MODULES OVER UNIVERSAL REGULAR RINGS

ROGER ALLEN WIEGAND
MODULES OVER UNIVERSAL REGULAR RINGS

ROGER WIEGAND*

To each commutative ring \(R \) there is associated a certain commutative regular ring \(\hat{R} \). The ring \(\hat{R} \) is in fact an \(R \)-algebra. It is shown that \(\hat{R} \) is never flat, unless \(R \) is itself regular. The functor taking \(R \) to \(\hat{R} \) preserves direct limits, and, in certain cases, tensor products. It is shown that if \(R \) is weakly noetherian then the global dimension of \(\hat{R} \) is less than or equal to the Krull dimension of \(R \). Necessary and sufficient conditions that \(\hat{R} \) be a quotient ring of \(R \) are determined.

In this paper we study a certain commutative (von Neumann) regular ring \(\hat{R} \) associated with each commutative ring \(R \). There is a natural homomorphism \(\phi: R \to \hat{R} \), characterized by the following universal property: every homomorphism from \(R \) into a regular ring factors uniquely through \(\phi \). The ring \(\hat{R} \) has been studied briefly in [7] and [5]. In §1 we construct \(\hat{R} \) and derive its basic properties, including the universal property mentioned above. The construction uses a little sheaf theory, although once a few lemmas have been proved it will rarely be necessary to recall the sheaf-theoretic construction. In fact, in §5 we give a simple description of \(\hat{R} \) that is completely nontopological. In §2 we study relationships between an \(R \)-module \(A \) and the \(\hat{R} \)-module \(A \otimes_R \hat{R} \), and in §3 we restrict our attention to weakly noetherian rings, that is, rings with maximum condition on radical ideals. It is shown that \(R \) is weakly noetherian if and only if \(A \otimes_R \hat{R} \) is \(\hat{R} \)-projective for every finitely generated \(A \). Homological considerations are taken up in §4, and it is shown that if \(R \) is weakly noetherian then the global dimension of \(\hat{R} \) is less than or equal to the Krull dimension of \(R \). In §6 we examine how the functor taking \(R \) to \(\hat{R} \) behaves with respect to tensor products and direct limits. The last section is devoted to semiprime rings, and we find necessary and sufficient conditions that \(\hat{R} \) be a quotient ring of \(R \).

We make the standing assumption that all rings are commutative with unit, and all ring homomorphisms and modules are unitary. We now establish some notation to be preserved throughout the paper. Recall that \(\text{Spec}(R) \) is the set of prime ideals of \(R \), with the Zariski topology. If \(S \) is a subset of \(R \), we let \(V(S) \) denote the (closed) subset of \(\text{Spec}(R) \) consisting of those prime ideal that contain \(S \), and we let \(D(S) = \text{Spec}(R) - V(S) \). If \(x \in \text{Spec}(R) \) let \(k_x \) denote the quotient field of the domain \(R/\mathfrak{x} \), and for each \(a \in R \) let \(a(x) \) be the image
of a under the natural map $R \to k_x$. Finally, for each pair of elements $a, b \in R$, let $[a, b]$ be the element of $\prod \{k_x: x \in X\}$ whose xth coordinate is $a(x) \setminus b(x)$ when $x \in D(b)$ and 0 otherwise.

1. Definition and basic properties of R. A topological space is spectral if it is compact and T_0, if the compact open sets form an open base and are closed under finite intersections, and if every closed irreducible set is the closure of a point. Spec(R) is always spectral, and M. Hochster [5] has recently proved that every spectral space is homeomorphic to Spec(R) for some ring R. The first step of his proof is to retopologize the spectral space X by taking all compact open sets and their complement as an open subbase. This stronger topology is called the patch topology on X. The set X with the patch topology will be denoted by \hat{X}. It can be shown [5] that \hat{X} is a Boolean space, that is, compact, Hausdorff, and totally disconnected. In case $X = \text{Spec}(R)$, one readily verifies that the sets $D(a) \cap V(b) \cap \cdots \cap V(b_n), a, b_i \in R$, are clopen in the patch topology and form an open base.

