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ALAN LAMBERT

This paper is concerned with the structure of abelian
algebras &7 of operators on Hilbert space 52 such that
x =7 for some vector x in H. It is shown that if a
transitive algebra .7~ contains such an algebra then .7 is
dense in the weak topology on & (5#°). It is also shown
that when an algebra of this type is semi-simple then it is
a reflexive operator algebra. The algebras investigated have
the property that every densely defined linear trans-forma-
tion commuting with the algebra is bounded.

Let 5~ be a complex Hilbert space and let & (5#°) be the
algebra of all bounded linear operators on 5% The study of sub-
algebras of (5#°) has primarily dealt with self-adjoint algebras.
The literature on non-self-adjoint subalgebras of (57°) is far less
complete. This paper is concerned with a class of non-self-adjoint
subalgebras, the strictly cyclic abelian subalgebras. The first appli-
cation of these algebras will be to the theory of transitive algebras.
A subalgebra 7~ of £(57) is transitive if the only closed subspace
of 57 invariant for every operator in 7 are 5% and {0}. W. B.
Arveson showed that a knowledge of the (possibly) unbounded linear
transformations commuting with a transitive algebra 7~ can be
used to decide if .7~ is dense in the weak operator topology on £ (5#)
(it is not kown if every transitive algebra of operators on an infinite
dimensional Hilbert space must be weakly dense in & (5#)).

Arveson also proved that every transitive algebra containing a
maximal abelian self-adjoint algebra is weakly dense in & (5#). E.
Nordgren, H. Radjavi, and P. Rosenthal used Arveson’s techniques to
show that if 57 is separable, then every transitive algebra of oper-
ators containing a certain type of weighted shift must be dense in
F(27). It is shown that every transitive algebra containing a
strictly cyclic abelian algebra is weakly dense in < (5#). It has
been shown that the weakly closed algebras generated by certain
weighted shifts are strictly cyclic. This class of shifts properly con-
tains the class of shifts mentioned above. In particular, several
examples of shifts generating strictly cyclic algebras are neither com-
pact nor quasi-nilpotent.

In §3 we develop some tests for strict cyelicity of abelian alge-
bras. In §5 we show that certain stictly cyclic abelian algebras are
unitarily equivalent to multiplication operator algebras on functional
Hilbert spaces (Theorem 5.1), and are examples of reflexive operator
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algebras. We then give examples of strictly cyclic abelian algebras
on spaces of arbitrary dimension and show that there exist non-singly
generated strictly cyclic abelian algebras.

2. Preliminaries. A subalgebra &7 of £ (57) s cyclic if
x, = {Ax,: A in 7}

is strongly demse in S# for some wvector xz, in S# ¥ s strictly
cyclic if Yx, = 5& The vector x, 1s called cyclic for &7 in the for-
mer case and strictly cyclic in the latter.

If .7 is abelian and =, is eyclic for .&7 then =z, is also separating
for &7 i.e., if 4 is in &% and Az, = 0, then 4 = 0. It follows that
for each 2 in .%7x, there is a unique operator A, in .%7 such that
A2, = 2. Let o be the mapping x — A, of &2, onto &4 It is
clear that p is a bijective linear transformation.

If .97 is a subalgebra of <~(5#) and T is a possibly unbounded
linear transformation with domain D(T), then by “ T commutes with
& ” we mean for every A in .o/, A(D(T)) is contained in D(T)
and AT = TA on D(T). T is closed if graph (T) = K@, Tx)>: 2 in
D(T)} is closed in sZ7 @ 5~ T, is an extension of T, if D(T)
contains D(T,) and T, = T, on D(T.. A linear transformation is
closable if it has a closed extension. It is easy to see T is closable
if and only if whenever {x,} is a sequence in D(T) converging
strongly to 0, then either Tw, diverges or T, converges strongly
to 0.

In the remainder of this paper .o is assumed to be an abelian
subalgebra of &©(5#) with cyclic vector 2, We note that for any
2 and y in v, 4,42, = Ax= Ay. Also, Ay is in ¥z, We
will assume 57 is infinite dimensional, .7 is weakly closed, and
] = 1.

