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For X a Hausdorff space let H(X) be the group of
homeomorphisms of X. We study here certain subgroups of
H(E) where E is an infinite-dimensional normed linear
space.

The set of homeomorphisms from a topological space X onto it-
self forms a group H(X) under composition. There are many-
topologies which can be given to £Γ(X), some of which may make
H(X) a topological group. It is natural to ask about the properties
of H(X), both algebraic and topological. Also, what relationships
are there between X and H(X)1 One way to attack these questions
is to study various subgroups of H{X). In this paper we shall in-
vestigate certain subgroups of H{E), where E is a normed linear
space.

1* Algebraic properties of H(E). Let X be a Hausdorff space.
If AaX, S(A) will denote the set of elements of H{X) which are
supported on A. That is, heS(A) if and only if h \X-A is the identi-
ty on X—A. Let & be a base for the topology on X. Define B(X)
to be the subgroup of H{X) which is generated by those elements of
H{X) which are supported on elements of &. Then heB(X) if and
only if h = hn h19 where for each i <; n, h{e S(B<) for some
Bi e &. A homeomorphism k e H(X) is said to be stable if k =
K ' h19 where for each ί <J n, h{e S(X— Ut) for some nonempty
open set Ui in X. The stable homeomorphisms of X, SH{X), form
a subgroup of H(X).

We shall consider the following possible conditions on &.
B l . For every B19 B2e^, there exists an heH(X) such that

h{Bύ c B2.
Bl' . For every B^B^e^, there exists an JιeB(X) such that

h{Bx) c B2.
B2. For every 5 G ^ , there exists an xeB and a pairwise

disjoint sequence {B{ e & \ Bι c B, i = 1, 2, •} which converges to x
(i.e., for every open set U containing x, there is some Bi contained
in Z7), and there exists an he S(B) such that h(Bi) = Bi+1 for every i.

B 3. For every B e <S£ and h e H(X), h{B) e &.
B4. For every U e ^ , there exists Bf'e & such that B U B' =

X, and no Be& is dense in X.
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736 R. A. McCOY

LEMMA 1.1. // & satisfies B3, then B{X) is a normal sub-
group of H{X).

Proof. Let heB(X) and fe H(X). Then h = hn h19 where
for each i ^ n, hi e S(Bi) for some Bt e &. Then

Each /Λi/-ι6S(/(B4)), so that fhf~ιeB{X).
The following two lemmas can be proved in a manner similar to

the proof of Theorem 2 in [9]. Also see [1], [2], and [16].

LEMMA 1.2. Let & satisfy B l and B2, and let heH(X) such
that h is not the identity. If feB(X), then f is a product of con-
jugates of h and h~γ by members of H{X).

LEMMA 1.3. Let & satisfy BΓ and B 2, and let heH(X) such
that h is not the identity. If feB(X), then f is a product of con-
jugates of h and h~x by members of B(X).

THEOREM 1.1. If ^ satisfies BΓ and B2, then B(X) is simple.

Proof. Let N be a normal subgroup of B(X) having more than
one element. Let feB(X). Choose heN such that h is not the
identity. Then by Lemma 1.3, / is a product of conjugates of h and
hr1 by members of B{X). But Since heN and N is normal in
B(X), f is a product of elements of N. Therefore feN, so that
B(X) = N.

THEOREM 1.2. If & satisfies Bl, B2, and B3, then if B(X) is
nontrivial, it is the smallest nontrivial normal subgroup of H(X).

Proof. By Lemma 1.1, B(X) is a normal subgroup of H(X).
Suppose that N is a normal subgroup of H{X) having more than one
element. Let feB(X). Choose heN such that h is not the identity.
Then by Lemma 1.2, / is a porduct of conjugates of h and hr1 by
members of H(X). But since heN and N is normal in H(X), f is a
product of elements of N. Therefore feN, so that B(X)aN.

LEMMA 1.4. // & satisfies B4, then B{X) = SH(X).

