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To each commutive ring R there is associated a certain
commutative regular ring R. The ring R is in fact an R-
algebra. It is shown that RI@ is never flat, unless R is itself
regular. The functor taking R to R preserves direct limits,
and, in certain cases, tensor products. It is shown that if
R is weakly noetherian then the global dimension of R is
less than or equal to the Krull dimension of R. Necessary
and sufficient conditions that R be a quotient ring of R
are determined.

In this paper we study a certain commutative (von Neumann)
regular ring R associated with each commutative ring K. There is
a natural homomorphism ¢: R — R, characterized by the following
universal property: every homomorphism from R into a regular ring
factors uniquely through ¢. The ring B has been studied briefly in
[7] and [5]. In §1 we construct R and derive its basic properties,
including the universal property mentioned above. The construction
uses a little sheaf theory, although once a few lemmas have been
proved it will rarely be necessary to recall the sheaf-theoretic cons-
truction. In fact, in §5 we give a simple description of B that is
completely nontopological. In §2 we study relationships between an
R-module A and the B-module 4 ®R, and in §3 we restrict our
attention to weakly noetherian rings, that is, rings with maximum
condition on radical ideals. It is shown that R is weakly noetherian
if and only if A®;R is R-projective for every finitely generated
A.. Homological considerations are taken up in §4, and it is shown
that if R is weakly noetherian then the global dimension of R is less
than or equal to the Krull dimension of R. In §6 we examine how
the functor taking R to R behaves with respect to tensor products
and direct limits. The last section is devoted to semiprime rings,
and we find necessary and sufficient conditions that B be a quotient
ring of R.

We make the standing assumption that all rings are commutative
with unit, and all ring homomorphisms and modules are unitary. We
now establish some notation to be preserved throughout the paper.
Recall that Spec(R) is the set of prime ideals of R, with the Zariski
topology. If S is a subset of R, we let V(S) denote the (closed)
subset of Spec(R) consisting of those prime ideal that contain S, and
we let D(S) = Spec(R) — V(S). If xeSpec(R) let k, denote the quo-
tient field of the domain R/x, and for each ac R let a(x) be the image
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of @ under the natural map R — k.. Finally, for each pair of elements
a,be R, let [a, b] be the element of [[{k,: xe€ X} whose &' coordinate
is a(x)\b(x) when ze D(b) and 0 otherwise.

1. Definition and basic properties of R. A topological space is
spectral if it is compact and T,, if the compact open sets form an open
base and are closed under finite intersections, and if every closed irre-
ducible set is the closure of a point. Spec(R) is always spectral, and
M. Hochster [5] has recently proved that every spectral space is homeo-
morphic to Spec(R) for some ring R. The first step of his proof is to
retopologize the spectral space X by taking all compact open sets and
their complement as an open subbase. This stronger topology is called
the patch topology on X. The set X with the patch topology will be
denoted by X. It can be shown [5] that X is a Boolean space, that
is, compact, Hausdorff, and totally disconnected. In case X = Spec(R),
one readily verifies that the sets D@) N V() n -+ N V(b,), a,b;eR,
are clopen in the patch topology and form an open base.

Now let R be any ring and let X = Spec(R). Let <Z be the
disjoint union of the fields %.,. Then we may regard the elements
[a, b] as maps from X to <2 and we give the set <2 the strongest
topology making all these maps continuous. With this topology, #
is easily seen to be a sheaf of fields over X, and we let R = (X, =),
the ring of global sections of <. For each prime ideal P of R,
let P be the prime ideal of R consisting of those sections that
vanish at P. Let ¢: R— R be the map ai [a,1]. The following
theorem is a direct consequence of the representation theory of regular

rings [8]:

THEOREM 1. R is a regular ring. The correspondence PP is
a homeomorphism from X onto Spec(l?). The natural map ¢: R— R
induces an isomorphism from k, onto R/ for each weX. If R is
regular them ¢ is an isomorphism.

We remark that R can be identified with the subring of [[{k.:
xe X} consisting of those elements that are locally (in the patch
topology!) of the form [a, b]. (This is the definition of R given in [5].)