Now let R be any ring and let $X = \text{Spec}(R)$. Let \mathcal{R} be the disjoint union of the fields k_x. Then we may regard the elements $[a, b]$ as maps from \hat{X} to \mathcal{R} and we give the set \mathcal{R} the strongest topology making all these maps continuous. With this topology, \mathcal{R} is easily seen to be a sheaf of fields over \hat{X}, and we let $R = \Gamma(\hat{X}, \mathcal{R})$, the ring of global sections of \mathcal{R}. For each prime ideal P of R, let \hat{P} be the prime ideal of \hat{R} consisting of those sections that vanish at P. Let $\phi: R \to \hat{R}$ be the map $a \mapsto [a, 1]$. The following theorem is a direct consequence of the representation theory of regular rings [8]:

Theorem 1. \hat{R} is a regular ring. The correspondence $P \to \hat{P}$ is a homeomorphism from \hat{X} onto Spec(\hat{R}). The natural map $\phi: R \to \hat{R}$ induces an isomorphism from k_x onto \hat{R}/\hat{x} for each $x \in X$. If R is regular then ϕ is an isomorphism.

We remark that \hat{R} can be identified with the subring of $\prod \{k_x: x \in \hat{X}\}$ consisting of those elements that are locally (in the patch topology!) of the form $[a, b]$. (This is the definition of \hat{R} given in [5].)

Regular rings are characterized by the property that the local ring at each maximal ideal is the same as the corresponding residue class field. This fact and the isomorphisms $k_x = \hat{R}/\hat{x}$ provide a convenient localization technique, which will be exploited throughout the paper. The next result is a simple illustration of this technique.

Corollary. The natural map $\hat{R} \otimes_R \hat{R} \to \hat{R}$ is an isomorphism.
Proof. Localizing at each maximal ideal \(\hat{x} \) of \(\hat{R} \), we have natural isomorphisms
\[
\hat{R} \otimes_R R_k_x = \hat{R} \otimes_R R_{k_x} = \hat{R} \otimes_R k_x \otimes k_x = k_x \otimes_R k_x = k_x = \hat{R} \otimes \hat{k}_x.
\]
The globalization theorem completes the proof.

We conclude this section with a proof of the universal property stated in [7].

Corollary. Every ring homomorphism from \(R \) into a commutative regular ring factors uniquely through the natural map \(\phi: R \to \hat{R} \).

Proof. Let \(\psi: R \to S \) be the homomorphism in question. There can be at most one factorization, since, by the corollary above and [9], \(\phi \) is an epimorphism in the category of (not necessarily commutative) rings. To prove that a factorization exists, we identify \(S \) with \(\hat{S} \) and we let \(Y = \hat{Y} = \text{Spec}(S) \). The map \(\text{Spec}(\phi): Y \to X \) defines a continuous map \(\hat{\psi}: \hat{Y} \to \hat{X} \). For each \(y \in Y \), \(\hat{\psi} \) induces a field homomorphism \(\hat{\psi}_y: k_{\hat{\psi}(y)} \to S/y \). If \(\rho \in R \), we define \(\sigma \in S \) by \(\sigma(y) = \psi_y(\rho(\hat{\psi}(y))) \), and \(\theta: \rho \to \sigma \) is the desired factorization.

2. Tensoring with \(\hat{R} \). In this section we study the relationship between an \(R \)-module \(A \) and the \(\hat{R} \)-module \(A \otimes_R \hat{R} \). The latter module has a very convenient local description. For example, if \(x \in \text{Spec}(R) \), then
\[
A \otimes_R \hat{R}/\hat{x} = (A/xA) \otimes_{R/x} k_x.
\]
As an application, suppose \(R \) is a principal ideal domain. Then \(A \otimes_R R = 0 \) if and only if \(A \) is a divisible torsion module.

Another local description is obtained by identifying \(k_x \) with the residue class field of the local ring \(R_x \). Then, changing notation, we have
\[
A \otimes_R \hat{R}/\hat{P} = A_P/PA_P.
\]
From (2) and Nakayama's lemma, we obtain the following useful observation:

Proposition 1. Let \(A_R \) be finitely generated and let \(P \) be a prime ideal of \(R \). Then \(A \otimes_R \hat{R}/\hat{P} = 0 \) if and only if \(A_P = 0 \). In particular, if \(A \otimes R \hat{R} = 0 \) then \(A = 0 \).

Corollary. If \(\hat{R} \) is flat as an \(R \)-module then \(\hat{R} = R \).