Proof. Clearly B(X)czSH(X). Suppose that heSH(X). Then
h = hn hu where for each i <^ n, h{e S(X— U4) for some nonempty
open set Z7* in X. Since & is a base for the topology on X, for
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each i <; n, there is some Bt e & such that B{ c J7<. By property
B 4, for each i^n, there exists Bl e & such that Bt U 5/ = X.
Then each ft, is an element of S(Bl). Thus heB(X).

Theorem 1.1 and Lemma 1.4 then give conditions which imply
that H(X) is a simple group.

THEOREM 1.3. If & satisfies BΓ, B2, and B4, and if every
element of H(X) is stable, then H(X) is simple.

Now let us consider the special case of the group of homeomor-
phisms on a normed linear space or a manifold modeled on a normed
linear space. E will always denote a normed linear space, and M
will be a connected manifold modeled on E. By that we mean a
connected paracompact space such that every point in M is contained
in an open subset of M which is homeomorphic to E. If E is finite-
dimensional it will be permissible to allow M to have boundary.

For finite-dimensional E, Fisher defined in [9] a base for M
which satisfies Bl, BΓ, B2, and B3. A similar base for Mean be
found when E is infinite-dimensional.

LEMMA 1.5. // E is infinite-dimensional, M has a base & which
satisfies Bl, BΓ, B2, and B3.

Proof. Take & to consist of all collared open cells in M. By a
collared open cell in M is meant the interior of a collared cell in M.
C is a collared cell in M if there exists a homeomorphism from the
triple (B2; B19 S2) in E onto the triple (C; C, BdC) in M, where C"
is some subset of M, where Br = {xeE\ \\x\\<^r}, and where
Sr — BdBr.

Property B1 follows from B1', and B 3 follows from the definition
of &. We shall outline the proof that & satisfies B l ' and B2 by
using a similar technique to that which was used in [9]. Let
Qi, Q 2 £ ^ . Since M is connected, there are a finite number of ele-
ments of &, say Qι,"-yQn, such t h a t Qi = Q1,Q

n = Q2> and

Qι Π Qί+1 Φ 0 for i < n. For each i < n, let f{ be a homeomorphism
from (B2; B19 S2) onto (C<; CIQ\ Bdd), where d is some subset of M.
Also for each i < n, we can define a ^ £ S(BSJ2) such that

Then define ft = fn-xgn-Jn-i fiQifΓ1* Since for each i < π,
/,(Int £3/2) e ̂ , then heB(M). Also ΛfQJ c Q2.

To establish that & satisfies B 2, let Q e &. Let / be a homeo-
morphism from (B2; Biy S2) onto (Cl; CQ, BdC) for some set C in M.
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Define geH(B2) by g(y) = \\y\\y for yeBly and g(y) = y for

yeB2 — B±. Let <c = /(0), and choose zeS3}8. For each positive in-
teger i, set Q< =/^(IntB1/β(s)). Then define heS(Q) by Λ(2/) =
fΰf~ι{y) if 2/e C, and Λ(#) = y if ye M— C. It can be verified that
the sequence {QJ is pairwise disjoint and converges to x, and that
h(Qi) = Qi+1 for every i.

LEMMA 1.6. // E is infinite-dimensional, it has a base έ%? which
satisfies Bl, BΓ, B2, B3, and B4.

Proof. As in Lemma 1.5, take & to consist of all collared open
cells in E. Hence & satisfies Bl, BΓ, B2, and B3. Klee showed
in [13] that if E is infinite-dimensional, there is a φeH(E) such
that φ(Bj) — E — Int Bγ. Therefore complements of collared cells are
collared open cells. Then to see that & satisfies B 4, let Q e &.
From Theorem 4.1 in [14] it is seen that Q is tame, so that there
exists an feH(E) such that f(Q) = IntB,. Let Q' = E - f^(B1/2)9

which is thus in & because of Klee's result. Clearly Q U Q' = E.
The next two theorems then follow from Theorem 1.1, Theorem

1.2, Lemma 1.4, Lemma 1.5 and Lemma 1.6.