Regular rings are characterized by the property that the local
ring at each maximal ideal is the same as the corresponding residue
class field. This fact and the isomorphisms k, = R/ provide a con-
venient localization technique, which will be exploited throughout the
paper. The next result is a simple illustration of this technique.

COROLLARY. The natural map R ®p R — R is an isomorphism.
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Proof. LocAalizing at each Inaximal idgal # of R, we have natural
isomogphisms RR R Rk, = RQR:rk, = RRQrbk. Rk, = k. RQr k. =
k. = R ®3k,. The globalization theorem completes the proof.

We conclude this section with a proof of the universal property
stated in [7].

COROLLARY. FEwvery ring homomorphism from R into a commuta-
tive regular ring factors unmiquely through the natural map é: R — R.

Proof. Let op: R— S be the homomorphism in question. There
can be at most one factorization, since, by the corollary above and
[9], ¢ is an epimorphism in the category of (not necessarily commuta-
tive) rings. To prove that a factorization exists, we identify S with
S and we let ¥ = ¥ = Spec(S). The map Spec(y): Y — X defines a
continuous map : ¥ — X. For each ye Y, 4 induces a field homo-
morphism v,: ky,, —S/y. If pe R, we define o € S by o(y) = ¥,(0(v(¥))),
and 6: p — o is the desired factorization.

. 2. Tensoring with R. In this section we study the relationship
between an R-module A and the R-module A ®,;R. The latter
module has a very convenient local description. For example, if z¢
Spec(R), then

@) AR RIE = AQrk, = (AleA) Qgio k. -

As an application, suppose R is a principal ideal domain. Then
ARz R =0 if and only if A is a divisible torsion module.

Another local deseription is obtained by identifying k, with the
residue class field of the local ring R,. Then, changing notation, we
have

@) A®g RIP = Ay|PA, .

From (2) and Nakayama’s lemma, we obtain the following useful
observation:

PrROPOSITION 1. Let A be Aﬁzn’tely generated and let P be a
prime ideal of R. fl:hen ARrR/P=0 if and only if 4, =0. In
particwlar, if AQrR =0 then A = 0.

COROLLARY. If R is flat as an R-module then R = R.
Proof. We need only verify that R is regular. Let I be a

finitely generated ideal of R. We show I is a direct summand of R.
Let J be the annihilator of I. It will suffice to show that I+ J =
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R, for then INJ=1J=0. If I+ J+ R, let P be a prime ideal
containg I+ J. Then IQ,RS PR:R =PR< P, and it follows
that T®&; R/P =0. By Proposition 1, I, =0, that is JEZLP, a
contradiction.

We remark that the functor _®, R is not faithful, even on maps
between finitely generated modules. For example, the embedding
Z/(p") — Z|(p"*") is killed by tensoring with Z.

Let A be a finitely generated R-module. For each prime ideal P
of R let r,(P) = »(P) be the minimum number of generators required
for A, over R,. By (2) and Nakayama’s lemma, »(P) is the dimension
of ARp R/P as a vector space over R/P.

PROPOSITION 2. Let Ay be finitely generated. Then A@RR 8 o
projective R-module if and only if for each n the set U, = {P ¢ Spec(R)|
r(P) = n} is compact (in the Zariski topology).

Proof. The function r(P) is always upper-semicontinuous on X =
Spee(R). In other words, if V, = U,U +++ U U,, then the sets V, are
always open in X. It follows that each U, is compact if and only
if each V, is compact. But an open subset of X is compact if and
only if it is clopen in X. Therefore, the sets U, are all compact if
and only if the dimension of A ®, R/P is locally constant on X, that
is, if and only if A ®, R is R-projective [8, p. 63].

ExAMPLE 1. Suppose Spec(R) has a noncompact open set U.
Write U = D(I), I an ideal of R, and let C = R/I. Then, for Pe¢
Spec(R), we have Cp, = 0 if and only if C is annihilated by an element
not in P, that is, if and only, if Pe U. Thus U, = U, and by Pro-
position 2 C ®z R is not projective.