Proof. We need only verify that \(R \) is regular. Let \(I \) be a finitely generated ideal of \(R \). We show \(I \) is a direct summand of \(R \). Let \(J \) be the annihilator of \(I \). It will suffice to show that \(I + J = \ldots \)
R, for then $I \cap J = IJ = 0$. If $I + J \neq R$, let P be a prime ideal containing $I + J$. Then $I \otimes_R \hat{R} \subseteq P \otimes_R \hat{R} = P\hat{R} \subseteq \hat{P}$, and it follows that $I \otimes_R \hat{R}/\hat{P} = 0$. By Proposition 1, $I_P = 0$, that is $J \not\subseteq P$, a contradiction.

We remark that the functor $\otimes_R \hat{R}$ is not faithful, even on maps between finitely generated modules. For example, the embedding $\mathbb{Z}/(p^n) \rightarrow \mathbb{Z}/(p^{n+1})$ is killed by tensoring with \mathbb{Z}.

Let A be a finitely generated R-module. For each prime ideal P of R let $r_A(P) = r(P)$ be the minimum number of generators required for A_P over R_P. By (2) and Nakayama's lemma, $r(P)$ is the dimension of $A \otimes_R \hat{R}/\hat{P}$ as a vector space over \hat{R}/\hat{P}.

PROPOSITION 2. Let A_R be finitely generated. Then $A \otimes_R \hat{R}$ is a projective \hat{R}-module if and only if for each n the set $U_n = \{P \in \text{Spec}(R) \mid r(P) = n\}$ is compact (in the Zariski topology).

Proof. The function $r(P)$ is always upper-semicontinuous on $X = \text{Spec}(R)$. In other words, if $V_n = U_0 \cup \cdots \cup U_n$, then the sets V_n are always open in X. It follows that each U_n is compact if and only if each V_n is compact. But an open subset of X is compact if and only if it is clopen in \hat{X}. Therefore, the sets U_n are all compact if and only if the dimension of $A \otimes_R \hat{R}/\hat{P}$ is locally constant on \hat{X}, that is, if and only if $A \otimes_R \hat{R}$ is \hat{R}-projective [8, p. 63].

EXAMPLE 1. Suppose $\text{Spec}(R)$ has a noncompact open set U. Write $U = D(I)$, I an ideal of R, and let $C = R/I$. Then, for $P \in \text{Spec}(R)$, we have $C_P = 0$ if and only if C is annihilated by an element not in P, that is, if and only, if $P \subseteq U$. Thus $U_0 = U$, and by Proposition 2 $C \otimes_R \hat{R}$ is not projective.

For each A_R let $d(A) = \sup \{r_A(P) \mid P \in \text{Spec}(R)\}$.

(Since $r(P) \leq r(Q)$ whenever $P \subseteq Q$, it suffices to take the supremum over all maximal ideals.) If R is regular, it is known [8, p. 57] that $d(A)$ is equal to the minimum number of generators required for A_R.

Combining this fact with the remark preceding Proposition 2, we have the following result:

PROPOSITION 3. Let A_R be finitely generated. Then $(A \otimes_R \hat{R})_k$ can be generated by $d(A)$ elements, and no fewer.

3. Noetherian spectral spaces. Recall that a topological space is *noetherian* if it has ascending chain condition on open sets, or, equivalently, if every open subset is compact. A ring R will be called *weakly noetherian* if $\text{Spec}(R)$ is noetherian, that is, if R has maximum condition on intersections of prime ideals.
Theorem 2. The following conditions on the ring R are equivalent: (a) R is weakly noetherian, (b) $(A \otimes_R \hat{R})_k$ is projective for each finitely generated A_k, and (c) $(C \otimes_R \hat{R})_k$ is projective for each cyclic C_R.

Proof. (a) \Rightarrow (b) by Proposition 2, (b) \Rightarrow (c) trivially, and (c) \Rightarrow (a) by Example 1.

Every spectral space (in fact every T_1 space) has a natural partial ordering: $x \leq y$ if and only if $y \in \{x\}^-$. The dimension $\text{dim}(X)$ of the spectral space X is the greatest integer n such that there is a sequence $x_0 < \cdots < x_n$ in X. If no such integer exists we say $\text{dim}(X) = \infty$. The dimension of $\text{Spec}(R)$ is just the Krull dimension of R, that is, the supremum of lengths of chains of prime ideals in R.