THEOREM 1.4. M has a base & such that B(M) is the smallest
nontrivial normal subgroup of H(M) and is simple.

THEOREM 1.5. // E is infinite-dimentional, then SH(E) is the
smallest nontrivial normal subgroup of H(E) and is simple.

It was shown in [8] that if E is homeomorphic to the countably
infinite product of copies of itself (we shall abreviate this statement
as E ~ Eω), then SH(E) - H(E).

THEOREM 1.6. If E ~ Eω, then H(E) is simple.

It should be noted that if E is an infinite-dimensional Hubert
space, then E ~ Eω [5]. Also, all reflexive Banach spaces are
homeomorphic to Hubert spaces [6]. In fact, at this time there
seems to be no known infinite-dimensional E which is not homeomor-
phic to Eω.

2. Stable structure on E. Whittaker defines the following
terms in [18]. Let 3ίΓ(X) be the set of nonempty connected open
subsets U of X such that for every x,ye U, there exists an feS(U)
with f(x) = y. Set K{X) = U^Γ(X), which is an open subset of X.
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Finally, define R(X) to be the set of heH(X) such that for every
x e K{X) and every connected open subset U of K(X) containing x
and h(x), there is a neighborhood V of x and an feS(U) satisfying
f\v = h\y.

It was shown in [18] that if X is a Hausdorff space such that
each open subset contains a member of J%Γ{X), and K{X) cannot be
separated by any two points, then R{X) is a normal subgroup of
H(X).

As in the previous section, E will denote a normed linear space,
and M will be a connected manifold modeled on E.

LEMMA 2.1. *_%"' (ikf) is a base for the topology on M, and
K(M) = M.

Proof. If ze M, then there exists a collared open cell Q in M
containing z. Let g be a homeomorphism from (I?2; Blf S2) onto (C;
C7Q, BdC), for some set C in ilf (see the proof of Lemma 1.5 for
terminology). Let x,yeQ, and set a = flΓ1^) and δ = g~ι{y). Define
heH(B^) as follows. First define h(a) = &. Next let c e ^ - f α } .
Let {c'} = Ray [α : c] Π Si, where Ray [a : c] is the infinite ray from a
through c. Then c = α + a(c' — α) for some 0 < a ^ 1. Define
jφ) = 6 + a(p' - b). With h thus defined, define / e H(M) by /(ω) =
ghg~ι{ω) if ωeQ, and /(ω) = ω if ω e i l f - Q . Then/GS(Q) and
f(x) = y. Therefore QeSΓ(M), which makes 3£Γ{M) a base for
the topology on M. Then obviously K{M) = M.

THEOREM 2.1. If the dimension of E is greater than one, then
R(M) is a normal subgroup of H(M).

It was also shown in [18] that M has a stable structure if and
only if R{M) does not consist only of the identity on M. The con-
cept of a stable structure was introduced and studied in [7]. M has
a stable structure if M = \J {Ua\oί£ A), where the Ua are the images
of homeomorphisms ha from Bt in E into M which satisfy the
condition that if Ua Γ) Uβ Φ 0 and xeh~ι(UaC\ Up), then there is a
neighborhood V of x and an / e SiB^ such that / | F = hγha\v. In the
next theorem we shall see that for a large class of spaces E, R(M)
is all of H(M).

THEOREM 2.2. If E ~ Eω, then R(M) = Ή(M).

Proof. Let h e H(M). By Lemma 2.1, K(M) = M. So let xeM,
and let U be a connected open subset of M containing x and h(x).
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Since E ~ Eω, by a result of Henderson and Schori in [10], there
exists a homeomorphism φ from M into E such that φ(M) is open in
E. Since φ(U) is connected, there is a piecewise linear arc, a, join-
ing φ(x) and φh(x), such that aaφ(U). By taking an appropriate
ε-neighborhood of a, a collared cell C can be found contained in φ{U)
and containing a in its interior. Choose δ > 0 such that

Bδ(φh(x)) c Int C .