For each A; let d(A) = sup {r.(P)|P e Spec(R)}.

(Since 7(P) = r(Q) whenever P & @, it suffices to take the supremum
over all maximal ideals.) If R is regular, it is known [8, p. 57] that
d(4) is equal to the minimum number of generators required for Aj.
Combining this fact with the remark preceding Proposition 2, we
have the following result:

PROPOSITION 3. Let A, be finitely gemerated. Then (AR R)a
can be generated by d(A) elements, and no fewer.

3. Noetherian spectral spaces. Recall that a topological space
is noetherian if it has ascending chain condition on open sets, or,
equivalently, if every open subset is compact. A ring R will be
called weakly moetherian if Spec(R) is noetherian, that is, if R has
maximum condition on intersections of prime ideals.
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THEOREM 2. The following conditions on the ring R are equi-
valent: (a) R is weakly moetherian, (b) (A Qx R);c 18 projective for
each finitely gemerated Ay, and (¢) (C ®RIAB))?e 18 projective for each
cyclic Cy.

Proof. (a) = (b) by Proposition 2, (b) = (c) trivially, and (c) =
(a) by Example 1.

Every spectral space (in fact every T, space) has a natural partial
ordering: # <y if and only if ye{z}-. The dimension dim(X) of
the spectral space X is the greatest integer n such that there is a
sequence %, < -+ <z, in X. If no such integer exists we say
dim(X) = «. The dimension of Spec(R) is just the Krull dimension
of R, that is, the supremum of lengths of chains of prime ideals in R.

Recall that the derived space Y’ of a space Y is the complement
in Y of the set of isolated points of Y. A transfinite sequence {Y**}
of closed subsets of Y is defined as follows: Y = ¥, Y = (Y @Y,
and Y® = N{Y“: a < g} if B is a limit ordinal. Suppose now that
Y is a Boolean space. We call Y superatomic if the associated
Boolean algebra is superatomic, that is, Y = ¢ for some ordinal &.
If & is the smallest ordinal such that Y = ¢, then by compactness
& cannot be a limit ordinal, and we define M(Y) =& — 1.

If S is a subset of the spectral space X we shall write S* for
the set S with the topology inherited from X. In case S is closed
in X, is is easily shown that S is a speetral space and S = S”.

THEOREM 3. If X 1is a mnoetherian spectral space then X s
superatomic. If, in addition, dim(X) < oo, then MX) < dim(X).

Proof. Let S be an arbitrary nonempty subset of X, and let x
be a maximal member of S. I claim that # is an isolated point of
S?. To see this, notice that X — (x)~, being compact open, is clopen
in X. Since {#} = SN {x}~, the claim follows. Setting S = X(“’, we
see that XV is properly contained in X whenever X = ¢. It
follows that X is superatomic.

The second assertion is proved by induction on dim(X). If
dim(X) = 0, every element of X is maximal, and therefore an isolated
point of X. Hence MX) = 0. Now assume dim(X) =1 and let X'
denote the set X’ with the relative topology as a subset of X. Then
X’ is a noetherian spectral space. Moreover, X’ contains none of the
maximal members of X, so dim(X’) < dim(X). Then MX) = MXY) +
1=MX))+1=dim(X) + 1 dim(X).

EXAMPLE 2. A noetherian spectral space X, such that dim(X,) =
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n and MX,) =n. Let R, ---, R, be principal ideal domains, each
with infinitely many maximal ideals. Let Y; = Spec(R;) and let X, =
Y, X «++ x Y, with the usual product topology. By [5, Th. 7], X,
is a spectral space, and it is easily seen that X, is noetherian. Since
the partial ordering on X, is the product ordering, it follows that
dim(X,) = n. Now Y, is the one-point compactification of the discrete
set of maximal ideals of R;, and the patch functor, being a right
adjoint [5], preserves products. Therefore X, = ¥, x --. x ¥,, and
clearly X(X',,) = n.