Recall that the derived space Y' of a space Y is the complement in Y of the set of isolated points of Y. A transfinite sequence $\{Y^{(a)}\}$ of closed subsets of Y is defined as follows: $Y^{(0)} = Y$, $Y^{(a+1)} = (Y^{(a)})'$, and $Y^{(\beta)} = \cap \{Y^{(a)}: \alpha < \beta\}$ if β is a limit ordinal. Suppose now that Y is a Boolean space. We call Y superatomic if the associated Boolean algebra is superatomic, that is, $Y^{(\xi)} = \emptyset$ for some ordinal ξ. If ξ is the smallest ordinal such that $Y^{(\xi)} = \emptyset$, then by compactness ξ cannot be a limit ordinal, and we define $\lambda(Y) = \xi - 1$.

If S is a subset of the spectral space X we shall write S^o for the set S with the topology inherited from X. In case S is closed in X, it is easily shown that S is a spectral space and $S = S^o$.

Theorem 3. If X is a noetherian spectral space then \hat{X} is superatomic. If, in addition, $\text{dim}(X) < \infty$, then $\lambda(X) \leq \text{dim}(X)$.

Proof. Let S be an arbitrary nonempty subset of X, and let x be a maximal member of S. I claim that x is an isolated point of S^o. To see this, notice that $X - (x)^-$, being compact open, is clopen in \hat{X}. Since $\{x\} = S \cap \{x\}^-$, the claim follows. Setting $S = \hat{X}^{(a)}$, we see that $\hat{X}^{(a+1)}$ is properly contained in $\hat{X}^{(a)}$ whenever $\hat{X}^{(a)} \neq \emptyset$. It follows that \hat{X} is superatomic.

The second assertion is proved by induction on $\text{dim}(X)$. If $\text{dim}(X) = 0$, every element of X is maximal, and therefore an isolated point of \hat{X}. Hence $\lambda(\hat{X}) = 0$. Now assume $\text{dim}(X) \geq 1$ and let X' denote the set \hat{X}' with the relative topology as a subset of X. Then X' is a noetherian spectral space. Moreover, X' contains none of the maximal members of X, so $\text{dim}(X') < \text{dim}(X)$. Then $\lambda(\hat{X}) = \lambda(\hat{X}') + 1 = \lambda((X')^-) + 1 \leq \text{dim}(X') + 1 \leq \text{dim}(X)$.

Example 2. A noetherian spectral space X_n such that $\text{dim}(X_n) = \ldots$
n and λ(X_n) = n. Let R_1, ..., R_n be principal ideal domains, each with infinitely many maximal ideals. Let Y_i = Spec(R_i) and let X_n = Y_1 × ... × Y_n with the usual product topology. By [5, Th. 7], X_n is a spectral space, and it is easily seen that X_n is noetherian. Since the partial ordering on X_n is the product ordering, it follows that dim(X_n) = n. Now Y_i is the one-point compactification of the discrete set of maximal ideals of R_i, and the patch functor, being a right adjoint [5], preserves products. Therefore X_n = Y_1 × ... × Y_n, and clearly λ(X_n) = n.

Example 3. A noetherian spectral space X such that λ(X) = ω. Let X = {0} U {(i, j): 1 ≤ i ≤ j < ω}. Topologize X by taking as a closed subbase the sets S_i^j = {(k, j): i ≤ k ≤ j}. Then every proper closed set is finite, so X is certainly noetherian. Since X(X) = {0} U {(i, j): 1 ≤ i ≤ j − n < ω}, we see that λ(X) = ω.

4. Homological properties. Let R be a (commutative) regular ring and let X = Spec(R). We say R is superatomic if its Boolean algebra of idempotents is superatomic, or, in the terminology of the last section, if X is superatomic. In this case we let λ(R) = λ(X).

Proposition 4. Let R be a superatomic regular ring, and suppose λ(R) is finite. Then gl. dim(R) ≤ λ(R).

Proof. We argue by induction on λ(R). If λ(R) = 0 then Spec(R) is discrete and therefore finite. It follows that R is a finite direct product of fields, and gl. dim(R) ≤ 0. Assume λ(R) = n ≥ 1, and let J be the socle of R. Then Spec(R/J) = V(J) = X', the derived space of X. Therefore λ(R/J) = n − 1, and by induction gl. dim(R/J) ≤ n − 1. By [4, Cor. 4], gl. dim(R) ≤ n.