3. Conditions equivalent to strict cyclicity, We showed in [6]
that . is strictly cyclic if and only if o is continuous with respect
to the strong topology on .72, and the uniform topology on .o, Also,
07! is a contraction since || 4, || = || A% || = || 2 ]].

For each « in 57 define the linear transformation U, by

DU, =z and Uy= Ax.

LEmMA 3.1. Each U, commutes with &7, and if & s maximal
abelian, then U, is bounded if and only if x is in S,

Proof. Let y and z be in .27z, and let w = A,2z. Then
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AUz=AAx= Ax
= Uw = UA%,

showing U, commutes with .&7.

Now suppose .7 is maximal abelian. If U, is bounded, let A be
the bounded operator extending U,. Then A commutes with .97
Thus © = U,x, = Ax, is in %2, The converse is trivial.

COROLLARY 3.2. .7 14s strictly cyclic if and only +f &7 1s
maximal abelian and each U, ts bounded.

Proof. By Lemma 3.1 it suffices to show every strictly cyclic
abelian algebra is maximal abelian. Let &7 be strictly cyclic and
suppose B is a bounded operator commuting with .~ Then for every
y in 27, By = BA®, = A,Bx, = A, (y), showing B = A,

LEMMA 3.3. & s strictly cyclic if and only if &7 is maximal
abelian and the dual space of &7 comsists entirely of the maps
A, — (%, 9), ¥y in 5

Proof. Suppose first &7 is strictly cyclic. Then .97 is maximal
abelian and if f is a continuous linear functional on .7, then the
composition f o o is a continuous linear functional on 52 Thus there
is a unique y in 57 such that f(4,) = f(o(x)) = (x, y) for every « in
27, Conversely, suppose these are the only continuous linear funec-
tionals on .o  Then for each pair z, y in 5# there is a vector
K(»,y) in 5# such that for every A in .o/ (Az,y) = (A, K(x, y)).
Since %, is dense, K (2, y) is uniquely defined. Also, it is easy to
see for fixed ¢ the map K,:y— K(x,y) is an everywhere defined
linear transformation. Fix # in 22 and let 2 be in .97x. Then for
every ¥y in 57, (A, y) = (2, Kz, y)). But A,x = U, so that for all
y in 2 and 2z in ¥, (U, y) = (2, K(x,y)). Thus U} is every-
where defined (in fact, U}y = K(x, y)). Since the adjoint of every
linear transformation is closed, U} is closed and everywhere defined.
Thus U} is bounded and U}* is then a bounded extension of U,. By
Corollary 3.2, . is strictly cyclic.

The next lemma yields information about the spectra of operators
in a strictly cyclic abelian algebra and will be used in §4 and §5.

LEmMA 3.4. If &7 s strictly cyclic, then there is a nmonzero y
m SF such that Ay = (y, x)y for every x in 5S4

Proof. Since %7 is a commutative Banach algebra with identity,
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there is a nonzero multiplicative linear functional f on . By Lemma
3.3 there is a y in 5% such that f(4.) = (z,y) for every x in S£
Let  and 2z be in &~ and let w = A,2. Then A,A, = A, and so

f(A) = f(4,) (4), ie.,
(A2, y) = (2, 9@, 9) = (2, (¥, 2)Y) -
Thus Afy = (v, 2)y.

4. Transitivity and strict cyclicity. We begin this section with
a brief summary of Arveson’s analysis of transitive algebras. This
material is found in [1].

Let .7~ be a subalgebra of <~(5#). For N a positive inte-
ger, .7 is N-fold tramsitive if for every linearly independent set
{2, 2y +=+, 2y} in 57, and for every set {y,, ¥: -+, Yy} in S#. There
is a sequence {T,} in 7~ such that limit,... T.2; = ¥;, ¢+ = 1,2, -+, N.
Note that 1-fold transitivity is transivity.

LEMMA (Arveson). A subalgebra 7~ of £ (SF) is weakly dense
if and only if F s N-fold transitive for every positive integer
N.