EXAMPLE 3. A noetherian spectral space X such that MX) = o.
Let X={0}U{@® 5):1=<41=j < w}. Topologize X by taking as a
closed subbase the sets S;; = {(k,7): % < k <j}. Then every proper
closed set is finite, so X is certainly noetherian. Since X® = {0} U
((G,5):1<i<j—n< ), we see that MX) = w.

4. Homological properties. Let R be a (commutative) regular
ring and let X = Spec(R). We say R is superatomic if its Boolean
algebra of idempotents is superatomic, or, in the terminology of the
last section, if X is superatomic. In this case we let M(R) = A(X).

PRrROPOSITION 4. Let R be a superatomic regular ring, and suppose
MR) is finite. Then gl. dim(R) < ME).

Proof. We argue by induction on MR). If M(R) = 0 then Spec(R)
is discrete and therefore finite. It follows that R is a finite direct
product of fields, and gl. dim(R) < 0. Assume AM(R) =% =1, and let J
be the socle of R. Then Spec(R/J) = V(J) = X', the derived space of
X. Therefore M(R/J) =n —1, and by induction gl. dim(R/J) <n — 1.
By [4, Cor. 4], gl. dim(R) < n.

THEOREM 4. If R is weakly moetherian, the global dimension of
R is less than or equal to the Krull dimension of R.

Proof. Immediate from Theorem 3 and Proposition 4.

PROPOSITION 5. Let R be a superatomic regular ring. Then gl.
dim(R) = sup {h. dimz(S)|;S is simple}.

Proof. We first show every nonzero R-module contains a simple
module. It suffices to show that every proper ideal I is contained
in an ideal J such that J/I is simple. Let X = Spec(R) and let
C = V(I). Clearly C’'< X’, and by induction C® = » for some
ordinal & In particular, C' # C, so there is a point 2 e C such that
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C — {x} is closed in X, say C — {z} = V(J). Clearly J/I is simple.
Now if A is an arbitrary R-module, define a transfinite sequence of
submodules A4, as follows: A4, = 0; if A, is defined and A, = A, let
A,../A, be a simple submodule of A4/4,; if B is a limit ordinal, let
Az;=U ,.sA.. By Auslander’s lemma, h. dimz(4)<sup {h. dim(A4.../4.)},
[1, Proposition 3].

In particular, if R is superatomic, then gl. dim(fe) = sup
{h. dims(R/P): Pe Spec(R)}). If we look at a particular prime, we can
considerably sharpen the estimate of Theorem 4. Recall that the
dimension dim(P) of P is the Krull dimension of R/P, that is, the
supremum of lengths of chains of primes P= P, --- C P, in R.

THEOREM 5. Let P be a prime ideal of R. Asiulne D(P) 1is
compact and R[P is weakly noetherian. Then h. dimy(R/P) < dim(P).

Proof. Let X =Spec(R), V= V(P), D= D(P). Then X is the
disjoint union D U V?, and each of these sets is clopen. Let d =
dim(P). If d =0 then {P} = V. It follows that P is a direct sum-
mand of B; therefore 1?/13 is projective. Now assume d > 0, and let
A be an arbitrary B-module. Let S = R/P and consider the S-module
B = (A/PA) s S. Let Ze Spec(S) be the 0-ideal. We shall show that

(3) Ext}(P, A) = Ext{(Z, B) .

The right-hand side of (8) is 0 by Theorem 4. Since A was arbitrary,
it will follow that h. dimy(P) < d — 1, and therefore that h. dims(R/P)
< d.

We identify V with Spec(S) and let A (resp. f?) be the usual
sheaf of modules over X (resp. V?) corresponding to A (resp. B). If
Qe V, a straightforward computation shows that B/(Q/P)"B = A/QA,
that is, under the identification V = Spec(S), A and B have the
same stalks over V?. Since all the isomorphisms are natural,
we conclude that B = A|V?. Now by [10] we have Ext}(Z, B) =
Hi(Ve — {P}; B) = H{(V? — {P}; A), and Ext}(P, A) = HY(X — {P}; A) =
HY(V» — {P}; A) @ HYDr; A). But A|D? is acyclic since D* is a
Boolean space [10]. Therefore H*(D”; A) = 0, and (3) is verified.