Theorem 4. If R is weakly noetherian, the global dimension of R is less than or equal to the Krull dimension of R.

Proof. Immediate from Theorem 3 and Proposition 4.

Proposition 5. Let R be a superatomic regular ring. Then gl. dim(R) = sup {h. dim_R(S)|_S is simple}.

Proof. We first show every nonzero R-module contains a simple module. It suffices to show that every proper ideal I is contained in an ideal J such that J/I is simple. Let X = Spec(R) and let C = V(J). Clearly C' ⊆ X', and by induction C^{(i)} = ∅ for some ordinal ξ. In particular, C' ≠ C, so there is a point x ∈ C such that
$C - \{x\}$ is closed in X, say $C - \{x\} = V(J)$. Clearly J/I is simple. Now if A is an arbitrary R-module, define a transfinite sequence of submodules A_α as follows: $A_0 = 0$; if A_α is defined and $A_\alpha \neq A$, let $A_{\alpha+1}/A_\alpha$ be a simple submodule of A/A_α; if β is a limit ordinal, let $A_\beta = \bigcup_{\alpha<\beta} A_\alpha$. By Auslander's lemma, $\text{h. dim}_R(A) \leq \sup \{\text{h. dim}(A_{\alpha+1}/A_\alpha)\}$, [1, Proposition 3].

In particular, if \tilde{R} is superatomic, then $\text{gl. dim}(\tilde{R}) = \sup \{\text{h. dim}_R(\tilde{R}/\mathfrak{P}): \mathfrak{P} \in \text{Spec}(R)\}$. If we look at a particular prime, we can considerably sharpen the estimate of Theorem 4. Recall that the dimension $\text{dim}(P)$ of P is the Krull dimension of R/P, that is, the supremum of lengths of chains of primes $P = P_0 \subset \cdots \subset P_n$ in R.

Theorem 5. Let P be a prime ideal of R. Assume $D(P)$ is compact and R/P is weakly noetherian. Then $\text{h. dim}_R(\tilde{R}/\mathfrak{P}) \leq \text{dim}(P)$.

Proof. Let $X = \text{Spec}(R)$, $V = V(P)$, $D = D(P)$. Then \tilde{X} is the disjoint union $D^p \cup V^p$, and each of these sets is clopen. Let $d = \text{dim}(P)$. If $d = 0$ then $\{P\} = V$. It follows that \tilde{P} is a direct summand of \tilde{R}; therefore \tilde{R}/\tilde{P} is projective. Now assume $d > 0$, and let A be an arbitrary \tilde{R}-module. Let $S = R/P$ and consider the \tilde{S}-module $B = (A/PA) \otimes_S \tilde{S}$. Let $Z \in \text{Spec}(S)$ be the 0-ideal. We shall show that

$$\text{Ext}_R^1(\tilde{P}, A) = \text{Ext}_S^1(\tilde{Z}, B).$$

The right-hand side of (3) is 0 by Theorem 4. Since A was arbitrary, it will follow that $\text{h. dim}_R(\tilde{P}) \leq d - 1$, and therefore that $\text{h. dim}_R(\tilde{R}/\tilde{P}) \leq d$.

We identify V with $\text{Spec}(S)$ and let \tilde{A} (resp. \tilde{B}) be the usual sheaf of modules over \tilde{X} (resp. V^p) corresponding to A (resp. B). If $Q \in V$, a straightforward computation shows that $B/(Q/P) \otimes_B \tilde{A} \cong A/QA$, that is, under the identification $V = \text{Spec}(S)$, \tilde{A} and \tilde{B} have the same stalks over V^p. Since all the isomorphisms are natural, we conclude that $\tilde{B} = \tilde{A}|V^p$. Now by [10] we have $\text{Ext}_S^1(\tilde{Z}, B) = H^4(V^p - \{P\}; B) = H^4(V^p - \{P\}; \tilde{A})$, and $\text{Ext}_R^1(\tilde{P}, A) = H^4(\tilde{X} - \{P\}; \tilde{A}) = H^4(V^p - \{P\}; \tilde{A}) \oplus H^4(D^p; \tilde{A})$. But $\tilde{A}|D^p$ is acyclic since D^p is a Boolean space [10]. Therefore $H^4(D^p; \tilde{A}) = 0$, and (3) is verified.

