REFINEMENTS OF WALLIS’S ESTIMATE AND THEIR GENERALIZATIONS

T. S. Nanjundiah
REFINEMENTS OF WALLIS’S ESTIMATE
AND THEIR GENERALIZATIONS

T. S. NANJUNDAH

Some refinements of Wallis’s estimate for π noticed in the recent literature are pointed out as already contained in a certain continued fraction expansion due to Stieltjes. A property of the approximants to this continued fraction is established which yields a simple proof of the expansion and furnishes, in particular, interesting monotone sequences of rational numbers with limit π. Two estimates of the Wallis type involving quotients of gamma functions are derived. They include estimates for $\Gamma(\alpha)$ and $\pi \csc \pi \alpha (0 < \alpha < 1)$ both of which reduce for $\alpha = 1/2$ to one of the known refinements of the Wallis estimate.

O. Introduction. Let

$$g_0 = 1, \quad g_n = \frac{1.3 \cdots (2n-1)}{2.4 \cdots 2n}, \quad n = 1, 2, \ldots .$$

We have the well-known Wallis estimate

$$ng_n^2 < \frac{1}{\pi} \left(n + \frac{1}{2} \right) g_n^2 .$$

Obtaining the case $x = n + 1/2$ of the inequalities

$$(1) \quad x - \frac{1}{4} < \left[\frac{\Gamma(x + \frac{1}{2})}{\Gamma(x)} \right]^2 < \frac{x}{x + \frac{1}{4}}, \quad x > 0$$

by an application of a theorem in mathematical statistics, John Gurland [3] notes that

$$\left(n + \frac{1}{4} \right) g_n^2 < \frac{1}{\pi} < \frac{(n + \frac{1}{2})^2}{n + \frac{1}{4}} g_n^2 .$$

The first inequality here has been found earlier by D. K. Kazarinoff [4]. On the basis of a result of G. N. Watson, A. V. Boyd [1] has shown that one cannot have

$$\left(n + \frac{1}{4} + 1/(an + b) \right) g_n^2 < \frac{1}{\pi}, \quad a > 0, b > 0$$

for all n if $a < 32$ and asserts that

$$\left(n + \frac{1}{4} + 1/(32n + b) \right) g_n^2 < \frac{1}{\pi} < \frac{(n + \frac{1}{2})^2}{n + \frac{1}{4} + 1/(32n + b)} g_n^2$$

745
for all $n \geq 1$ with $b_1 = 32$ and $b_2 = 48$. All these facts are, however, overshadowed by the following continued fraction expansion due to Stieltjes [5]:

$$4 \left[\frac{\Gamma(x + 1)}{\Gamma(x + \frac{1}{2})} \right]^2 = 4x + 1 + \frac{1}{2(4x + 1)} + \frac{3}{2(4x + 1)} + \cdots,$$

$$x > -\frac{1}{4}.$$

Indeed, this result, together with its obvious transformation

$$4 \left[\frac{\Gamma(x + 1)}{\Gamma(x + \frac{1}{2})} \right]^2 = \frac{(4x + 2)^2}{4x + 3} + \frac{1}{2(4x + 3)} + \frac{3}{2(4x + 3)} + \cdots,$$

$$x > -\frac{1}{2},$$

suffices to dispose of (1) and the two observations made in [1], the second of which is seen to hold even with $b_1 = 12$ and $b_2 = 27$. We wish to point out a simple and informative proof of (1) which shows, in particular, that

$$(4n + 1)g_n^2 \uparrow \frac{4}{\pi}, \quad (4n + 1 + \frac{1}{2(4n + 1)})g_n^2 \downarrow \frac{4}{\pi}, \cdots.$$

