAP since yw™ € R(xw") = 2wyw” = 0 = yw" = wyw" = "W yw" < yw" €
(xrw")(Sw") = (R(x)w".

REMARK. By Theorem 2.11, the kernel of an S-compatible join
congruence = is a principal ideal if and only if = is residuated in
the sense that the canonical join homomorphism taking .°(S) onto
Z(S)/= is a residuated map.

In light of Theorem 4.1 we make the following definition.

DEFINITION 4.4. An ideal I of a join semilattice L = &(S), S a
right Baer semigroup, is called S-compatible in case I, = I for all
zeS.

THEOREM 4.5. Let S be a right Baer semigroup and let L = £(S).
The set I (L) of S-compatible ideals of L forms a subcomplete sublattice
of I(L), the lattice of ideals of L. Iy(L) is isomorphic to the lattice of
S-compatible join congruences on Z(S).

Proof. 1If {I;} is a family of S-compatible ideals of <~(S) it is clear
that M;{L} is an S-compatible ideal. Suppose LR(x)e V.{[}. Then
there exist

LR(y)el,, LR@y,)e L, -+, LE(y,) € L,

19
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such that
LR(x) & LR(y,) V LR(ys) V-V LR(y,)-

Hence

LR(x)¢, = (LR(y,) VV LE(y:) V-V LR(¥.,))¢.
= LR(y1)¢z \Y LR(y2)¢z VeV LR(yn)¢z

and since LR(y)¢. &I, (k=1,2,---,n) we have LR(x)¢.c V {L}
Thus V.,{L} is S-compatible and we have proven the first part of the
theorem. Now, if I'e I (L) let O, denote the unique S-compatible join
congruence with kernel 7. In light of Theorem 3.5 it is clear that

ISJ=6,<6,.

THEOREM 4.6. Let S be a right Baer semigroup in which, for
each xe S, LR(x') = LR(z'x") for some choice of x'. Then Iy (L) is dis-
tributive and obeys the following infinite distributive law:

In (Vz{Jz)} = Vi{Iﬂ Ji} .

Proof. It will suffice to show I N (V:{/i}) € V:{I N J;}. Suppose
L(x) = LR(x") e Iand LR(x") e V;{Ji}. Then LR(x") S LR(y,) \V LR(y,)V
--+V LR(y,) where LR(y,)ed;, (k=12 ---,m). Now LR(x') =
LR()¢. = LR(Y,)¢, \V LR(Y)pa NV +++V LR(Y,)p2. For k=12 oo m
we have LR(y:)¢.: €J;, by S-compatibility and LE(y;)¢.: = LR(y,x) &
LR(x"yeI. Thus LR(yy¢.cINJ;, fork=1,2 -+, m. Thus LE(a')e
V.{InJ}

REMARK. Theorem 4.6 applies, in particular, when S is a Baer
semigroup. In that case a' is taken to be an idempotent generating
L(x). The LR(+') = LR(x'¢") condition could also be taken care of by
requiring, in the definition of pre-Baer semigroup, that z” and «' be
idempotents. (It is pointed out in [2] that all our results involving
pre-Baer semigroups remain valid if " and &' are required to be idem-
potents.)

THEOREM. 4.7. Let S be a right Baer semigroup in which, for each
xe S, LR(x*) = LR(x'x") for some choice of x'. Let L = £ (S). Ii(L)
18 pseudo complemented since it is complete and obeys the infinite dis-
tributive law of Theorem 4.6. If Ie Iy(L), its pseudo complement I*
s gwen by I* = {LR(x); LR(x) & L(J)}, where J is the kernel of any
RAP homomorphism which induces the S-compatible join congruence
with kernel 1, i.e., yeJ = LR(y)e Il.