THEOREM 4.1 (Arveson). Let .7 be a transitive subalgebra of
L(27). Then

(@) 7 1s mot 2-fold tramsitive if and only if there exists a mom-
scalar closed linear tramsformation commuting with 7 ; and

) if N=2 and 7 1is N-fold but not (N + 1)-fold transitive,
then there exist linear tramsformations T,, Ty ««+, Ty with common
dense domain D such that each T; commutes with 7, mo T; is closable,
and {{x, Tx, Tyxy +++, Tyx): & in D} is closed n £ @H- -+ D F
(N + 1 copies).

We now examine the linear transformations commuting with a
strictly cyclic abelian algebra .7

LEMMA 4.2. Let T be a linear tramsformation commuting with
. Then either T is closable or there is a monzero A im .7 such
that

AD(T) =0.
Proof. Suppose T is not closable. Then there is a sequence {w,}

of vectors in D(T) such that w, converges to 0 but T, converges to
a non-zero vector y. Let 2z be in D(T). Then
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Az = Ay = A(limit Tx,)
= limit (A4,T%,) = limit (T4, 2)
= limit (4,,T2) = 0.

LEMMA 4.3. Let # be a linear submanifold of 57 (not neces-
sarily closed) with «, in the closure of _#. If _# 1s invariant for
&, then #Z = S#

Proof. Since p is continuous and A, = I, there is a vector x in
& with ||I — A.]| <1. In particular, A, is invertible. Since . is
maximal abelian, A4;' is in % But then «, = A7'4A,2, = AJ'¢ is in
A, and so for any y in 57, y = A, is in _Z

COROLLARY 4.4. Ewvery densely defined linear transformation
commuting with 7 1is everywhere defined and bounded.

Proof. Let T be a densely defined linear transformation com-
muting with .. By Lemma 4.2 T is closable, and by Lemma 4.3
D(T) = 5#. By the closed graph theorem T is bounded.

We are now ready to prove the main result of this section.

THEOREM 4.5. Let .7 be a transitive algebra containing a strictly
cyclic abelian algebra &7 Then 7~ is weakly dense in F(S7).

Proof. By Corollary 4.5 every densely defined linear transforma-
tion commuting with .7~ is bounded. Thus by 4.1 it suffices to show
that every bounded operator commuting with .7~ is a scalar multiple
of I. Let A be a bounded operator commuting with .~ (and con-
sequently with .&). Then A is in .% and so by Lemma 8.4 there
is a nonzero vector y and a scalar @ such that A*y = ay. It follows
that Range(A—al) is not dense in A But A—al commutes with
7 and so Range(A4-aI) is invariant for _#. Since 7 is transitive,
Range (A—al) is either dense or {0}. Thus Range (A—al) = {0}, i.e.,
A=al

5. Semisimplicity and strict cyclicity. A commutative Banach
algebra <& is semisimple if for every x in <7, there is a multiplica-
tive linear functional f on <& such that f(x) #0. Some of the
examples we gave in [6] of strictly cyclic abelian algebras are semi-
simple (e.g., the weakly closed algebra generated by the weighted
shift with weights {(n+1)/n}). The collection of all multiplicative
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linear functionals on <& will be denoted _#, and is called the maxi-
mal ideal space of <Z.

Let .o be a strictly cyeclic abelian subalgebra of .&(5#), with
the notation of §2. For each y in 2%, let y* be the linear func-
tional y*(4,) = (x,y), and let _#° (%) be the collection of all y in
&# such that y* is multiplicative. If _#" (%) is given the relative
weak Hilbert space topology and _~#., is given the maximal ideal
space topology [8; p. 110], the map y — y* is a homeomorphism bet-.
ween _+°(.%7) and _#,(this is just the identification of 57 with its
dual space restricted to .#7°(.%7)). In particular, _#° (%) is compact
in the weak Hilbert space topology. A short calculation shows a vector
y is in #7() if and only if (%, ¥) = 1 and ¥ is an eigenvector for
the adjoint of every operator in .97