A direct proof of (1) is easy. In fact, assuming throughout that $0 < \alpha < 1$, we prove the two generalizations

$$(II) \quad x - \frac{1 - \alpha}{2} < \left[\frac{\Gamma(x + \alpha)}{\Gamma(x)} \right]^{1/\alpha} < \frac{1}{(1 + \alpha/x)^{1/\alpha} - 1}, \quad x > 0,$$

$$x - \alpha(1 - \alpha) < \frac{\Gamma(x + \alpha)\Gamma(x + 1 - \alpha)}{\Gamma^2(x)}$$

$$< \frac{x^\alpha}{x + \alpha(1 - \alpha)}, \quad x > 0.$$

As special cases of interest, we have estimates for $\Gamma(\alpha)$ and $\pi \csc \pi \alpha$ generalizing Gurland's estimate for π:

$$(n + \alpha/2)^{1-\alpha} g_n(\alpha) < \frac{1}{\Gamma(\alpha)} < \frac{n + \alpha}{(n + (1 + \alpha)/2)^\alpha} g_n(\alpha),$$

$$\left(1 - \frac{\alpha^2}{n + \alpha}\right) G_n(\alpha) < \frac{\sin \pi \alpha}{\pi} < \left(1 + \frac{\alpha^2}{n + 1 - \alpha}\right)^{-1} G_n(\alpha),$$

where

$$g_n(\alpha) = \left(\alpha + n - 1\right), \quad G_n(\alpha) = \alpha \prod_{k=1}^{n} \left(1 - \frac{\alpha^2}{k^2}\right).$$
One should compare (II), (III) and the inequalities

(2) \[x - 1 + \alpha < \left[\frac{\Gamma(x + \alpha)}{\Gamma(x)} \right]^{1/\alpha} < x, \quad x > 0, \]

which follow at once from the log-convexity of the gamma function. Wallis's estimate is the special case of (2) in which \(\alpha = 1/2 \) and \(x = n + 1/2 \) — the two together actually yield \(\Gamma(1/2) = \sqrt{\pi} \). This is a simple evaluation of \(\Gamma(1/2) \) that goes back to Stieltjes [2]; it is simple because (2) for \(\alpha = 1/2 \) requires only Schwarz's inequality for integrals.

The proofs of (I), (II) and (III) all utilize this familiar asymptotic formula implied by (2):

(3) \[\Gamma(x + \alpha) \sim x^\alpha \Gamma(x), \quad x \to \infty. \]

1. The expansion (I). We have

\[C_k(x) \equiv x + \frac{1^2}{2x} + \frac{3^2}{2x} + \cdots + \frac{(2k - 1)^2}{2x} = \frac{A_k(x)}{B_k(x)}, \]

\(k = 0, 1, \ldots \),

\(W_k = A_k(x) \) and \(W_k = B_k(x) \) being the two solutions of the recursion

\[W_{k+1} = 2xW_k + (2k + 1)^2 W_{k-1} \]

defined by the initial values

\[A_{-3}(x) = -x, \quad A_{-1}(x) = 1; \quad B_{-3}(x) = 1, \quad B_{-1}(x) = 0. \]

It is easily verified that the above recursion is equivalent to

\[W'_{k+1} = 2(x + 2\varepsilon)W'_k + (2k + 1)^2 W'_{k-1}, \]

where

\[W'_k = (x + (2k + 2)\varepsilon)W_k + (2k + 1)^2 W_{k-1}, \quad \varepsilon = \pm 1. \]

This establishes the matrix identity

\[\begin{bmatrix} (x + 1)^2 B_k(x + 2) & A_k(x + 2) \\ (x - 1)^2 B_k(x - 2) & A_k(x - 2) \end{bmatrix} = \begin{bmatrix} x + 2k + 2 & (2k + 1)^2 \\ x - 2k - 2 & (2k + 1)^2 \end{bmatrix} \cdot \begin{bmatrix} A_k(x) & B_k(x) \\ A_{k-1}(x) & B_{k-1}(x) \end{bmatrix}. \]

by an induction from the cases \(k - 1 \) and \(k(\geq 0) \) to the case \(k + 1 \). Passing to determinants, we at once see that

\[\text{sgn}\{(x - 1)^2 C_k(x + 2) - (x + 1)^2 C_k(x - 2)\} = (-1)^k, \quad x > 2, \]

which, on replacing \(x \) by \(4x + 3 \) and introducing
\[
\gamma_k(x) = \left[\frac{\Gamma(x + \frac{1}{2})}{\Gamma(x + 1)} \right]^2 C_k(4x + 1), \quad x > -\frac{1}{4},
\]
may be written
\[
\text{sgn}\{\gamma_k(x + 1) - \gamma_k(x)\} = (-1)^k.
\]
By (3), this yields
\[
(*) \quad \gamma_{2k}(x + n) \uparrow 4, \quad \gamma_{2k+1}(x + n) \downarrow 4, \quad n \uparrow \infty.
\]
Hence \(\gamma_{2k}(x) < 4 < \gamma_{2k+1}(x)\) and so we obtain (I):
\[
\lim_{k \to \infty} \gamma_k(x) = 4.
\]
The existence of this limit is assured by a known theorem [5, p.239] on the convergence of an infinite continued fraction with positive elements.