Proof. I* is an ideal since LR(x), LR(y) = L(J)=J & R(x) N
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R(y) = LR(x)V LR(y) = L(R(») N R(y)) = L(J). Suppose LR(x)<c I* and
yeS. Then zeJ=yzed =ayz = 0=2ayc L(J) = LR(zxy) & L(J) =
LR(x)¢, = LR(xy) € I*. Thus I* is S-compatible. Now suppose L(x) €
INI*. Then L(x) = LR@)eI=2a'eJ and LR(*)e I* = 2'e LR(x") &
L(J). Thus 2'2* =0 and L(x) = LR(z") = LR(x'2") = 0. Therefore
INI*=0. Finally, suppose IN K =0, with Ke I(L). Let LR(%) ¢ K,
yedJ. Then LR(y)e I—= LR(xy) < LR(y) € I and LR(x) ¢ K= LR(2)¢, =
LR(xy)e K. Thus LR(zy)e INK=0=2y =0=2¢ L(J) = LR(x) =
L(J) = LR(z)e I*. Therefore K< I*.

REFERENCES

1. T. S. Blyth and M. F. Janowitz, On decreasing Baer semigroups, Bull. Soc. Roy.
Sci., Liege 38 (1969), 414-423.

2. C. S. Johnson, Jr., Semigroups coordinatizing posets and semilattices, J. Londen
Math. Soc., to appear.

3. R. S. Pierce, Homomorphisms of semi-groups, Ann. of Math., 59 (1954), 287-291.
4. B. J. Thorne, A-P congruences on Baer semigroups, Pacific J. Math., 28 (1969).
681-698.

Recieved June 25, 1970. The results presented here were part of a thesis submitted
to the University of Massachusetts. The research was supported by an NSF Traineeship.

The author is grateful to Professor M. F. Janowitz for his generous help and guidance.

BOWLING GREEN STATE UNIVERSITY






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California
Los Angeles, California 90007
C. R. HoBBY RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLr K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO

MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH

UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY

NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON

OREGON STATE UNIVERSITY * * *

UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two
must be capable of being used separately as a synopsis of the entire paper. The editorial
“we” must not be used in the synopsis, and items of the bibliography should not be cited
there unless absolutely necessary, in which case they must be identified by author and Journal,
rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of
the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All
other communications to the editors should be addressed to the managing editor, Richard Arens,
University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the
price per volume (8 numbers) is $8.00; single issues, $3.00. Special price for current issues to
individual faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 8-
chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.



Pacific Journal of Mathematics

Vol. 39, No. 3 July, 1971

William O’Bannon Alltop, 5-designs in affine spaces ............................ 547
B. G. Basmaji, Real-valued characters of metacyclic groups ...................... 553
Miroslav Benda, On saturated reduced products..............c.cccoieuiiiieennnnn. 557
J. T. Borrego, Haskell Cohen and Esmond Ernest Devun, Uniquely representable

SemiGroups. T. ... ... e e e e 573
George Lee Cain Jr. and Mohammed Zuhair Zaki Nashed, Fixed points and stability

for a sum of two operators in locally convex spaces ......................... 581
Donald Richard Chalice, Restrictions of Banach function spaces .................. 593
Eugene Frank Cornelius, Jr., A generalization of separable groups ................ 603
Joel L. Cunningham, Primes in products of Fings ...........c.oouiiuiiniiniennon. 615
Robert Alan Morris, On the Brauer group of Z .. .......cooieiii i 619
David Earl Dobbs, Amitsur cohomology of algebraic number rings................ 631
Charles F. Dunkl and Donald Edward Ramirez, Fourier-Stieltjes transforms and

weakly almost periodic functionals for compact groups . ..................... 637
Hicham Fakhoury, Structures uniformes faibles sur une classe de cones et

d’ensembles CONVEXES .. ... ... e 641
Leslie R. Fletcher, A note on COO-groups .. ...t 655
Humphrey Sek-Ching Fong and Louis Sucheston, On the ratio ergodic theorem for

SCHUI=GTOUDS « + o« v ettt et e et e e e e e e e e e 659
James Arthur Gerhard, Subdirectly irreducible idempotent semigroups............. 669

Thomas Eric Hall, Orthodox semigroups.....................
Marcel Herzog, CO0-groups involving no Suzuki groups . .. ....