The estimates given in Theorems 4 and 5 are in general very
rough. For example, if R is any countable ring then R is countable
(proof in the next section) and therefore hereditary. On the other
hand, if R is a ring such that Spec(R) is the space X, of Example
2, with | Y,| = W, and | Y;| = W,, then R is not hereditary. (In fact,
it can be shown that gl. dim(R) =2.) I know of no example of a
weakly noetherian ring R such that gl. dim(fz) =n>2, but I con-
jecture that the space X, would provide one, if we were to take | Y;| <
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[Yial, 127 < n.

5. The ring RE. For each ac R let @ denote the saturated
multiplicative set generated by a, that is, the set of elements of R
that divide some power of a, Let . Z = {@:acR}. If S, Te # let
ST denote the smallest saturated multiplicative set containing S U 7.
Then STe _#; in fact, if S=& and T = b then ST = ab. For each
S, Te # there is a map Rs Ry R, — R, defined by [u/s] ® [v/t] —
[uv/st]. These maps make the R-module B = @I R; into an R-algebra.

We will define a natural homomorphism @: B — R. First, we make
two trivial observations: (1) Every element of Ry (Se._#) can be
written in the form [u/s], with § = S. (2) If s,te R, then s =1¢ if
and only if D(s) = D(t). Now if oe R,, write ¢ = [u/s], with § = S,
and define @4(o) = [u, s] e B, (in the notation of §1). Then the maps
@; are well-defined homomorphisms of R-modules and induce an
algebra homomorphism @: R — R.

THEOREM 6. @ is surjective.

Proof. We first show every idempotent is in Im(®). For each
set U clopen in X (X = Spec(R)), let e, e R be the corresponding
idempotent: ¢,(x) = 1 if xe U and 0 if z¢ U. Let G be the set of
clopen sets U for which e, e Im(®@). Clearly G is closed under finite
Boolean combinations. Since G contains every set of the form D(s),
Se R, it follows that every clopen set is in G. Now let peR. By
the remark following Theorem 1, there are clopen sets U, covering
X and element [a;, b;] € B such that o(x) = [a;, b;] (&) for each xe U..
Refining, we may assume the U; form a finite disjoint cover. Then
0 = Sier [a, b] e Im(@).

COROLLARY. Let R be a ring and let X = Spec(R). Then B is
isomorphic to the subring of [[{k.. xe X} consisting of all finite sums
of elements of the form [a, b].

COROLLARY. |R| = |R/N|, where N is the set of milpotent ele-
ments of R.

Proof. If R has no nilpotents, clearly ¢: R— R is one-to-one.
Also, it is easily verified that R = (R/N)~. It follows from the
corollary that |R| = |R/N|, at least in case R is infinite. But if R
is finite then R/N is semisimple, and R/N = (R/N)" = R.

One might guess that the map @: R — R is the start of a con-
venient flat resolution of B. Unfortunately, this does not seem to be

the case; there is no simple criterion for a “nonhomogeneous” element
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of R to be in Ker(®). Even though the computation of Tor2(R, A) ap-
pears formidable, we can simplify the problem to a certain extent:

PROPOSITION 6. For each R-module A and eacAh n =0 there is
a natural isomorphism TorZ(R, A) = A Q3 TorZ(R, R).

Proof. If m = 0 this is the first corollary to Theorem 1. Assume
the statement holds for n. Then, since R is regular; Torﬁf(]?, _) is
an exact functor from R-modules to R-modules. The long exact
sequence then shows that TorZ,, (ﬁ, _) is a right exact functor of
R-modules. Since this functor preserves coproducts, TorZ,, (R, 4) =
A ®; Torz,, (B, R).

COROLLARY. If Tor®(R, R) = 0 for each » > 0, then gl. dim(R)
gl. dim(R).

Proof. Straightforward induction shows that if A is an R-module
and Tor®*(R, A) = 0 for each p >0, then h. dimz(4) < h. dim,(A).
Now apply Proposition 6.