2. The inequalities (II). Consider
\[
f(p(x), x) = (x - p) \left[\frac{\Gamma(x)}{\Gamma(x + \alpha)} \right]^{1/\alpha}, \quad x > 0, \ -\infty < p < +\infty.
\]
We have
\[
\text{sgn}\{f(p, x + 1) - f(p, x)\} = \text{sgn}\{p - p(x)\},
\]
\[
p(x) \equiv x - \frac{1}{(1 + \alpha/x)^{1/\alpha} - 1} \uparrow \frac{1 - \alpha}{2}, \quad (0 <) \ x \uparrow \infty,
\]
\[
f(p(x), x) = f(p(x), x + 1) > f(p(x + 1), x + 1).
\]
The first of these assertions is easily checked and the last is obvious from the first two. The second, restated in the more convenient form
\[
\chi(u) \equiv p\left(\frac{\alpha}{e^{\alpha u} - 1} \right) = \frac{\alpha}{e^{\alpha u} - 1} - \frac{1}{e^{\alpha u} - 1} \uparrow \frac{1 - \alpha}{2}, \quad u \downarrow 0,
\]
follows on observing that
\[
2\chi'(u) = \frac{1}{sh^2u} - \frac{\alpha^2}{sh^3\alpha u} < 0,
\]
\((shu)/u\) being increasing in \((0, \infty)\), while
\[
\lim_{u \to 0} \chi(u) = \lim_{h \to 0} \frac{\alpha(e^{\alpha h} - 1) - (e^{\alpha h} - 1)}{\alpha h \cdot h} = \frac{1 - \alpha}{2}.
\]
Hence, by (3), we have the following limit relations which contain more than (II):
REFINEMENTS OF WALLIS’S ESTIMATE 749

(**) \(f((1 - \alpha)/2, x + n) \uparrow 1, \quad f(p(x + n), x + n) \downarrow 1, \quad n \uparrow \infty. \)

3. The inequalities (III). Proceeding as before, let

\[g(q, x) = \frac{\Gamma^n(x)}{\Gamma(x + \alpha)\Gamma(x + 1 - \alpha)}, \quad x > 0, \quad -\infty < q < +\infty. \]

The readily verified facts

\[\text{sgn}(g(q, x + 1) - g(q, x)) = \text{sgn}(q - q(x)), \]

\[q(x) \equiv \frac{\alpha(1 - \alpha)x}{x + \alpha(1 - \alpha)} \uparrow \alpha(1 - \alpha), \quad (0 <) x \uparrow \infty, \]

\[g(q(x), x) = g(q(x), x + 1) > g(q(x + 1), x + 1), \]

together with (3), prove more than (III):

(***) \(g(\alpha(1 - \alpha), x + n) \uparrow 1, \quad g(q(x + n), x + n) \downarrow 1, \quad n \uparrow \infty. \)

An alternative proof is given by the product expansion

\[G(x) \equiv \frac{x\Gamma^n(x)}{\Gamma(x + \alpha)\Gamma(x + 1 - \alpha)} = \prod_{n=0}^{\infty} \left(1 + \frac{\alpha(1 - \alpha)}{(x + n)(x + n + 1)}\right), \]

which is evident from

\[\frac{G(x)}{G(x + 1)} = 1 + \frac{\alpha(1 - \alpha)}{x(x + 1)}, \quad \lim_{x \to \infty} G(x) = 1, \]

where the limit relation is a consequence of (3). The case \(x = 1 \) of the above expansion occurs in [6].