We see that . is semisimple if and only if for every x in 57
there is a y in 4~ () such that (x,y) = 0. This is equivalent to
saying .#7(.%7) spans 57 (i.e., the smallest closed subspace of 57
containing _#7(.%) is 5#°). Before continuing the discussion of semi-
simple strictly cyelic algebras, it is necessary to discuss fuctional
Hilbert spaces. A Hilbert space & is a functional Hilbert space if
there is a set X such that

(i) the elements of & are complex valued functions on X;

(ii) each point evaluation is a continuous linear functional on
Z ; and

(iii) for each # in X there is an f in & such that f(x) == 0.
We will denote such a functional Hilbert space by (&, X).

If (#,X) is a functional Hilbert space and ¢ is a complex
valued function on X such that gf is in & for every f in %, then
the linear transformation M,: f— gf is called a multiplication operator.
An easy application of (ii) and the closed graph theorem shows every
multiplication operator on a functional Hilbert space is bounded.

In [5; p. 32] it is shown that a bounded operator A on an ab-
stract Hilbert space 57 is unitarily equivalent to a multiplication
operator on a functional Hilbert space if and only if the eigenvectors
of A* span 5~ This easily generalizes to the following: If &7 is a
subalgebra of & (5#) and

X = {x in 57 ¢ is an eigenvector for A* for all A in &}

spans 57, then %7 is unitarily equivalent to an algebra of multiplica-
tion operators on a functional Hilbert space. The idea is if u is a
vector in 57, let %' be defined on X by u'(x) = (u, ). Then define
llw' || = ||u]|| and let U be the unitary transformation Uu = u’. If A
is in .o/, then UAU* = M, where A*x = (complex conjugate of
f(x))x for every « in X.
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We now return to the case of . a semisimple, strictly cyclic
abelian algebra. Then _#°(.%”) spans 57, and by the preceding
remarks S# is unitarily equivalent to a functional Hilbert space
(&, A ().

THEOREM 5.1. Let &7 be a semisimple, strictly cyclic abelian
subalgebra of £ (57). Then 7 is unitarily equivalent to the algebra
of all multiplication operators on a functional Hilbert space
(F, N ()). Moreover, each f in F 1s continuous and there is a
constant M such that for every f in F,

| flle = max {| f(@)]: 2 in A#() = M| Sl

Proof. We have only to show each f in & is continuous and
satisfies the norm inequality. Let f be in & and let z be in 57
such that Uz =f. Then for every a in _#7(), f(x) = (z, ),
showing f is continuous. Since #7(.) is weakly compact, it is
bounded, say, by M. Thus, for every = in #7(.&),

@) =@ =lzlllel= Mzl =M]f.

REMARKS. 1. The continuity and norm inequality in Theorem 5.1
could have been ascertained by considering 57 as a Banach algebra
with || 2], = || 4.|] and using the theory of the Gelfand transform.

2. The bound M on _#7(.%) can be chosen to be the norm of
o, i.e, sup{|| 4. : ||z|| = 1}, since for each z in #7(.%7),

N2 l* = (@, 2) (@, ©) = (A, 2) = | A2 = =P el .

Finally, we show that semisimple, strictly cyclic abelian algebras
are examples of reflexive operator algebras. A subalgebra <# of
FL(57) is reflexive if for every B in <~ (5#7), if B leaves invariant
all the closed invariant subspaces of <%, then B is in <&. Reflexive
algebras are studied in [2] and [9].

THEOREM 5.2. If &7 4s a semisimple, strictly cyclic abelian
algebra, then &7 1is reflexive.

Proof. It is easy to see that an algebra <% is reflexive if and
only if &£* = {B*: B in &} is reflexive. We show that .o7* is
reflexive. Suppose B is a bounded operator leaving invariant all the
closed invariant subspaces of .&7*. For each « in .#7(.%7), the one-
dimensional space spanned by « is invariant for .&* and hence for
B. Since #7(.%) spans 57 it follows that B commutes with .o7*.
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Since .%* is maximal abelian, B is in .&*.