Unfortunately, the hypotheses of the corollary are not likely to
hold under very general conditions. In fact, Tor? (Z, Z) + 0, since
the torsion subgroup of Z is easily seen to be @ 3, Z/(p).

6. The functor R— R. Let k be a fixed commutative ring,
and let %, denote the -category of commutative - unitary k-
algebras. Let %7; be the full subcategory of %, whose objects are
the regular k-algebras. If Re &, clearly BRe 2%;. Suppose 6: R— S
is a morphism in %,. Let 8: B— S be the unique homomorphism

such thzit (R AN R AN S) = (R AN S —¢—>§). From the construc-
tion of & (§1) it is clear that # is a k-algebra homomorphism. Thus

Vi: @ — %; taking R to R is a functor. In fact, using [6, p. 128],
we can say much more.

PROPOSITIQN 7. &% is a full, coreflective subcategory of &, In
fact V,: Ri— R is the left adjoint of the inclusion <} — &

QOROLLARY. If R s the direct limit of the k-algebras R; thgn R=
lim(R;). If R and S are k-algebras, then (R®:8)" = (BR.S)". If

etther of the natural maps R @k R—Ror SQR.S— S is an isomor-
phism then (R Q.S = R ®, S.

Proof. Since V, has a right adjoint, V, is right-continuous. In
particular, V, preserves coproducts (when they exist) and direct
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limits. Since the ordinary direct limit of regular rings is obviously
regular, the direct limit in 27; is the ordinary direct limit, and the
first assertion follows. To prove the second statement, notice that
R &, S is the coproduct of R and S in %%. Therefore (R®,S)" =
R 1L S, where 1. denotes the coproduct in %;. But if A and B are
regular, then (A Q,B)" = AuLB=A1B. In particular, RuS=
(R®.S)". To prove the last statement of the corollary, assume
R®, R — R is an isomorphism. Then by [9] £ — R is an epimorphism
1n &7, the category of not necessarily commutatlve rings. Since R—
R is also an eplmorphlsm in &, the map k— R is an epimorphism
in &“. By [9] again, R®,R— R is an isomorphism. (A direct proof
using associativity formulas is also easy.) The desired conclusion now
follows from the next lemma.

LEMMA. Let R and S be k-algebras. Assume R, R— R is an
isomorphism and S is regular. Then R Q.S is regular.

Proof. Let A and B be R-S-bimodules. Then A & res B =
A Qres (RQrB) = (AQz R) ®s B= A Qs B. Therefore (4 &®xzes-)
is an exact functor. Since A was arbitrary, R Q), S is regular.

R COAROLLARY: If S s an arbitrary R-algebra then (R ®x S)~ =
R®,S

7. Semiprime rings. Let R be a semiprime ring, that is, a
ring with no nonzero nilpotent elements. Then the natural map ¢:
R— R is an embedding, and we identify R with its image in R.
Since R is nonsingular (that is, not an essential extension of the
annihilator of any nonzero element), the maximal quotient ring of R
is the injective hull of ,R. (See pp. 58, 64, and Theorem 1. + 2. on
p. 69 of [3].) Therefore R is a quotient ring of R if and only if R
is an essential extension of ,R.

THEOREM 7. The following condition on a semiprime ring R are
equivalent:

(a) R is a quotient ring of R.

(b) Every nonempty subset of Spec(R) that is open in the patch
topology comtains a monempty set of the form D(s).

(¢) Distinct compact open subsets of Spec(R) have distinct closures.

(@) If Iis a finitely generated ideal of R and r¢ V' I then there
18 an s€ R such that sI = 0 but sr == 0.

Proof. (a)=(b): Let X = Spec(R) and let U be a nonempty
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open subset of X. We may assume U is clopen in X. Let ec B be
the idempotent with support U, and choose ¢ R such that 0 == rec
R. Then @ + D(rey <= U.