Then choose e > 0 such that Bt(φ(x)) c:φh~1φ~ι(J.ntBδ{φh{x))) ΠlntC.
In [8] it is shown that SH(E) = jff(ί7) if and only if the strong an-
nulus conjecture for E is true. Then since SH(E) = H(E) for E
such that E ~ Eω, we may apply the strong annulus conjecture here.
Thus there exists geS(C) such that g\Bem*)) ~ Ψ^CP~1\B^Ψ{X)) Define
feS(U)byf = φ~'gφ and let V = ^ (IntB.(φ(x))) . Then f\v = h\v

as desired, so that heR(M).

COROLLARY. If E ~ Eω, then M has a stable structure.

3* Topological propeties of H(E). Let X be a Hausdorff
space, and let ^ be a collection of closed subsets of X. Define

to be H(X) along with the topology generated by the collection

{[C, U] I Ce <gf and ?7 is open in X) ,

where

[C, U] = {he H(X) I h(C) c £7} .

X is (stably) ^-homogeneous if every homeomorphism between ele-
ments of ^ can be extended to a (stable) homeomorphism in H(X).

For the remainder of this section, F will be a locally convex,
linear topological space such that F ~ F x F. If A is a closed sub-
set of F, then A is .F-deficient if there exists a homeomorphism h
from F onto F x F such that fe(A) c F x {0}. It is a standard
technique (see [12] and [4]) that F is stably ^-homogeneous if ^
has the property that for C, D 6 <g% C U -D is F-deficient. Lemma 3.1
is a partial converse to this. In Lemma 3.1, Theorem 3.1, and
Theorem 3.2, we shall take ^ to be closed under finite unions and
under homeomorphisms (i.e., if C ΰ e ^ , then CϋDe^; and if
CeW, then h(C)e^ for every heH{F)).

LEMMA 3.1. // F is ^-homogeneous, then every element of &
is F-deficient.

Proof. Let C e ^, and let / be a homeomorphism from F onto
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F x F. Then the homeomorphism from C onto f~\C x {0}) can be
extended to some geH(F). Let h = fg, so that

h(C) = fg(C) = ff~\C x {0}) - C x {0} c F x {0} .

THEOREM 3.1. // F is C-homogeneous, then it is stably ^-homo-
geneous.

THEOREM 3.2. Let F be ^-homogeneous. Then SH(F) = H{F)
if and only if SH^(F) is open in H

Proof. Suppose SH^(F) is open in H&(F), and let heH(F). Let
f|? si[Ci, £7;] be a neighborhood of the identity on F which is con-
tained in SH(F), where de^ and Z7* is open for i ^ n. By
Theorem 3.1, there exists a geSH(F) such that ^lu?βl(?i

 = ^lujsslί?<

Then g~ιh(C%)a Ui for ΐ ^ w, so that g~ιheSH(F). Therefore h =
g(Γιh)eSH(F).

The following corollary to Theorem 3.2 then is true because in-
finite-dimensional Frechet spaces are homogeneous with respect to
compact sets, which in turn follows from Michael's version of the
Bartle-Graves Theorem, found for example in [15], and from the fact
that separable infinite-dimensional Frechet spaces are homeomorphic
to separable Hubert space, which can be found in [3].

COROLLARY. Let F be a Frechet space such that F ~ F x F.
Then SH(F) = H(F) if and only if SH(F) is open in H{F) under
the compact-open topology.

Kirby showed in [11] that if E is finite-dimensional, then SH(E)
is open in H(E) under the compact-open topology. But he made use
of the fact that H(E) with the compact-open topology forms a
topological group. This is not the case for infinite-dimensional E.
We might ask the following questions. If H^{E) is a topological
group, is SH&(E) open in iί^(S)? Which classes, ^ make H^(E)
into a topological group? One answer to this last question is the
following theorem.