REMARK. It is not true that every strictly cyclic abelian algebra
is reflexive. Let S# be separable, with orthonormal basis {e,}7_, and
let S be the weighted shift operator Se, = (1/2")e,+,. R. Gellar [4]
showed that the weakly closed algebra .~ generated by S is strictly
cyclic, and W. Donoghue [3] proved that the only closed subspaces
invariant for .o are {0} and Vi_,.e,, n = 0,1, -.-.. These subspaces
are invariant for any operator whose matrix relative to {e;} is lower
triangular.

We now show that there exist strictly cyclic abelian algebras on
Hilbert spaces of any dimension. We then conclude this paper by
showing that for any Hilbert space 57 of dimension greater than 2,
L (£#) contains a non-singly generated strictly cyclic abelian
algebra.

Let 57 be an arbitrary complex Hilbert space. For vectors » and
v in 27, @ v is the operator on 57 defined by (v & v)(x) = (x, w)v.
Let x, be a fixed unit vector in 2#, and for each z in 57 let

A, =@ 2) P+ o,Q@u,
where P is the orthogonal projection of 57 onto {x,}'. Let
Y = {A,: v in 57} .
LEMMA 5.3. &7 is an abelian subalgebra of F(57) and x, s
strictly cyclic for .o/
Proof. Clearly .7 is a linear subspace of &£ (5#) with
>\‘Aa: + Ay = A1x+y .
Also, for every x in 57,
Ay = (%, @) Py + (o, 202

=|mlfz =2,
so x, is strictly eyelic for .4 It remains to show that .o is an
abelian algebra. Let z and y be in & Then
AzAz/ = (xr xo)(y, xo)P
+ (@, 7)) P (2, @ ¥)
+ (2, @ ) (¥, 2) P + (2, @ @) (2 @ ¥) -

We note that for any vectors  and v, and for any bounded operator
T,
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Tu@v) =u@ (Tv)
and
U@ T = (T*w)Q v .
Thus

A A, = (@, 2) (Y, ©)P + (2, 2)2 @ (Py)
+ {(y, %) Pr, @ @} + {2, & [(2, @ 2)y]}
= (&, ) (¥, )P + (2, 20)% @ (Py)
+ 2, ® [(2, @ 2)y]
= (@, )Y ) P + 2 & [(@, 2) Py + (2. Q 2)y] -

Let z = (v, 2)Py + (2, @ x)y. Then A,y = z and so

(2, 2)) = ((, 2) Py, @) + (2 @ @)y, @)
= ((% @ )Y, o) = (¥, 20)(@, %) -

Thus

AxAy - (zy mO)P + (xo @ z)
= Az ’

showing that .7 is an algebra.
To show that .9 is abelian it suffices to show that A,y = A

for every pair x, y of vectors in 5~ We have

Ay = (@, x)Py + (y, )
= (@, ©)[y — (¥, 2)w] + (¥, B2
= (@, )Y — (@, B)(Y, Bo)To + (Y, BT
= (¥, x)[x — (T, 2] + (2, %)y
=Ax.

Assume now that the dimension of 57 is at least 3. We show
that . is not the commutant of any operator. This will show that
&7 is not singly generated. For if . is generated by an operator
A, then since .7 is maximal abelian .o is the algebra of all oper-
ators commuting with A4, i.e., .97 is the commutant of A.

To show &7 is not the commutant of an operator it suffices to
show that for every A in .97 there is an operator T such that
AT =TA but T is not in &% Let A, be in .. We may assume
that (2, «;) = 0 since an operator commutes with A, if and only if it
commutes with 4, — (¥, )] = A, (1,.54,» Choose y in 27, y + 0, such
that y is orthogonal to both #, and x. Finally, let 7T =y a.
Then
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Tx, = (@, y)x =0 .
Since x, is separating for .7 and T = 0, T is not in .o However,

TA, = (y ® 2)(z, ® 2)
=2, Q [(y ® @)x]
= 2, @ [(%, y)]
=2,®0
=0

and

AT = (2, ® 2)(y ® )
=y ® [(z & x)2]
=y R [(=, )z]
=yYR0
=0.

In particular T commutes with A,.
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