John Walter Hinrichsen, Concerning web-like continua . . ... ...
Frank Norris Huggins, A generalization of a theorem of F. Riesz
Carlos Johnson, Jr., On certain poset and semilattice homomorp
Alan Leslie Lambert, Strictly cyclic operator algebras . . . .. ...
Howard Wilson Lambert, Planar surfaces in knot manifolds . . .
Robert Allen McCoy, Groups of homeomorphisms of normed li
T. S. Nanjundiah, Refinements of Wallis’s estimate and their gen
Roger David Nussbaum, A geometric approach to the fixed poin
John Emanuel de Pillis, Convexity properties of a generalized n
Donald C. Ramsey, Generating monomials for finite semigroup.
William T. Reid, A disconjugacy criterion for higher order line

CQUATIONS « o o v vttt et e e e e e e e
Roger Allen Wiegand, Modules over universal regular rings . . .
Kung-Wei Yang, Compact functors in categories of non-archim

SPACES < o v vt e e e e e e e e
R. Grant Woods, Correction to: “Co-absolutes of remainders o,

COMPACHIfICAtIONS” . ..ot
Ronald Owen Fulp, Correction to: “Tensor and torsion product.

SCMIGTOUPS” + o ottt e e e
Bruce Alan Barnes, Correction to: “Banach algebras which are

algebra” . ... e


http://dx.doi.org/10.2140/pjm.1971.39.547
http://dx.doi.org/10.2140/pjm.1971.39.553
http://dx.doi.org/10.2140/pjm.1971.39.557
http://dx.doi.org/10.2140/pjm.1971.39.573
http://dx.doi.org/10.2140/pjm.1971.39.573
http://dx.doi.org/10.2140/pjm.1971.39.581
http://dx.doi.org/10.2140/pjm.1971.39.581
http://dx.doi.org/10.2140/pjm.1971.39.593
http://dx.doi.org/10.2140/pjm.1971.39.603
http://dx.doi.org/10.2140/pjm.1971.39.615
http://dx.doi.org/10.2140/pjm.1971.39.619
http://dx.doi.org/10.2140/pjm.1971.39.631
http://dx.doi.org/10.2140/pjm.1971.39.637
http://dx.doi.org/10.2140/pjm.1971.39.637
http://dx.doi.org/10.2140/pjm.1971.39.641
http://dx.doi.org/10.2140/pjm.1971.39.641
http://dx.doi.org/10.2140/pjm.1971.39.655
http://dx.doi.org/10.2140/pjm.1971.39.659
http://dx.doi.org/10.2140/pjm.1971.39.659
http://dx.doi.org/10.2140/pjm.1971.39.669
http://dx.doi.org/10.2140/pjm.1971.39.677
http://dx.doi.org/10.2140/pjm.1971.39.687
http://dx.doi.org/10.2140/pjm.1971.39.691
http://dx.doi.org/10.2140/pjm.1971.39.695
http://dx.doi.org/10.2140/pjm.1971.39.717
http://dx.doi.org/10.2140/pjm.1971.39.727
http://dx.doi.org/10.2140/pjm.1971.39.735
http://dx.doi.org/10.2140/pjm.1971.39.745
http://dx.doi.org/10.2140/pjm.1971.39.751
http://dx.doi.org/10.2140/pjm.1971.39.767
http://dx.doi.org/10.2140/pjm.1971.39.783
http://dx.doi.org/10.2140/pjm.1971.39.795
http://dx.doi.org/10.2140/pjm.1971.39.795
http://dx.doi.org/10.2140/pjm.1971.39.807
http://dx.doi.org/10.2140/pjm.1971.39.821
http://dx.doi.org/10.2140/pjm.1971.39.821
http://dx.doi.org/10.2140/pjm.1971.39.827
http://dx.doi.org/10.2140/pjm.1971.39.827
http://dx.doi.org/10.2140/pjm.1971.39.827
http://dx.doi.org/10.2140/pjm.1971.39.827
http://dx.doi.org/10.2140/pjm.1971.39.828
http://dx.doi.org/10.2140/pjm.1971.39.828

	
	
	