THEOREM 3.3. Let E be an infinite-dimensional normed linear
space, and let M be a connected manifold modeled on E. If & con-
sists of the collared cells in E or M, respectively, then H& (E) is a
topological group and H&(M) is a topological semigroup. If ^ con-
sists of the collared cells in M and the complements of the interiors
of the collared cells in M, then H&(M) is a topological group.
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Proof. Let h19 h2eH(E) (or H(M)). Let Πi=ΛB^ U{] be an open
set in H(E) containing h2hu where each B{ e <g". For each %<Ln, let
de^ which is contained in h^iUi), such that h^B,) c Int d. Such
a C< can be found since a collared cell is collared in every open set
containing it [17]. Then Λ2(C<) c E7*. Let &£ Π?=i [#<> Int OJ and
02 e n?=i [Cif Z7J. Then flrtfiφ) c g2(lnt d) c C7,.

Let heH(E) (or iϊ(ikΓ)). Let f|?=i [#*> 17*] be an open set in H(E)
containing hr1, where each B* 6 ^. For each i ^ n, let Ό^^
which is contained in Uif such that h~x{B^ c Int D ίβ Let d =
E— Int A which is an element of ^(see the proof of Lemma 1 6).
Then hid) = h(E - Int Z><) c fc(J0 - hr\B^) = E - B,. Let
flr e Γl?=i [C4, ̂  - 5 J . Then d c flΓ1^ - B<) = E - flΓ1^), so that
0Γ W c J5 - C* = Int A c [7,.

REFERENCES

1. R. D. Anderson, T7*,e algebraic simplicity of certain groups of homeomorphisms,
Amer. J. Math., 80 (1958), 955-963.
2. , On homeomorphisms as products of conjugates of a given homeomorphism
and its inverse, Topology of 3-manifolds, 1962.
3. , Hilbert space is homeomorphic to the countable infinite product of lines,
Bull. Amer. Math. Soc, 72 (1966), 515-519.
4. , Topological properties of the Hilbert cube and the infinite product of
open intervals, Trans. Amer. Math. Soc, 126 (1967), 200-216.
5. C. Bessaga, On topological classification of complete linear metric spaces, Funda-
menta Mathematicae, 56 (1965), 251-288.
6. , Topological equivalence of non-separable reflexive Banach spaces. Ordinal
resolutions of identity and monotone basis, Bull. Acad. Polon. Sci., Ser. Sci. Math.,
Astr. et Phys., 15 (1967), 397-399.
7. M. Brown and H. Gluck, Stable structures on manifolds. I: Homeomorphisms of
Sn, Ann. of Math., (2) 79 (1964), 1-17.
8. D. Curtis and R. A. McCoy, Stable homeomorphisms on infinite-dimensional normed
linear spaces, Proc. Amer. Math. Soc, 28 (1971), 496-500.
9. G. M. Fisher, On the group of all homeomorphisms of a manifold, Trans. Amer.
Math. Soc, 97 (1960), 193-212.
10. D. W. Henderson and R. Schori, Topological classification of infininite dimensional
manifolds by homotopy type, Bull. Amer. Math. Soc, 76 (1970), 121-124.
11. R. C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math.,
89 (1969), 575-582.
12. V. L. Klee, Some topological properties of convex sets, Trans. Amer. Math. Soc,
78 (1955), 30-45.
13. , A note on topological properties of normed linear spaces, Proc Amer.
Math. Soc, 7 (1956), 673-674.
14. R. A. McCoy, Cells and cellularity in infinite-dimensional normed linear spaces,
(to appear).
15. E. A. Michael, Continuous selections I, Ann. of Math., 63 (1956), 361-382.
16. E. Nunnally, Dilations on invertible spaces, Trans. Amer. Math. Soc, 123 (1966),
437-448.
17. D. E. Sanderson, An infinite-dimensional Schoenfliess Theorem, Trans. Amer.
Math. Soc, 148 (1970), 33-40.



GROUPS OF HOMEOMORPHISMS OF NORMED LINEAR SPACES 743

18. J. V. Whittaker, Some normal subgroups of homeomorphisms, Trans. Amer. Math.
Soc, 123 (1966), 88-98.

Received June 16, 1970 and in revised form January 11, 1971.