(b) = (a): Let ¢ be a nonzero element of R. Suppose first that
there exist a, be R and a clopen set V< X such that V < D(b), and
o(x) = a(x)/b(x) on V and 0 outside V. Then VN D(a) # @, so let
@+ D) & VN D(a). Then sbo = sae R. Also, sa = 0, since 0 =
se1Va and R is semiprime. In general, we can write 0 = g, + «++ +
g,, where each of the g, is of the above form, and Ro, N Z#,,Iéai =
0 for each k. We may assume o, = 0. I claim that for each k there
is an 7,€ R such that 0 %« r,(6, + --+- + 0, )e R. For k=1 this has
already been verified. Assume, inductively, that r, has been chosen.
If r.0,, =0, let .., = 7, If not, let 0 = sr,0,,, ¢ R, and let r,., =
ST

(b) =(c): Let U and V be compact open subsets of X, and
suppose U & V. Then U — V is a nonempty clopen subset of X, so
let @ «DE)SU—-V. ThenDs)S Ubut DN V=0y,s00Z V.

(¢) = (d): If r¢1/T then D(r) & D(I). Choose a point » e D(r) —
D(I). Let D(s) be a neighborhood of x that misses D(I). Then sI =0
but sr = 0.

(d) = (b): Recall that the sets D(r) N V({I), I a finitely generated
ideal of R, form an open base for X. If D(r)n V(I) % @, then r¢
VI. Choose se R such that sI =0 and sr = 0. Then @ = D(sr) &
D(r)y N V(I).

COROLLARY: If R is a quotient ring of R and R is either weakly
noetherian or semihereditary, then R = R.

Proof. Suppose R is weakly noetherian, and let M be an arbitrary
maximal ideal of R. Then X — {M} = D(M) is a compact open subset
of X = Spec(R). By (¢) of Theorem 7, D(M) must be closed in X.
It follows easily that M is a direct summand of R. Therefore R is
semisimple with minimum condition.

Now assume R is semihereditary. By (d) of Theorem 7, R has
the following property: (*) Every finitely generated proper ideal of
R has nonzero annihilator. But Bass [2, Theorem 5.4] has shown
that condition (*) is equivalent to the condition that every finitely
generated projective submodule of a projective module is a direct
summand. Therefore every finitely generated ideal of R is a direct
summand, and R is regular.

F. L. Sandomierski has pointed out that if R satisfies (*) then
the weak dimension of every A is strictly less than h. dimgp(A4) (if
A is not projective). By induction, it suffices to show A is flat
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whenever h. dimz(4) < 1. Write A = P/K with P and K projective.
Let K@ T = F, a free module. Then A = (P T)/F. But Fis the
direct limit of free submodules of finite rank, and (*) implies that
each of these is a direct summand of P& T. It follows that A is a
direct limit of projective modules and therefore is flat.

A module of projective dimension 2 may fail to be flat. In fact,
we give an example of a non-regular ring with global dimension 2
that satisfies the conditions of Theorem 7.

ExXAMPLE 4. For each positive integer % let d, be the product
of the first k& primes, and let R, be the ring of integers modulo d,.
Let P= @ YR,, and let R be the subring of ][R, generated by P and
the identity element. (R consists of all “eventually constant” seque-
neces.) Since R/P is isomorphic to the ring of integers, R is not
regular. For each x e R let xz(k) ¢ R, denote the k™ coordinate of =z.
Let #, 9, +++, y.€ R. It is easy to see that zeVv'(y, +--, ¥, if and
only if, for each k, a(k)e Vv (y k), + -+, ¥.(k)). We now show that R
satisfies condition (d) of Theorem 7. Assume x¢1/(y, +--, ¥,). Since
each of the rings R, is regular, there is some %t and an re R, such
that rx(k) == 0 but ry; (k) = 0 for each 1 < n. If s is the element of
R with r in the k™ position and 0’s elsewhere, clearly sz = 0 and
sy; = 0 for each i, as desired. To show that gl. dim(R) = 2, we know
gl. dim(R) = 2, by the corollary to Theorem 7. But since Soc(R) =
P and R/P = Z, it follows from [4, Cor. 4] that gl. dim(R) < 2.
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