REFERENCES

Received January 25, 1971

UNIVERSITY OF MYSORE, INDIA
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 105 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsuisha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>William O'Bannon Alltop, 5-designs in affine spaces</td>
<td>547</td>
</tr>
<tr>
<td>B. G. Basmaji, Real-valued characters of metacyclic groups</td>
<td>553</td>
</tr>
<tr>
<td>Miroslav Benda, On saturated reduced products</td>
<td>557</td>
</tr>
<tr>
<td>J. T. Borrego, Haskell Cohen and Esmond Ernest Devun, Uniquely representable semigroups. II</td>
<td>573</td>
</tr>
<tr>
<td>George Lee Cain Jr. and Mohammed Zuhair Zaki Nashed, Fixed points and stability for a sum of two operators in locally convex spaces</td>
<td>581</td>
</tr>
<tr>
<td>Donald Richard Chalice, Restrictions of Banach function spaces</td>
<td>593</td>
</tr>
<tr>
<td>Eugene Frank Cornelius, Jr., A generalization of separable groups</td>
<td>603</td>
</tr>
<tr>
<td>Joel L. Cunningham, Primes in products of rings</td>
<td>615</td>
</tr>
<tr>
<td>Robert Alan Morris, On the Brauer group of Z</td>
<td>619</td>
</tr>
<tr>
<td>David Earl Dobbs, Amitsur cohomology of algebraic number rings</td>
<td>631</td>
</tr>
<tr>
<td>Charles F. Dunkl and Donald Edward Ramirez, Fourier-Stieltjes transforms and weakly almost periodic functionals for compact groups</td>
<td>637</td>
</tr>
<tr>
<td>Hicham Fakhoury, Structures uniformes faibles sur une classe de cônes et d'ensembles convexes</td>
<td>641</td>
</tr>
<tr>
<td>Leslie R. Fletcher, A note on Cθθ-groups</td>
<td>655</td>
</tr>
<tr>
<td>Humphrey Sek-Ching Fong and Louis Sucheston, On the ratio ergodic theorem for semi-groups</td>
<td>659</td>
</tr>
<tr>
<td>James Arthur Gerhard, Subdirectly irreducible idempotent semigroups</td>
<td>669</td>
</tr>
<tr>
<td>Thomas Eric Hall, Orthodox semigroups</td>
<td>677</td>
</tr>
<tr>
<td>Marcel Herzog, Cθθ-groups involving no Suzuki groups</td>
<td>687</td>
</tr>
<tr>
<td>John Walter Hinrichsen, Concerning web-like continua</td>
<td>691</td>
</tr>
<tr>
<td>Frank Norris Huggins, A generalization of a theorem of F. Riesz</td>
<td>695</td>
</tr>
<tr>
<td>Carlos Johnson, Jr., On certain poset and semilattice homomorphisms</td>
<td>703</td>
</tr>
<tr>
<td>Alan Leslie Lambert, Strictly cyclic operator algebras</td>
<td>717</td>
</tr>
<tr>
<td>Howard Wilson Lambert, Planar surfaces in knot manifolds</td>
<td>727</td>
</tr>
<tr>
<td>Robert Allen McCoy, Groups of homeomorphisms of normed linear spaces</td>
<td>735</td>
</tr>
<tr>
<td>T. S. Nanjundiah, Refinements of Wallis’s estimate and their generalizations</td>
<td>745</td>
</tr>
<tr>
<td>Roger David Nussbaum, A geometric approach to the fixed point index</td>
<td>751</td>
</tr>
<tr>
<td>John Emanuel de Pillis, Convexity properties of a generalized numerical range</td>
<td>767</td>
</tr>
<tr>
<td>Donald C. Ramsey, Generating monomials for finite semigroups</td>
<td>783</td>
</tr>
<tr>
<td>William T. Reid, A disconjugacy criterion for higher order linear vector differential equations</td>
<td>795</td>
</tr>
<tr>
<td>Roger Allen Wiegand, Modules over universal regular rings</td>
<td>807</td>
</tr>
<tr>
<td>Kung-Wei Yang, Compact functors in categories of non-archimedean Banach spaces</td>
<td>821</td>
</tr>
<tr>
<td>R. Grant Woods, Correction to: “Co-absolutes of remainders of Stone-Čech compactifications”</td>
<td>827</td>
</tr>
<tr>
<td>Ronald Owen Fulp, Correction to: “Tensor and torsion products of semigroups”</td>
<td>827</td>
</tr>
<tr>
<td>Bruce Alan Barnes, Correction to: “Banach algebras which are ideals in a banach algebra”</td>
<td>828</td>
</tr>
</tbody>
</table>