VIRGINIA POLYTECHNIC INSTITUTE

AND

STATE UNIVERSITY





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON J . DUGUNDJI

Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California

Los Angeles, California 90007

C. R. HOBBY RICHARD ARENS

University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. P. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY * * *
UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two
must be capable of being used separately as a synopsis of the entire paper. The editorial
"we" must not be used in the synopsis, and items of the bibliography should not be cited
there unless absolutely necessary, in which case they must be identified by author and Journal,
rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of
the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All
other communications to the editors should be addressed to the managing editor, Richard Arens,
University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the
price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to
individual faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-

chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.



Pacific Journal of Mathematics
Vol. 39, No. 3 July, 1971

William O’Bannon Alltop, 5-designs in affine spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
B. G. Basmaji, Real-valued characters of metacyclic groups . . . . . . . . . . . . . . . . . . . . . . 553
Miroslav Benda, On saturated reduced products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
J. T. Borrego, Haskell Cohen and Esmond Ernest Devun, Uniquely representable

semigroups. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
George Lee Cain Jr. and Mohammed Zuhair Zaki Nashed, Fixed points and stability

for a sum of two operators in locally convex spaces . . . . . . . . . . . . . . . . . . . . . . . . . 581
Donald Richard Chalice, Restrictions of Banach function spaces . . . . . . . . . . . . . . . . . . 593
Eugene Frank Cornelius, Jr., A generalization of separable groups . . . . . . . . . . . . . . . . 603
Joel L. Cunningham, Primes in products of rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
Robert Alan Morris, On the Brauer group of Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
David Earl Dobbs, Amitsur cohomology of algebraic number rings . . . . . . . . . . . . . . . . 631
Charles F. Dunkl and Donald Edward Ramirez, Fourier-Stieltjes transforms and

weakly almost periodic functionals for compact groups . . . . . . . . . . . . . . . . . . . . . . 637
Hicham Fakhoury, Structures uniformes faibles sur une classe de cônes et

d’ensembles convexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
Leslie R. Fletcher, A note on Cθθ -groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
Humphrey Sek-Ching Fong and Louis Sucheston, On the ratio ergodic theorem for

semi-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
James Arthur Gerhard, Subdirectly irreducible idempotent semigroups . . . . . . . . . . . . . 669
Thomas Eric Hall, Orthodox semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
Marcel Herzog, Cθθ -groups involving no Suzuki groups . . . . . . . . . . . . . . . . . . . . . . . . . 687
John Walter Hinrichsen, Concerning web-like continua . . . . . . . . . . . . . . . . . . . . . . . . . . 691
Frank Norris Huggins, A generalization of a theorem of F. Riesz . . . . . . . . . . . . . . . . . . . 695
Carlos Johnson, Jr., On certain poset and semilattice homomorphisms . . . . . . . . . . . . . 703
Alan Leslie Lambert, Strictly cyclic operator algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
Howard Wilson Lambert, Planar surfaces in knot manifolds . . . . . . . . . . . . . . . . . . . . . . 727
Robert Allen McCoy, Groups of homeomorphisms of normed linear spaces . . . . . . . . 735
T. S. Nanjundiah, Refinements of Wallis’s estimate and their generalizations . . . . . . . 745
Roger David Nussbaum, A geometric approach to the fixed point index . . . . . . . . . . . . 751
John Emanuel de Pillis, Convexity properties of a generalized numerical range . . . . . 767
Donald C. Ramsey, Generating monomials for finite semigroups . . . . . . . . . . . . . . . . . . 783
William T. Reid, A disconjugacy criterion for higher order linear vector differential

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
Roger Allen Wiegand, Modules over universal regular rings . . . . . . . . . . . . . . . . . . . . . . 807
Kung-Wei Yang, Compact functors in categories of non-archimedean Banach

spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
R. Grant Woods, Correction to: “Co-absolutes of remainders of Stone-Čech
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