The estimates given in Theorems 4 and 5 are in general very rough. For example, if R is any countable ring then \tilde{R} is countable (proof in the next section) and therefore hereditary. On the other hand, if R is a ring such that $\text{Spec}(R)$ is the space X_n of Example 2, with $|Y_1| = \aleph_0$ and $|Y_2| = \aleph_1$, then \tilde{R} is not hereditary. (In fact, it can be shown that $\text{gl. dim}(\tilde{R}) = 2$.) I know of no example of a weakly noetherian ring R such that $\text{gl. dim}(\tilde{R}) = n > 2$, but I conjecture that the space X_n would provide one, if we were to take $|Y_1| <$
5. The ring \hat{R}. For each $a \in R$ let \bar{a} denote the saturated multiplicative set generated by a, that is, the set of elements of R that divide some power of a. Let $\mathcal{M} = \{\bar{a} : a \in R\}$. If $S, T \in \mathcal{M}$ let

ST denote the smallest saturated multiplicative set containing $S \cup T$. Then $ST \in \mathcal{M}$; in fact, if $S = \bar{a}$ and $T = \bar{b}$ then $ST = \bar{ab}$. For each $S, T \in \mathcal{M}$ there is a map $R_S \otimes_R R_T \to R_{ST}$ defined by $[u/s] \otimes [v/t] \mapsto [uv/st]$. These maps make the R-module $\hat{R} = \bigoplus \Sigma R_s$ into an R-algebra.

We will define a natural homomorphism $\Phi: R \to \hat{R}$. First, we make two trivial observations: (1) Every element of R_S ($S \in \mathcal{M}$) can be written in the form $[u/s]$, with $s = S$. (2) If $s, t \in R$, then $s = t$ if and only if $D(s) = D(t)$. Now if $\sigma \in R_S$, write $\sigma = [u/s]$, with $s = S$, and define $\Phi_S(\sigma) = [u, s] \in \hat{R}$, (in the notation of §1). Then the maps Φ_S are well-defined homomorphisms of R-modules and induce an algebra homomorphism $\Phi: R \to \hat{R}$.

Theorem 6. Φ is surjective.

Proof. We first show every idempotent is in $\text{Im}(\Phi)$. For each set U clopen in \hat{X} ($X = \text{Spec}(R)$), let $e_U \in \hat{R}$ be the corresponding idempotent: $e_U(x) = 1$ if $x \in U$ and 0 if $x \not\in U$. Let G be the set of clopen sets U for which $e_U \in \text{Im}(\Phi)$. Clearly G is closed under finite Boolean combinations. Since G contains every set of the form $D(s)$, $S \in R$, it follows that every clopen set is in G. Now let $\rho \in \hat{R}$. By the remark following Theorem 1, there are clopen sets U_i covering \hat{X} and element $[a_i, b_i] \in \hat{R}$ such that $\rho(x) = [a_i, b_i](x)$ for each $x \in U_i$. Refining, we may assume the U_i form a finite disjoint cover. Then $\rho = \Sigma e_{U_i}[a_i, b_i] \in \text{Im}(\Phi)$.

Corollary. Let R be a ring and let $X = \text{Spec}(R)$. Then \hat{R} is isomorphic to the subring of $\prod \{k_x : x \in X\}$ consisting of all finite sums of elements of the form $[a, b]$.

Corollary. $|\hat{R}| = |R/N|$, where N is the set of nilpotent elements of R.

Proof. If R has no nilpotents, clearly $\phi: R \to \hat{R}$ is one-to-one. Also, it is easily verified that $\hat{R} \cong (R/N)^\sim$. It follows from the corollary that $|\hat{R}| = |R/N|$, at least in case R is infinite. But if R is finite then R/N is semisimple, and $R/N = (R/N)^\sim = \hat{R}$.

One might guess that the map $\Phi: R \to \hat{R}$ is the start of a convenient flat resolution of \hat{R}. Unfortunately, this does not seem to be the case; there is no simple criterion for a "nonhomogeneous" element...
of \hat{R} to be in $\text{Ker}(\Phi)$. Even though the computation of $\text{Tor}^n_{\hat{R}}(\hat{R}, A)$ appears formidable, we can simplify the problem to a certain extent:

Proposition 6. For each \hat{R}-module A and each $n \geq 0$ there is a natural isomorphism $\text{Tor}^n_{\hat{R}}(\hat{R}, A) = A \otimes_{\hat{R}} \text{Tor}^n_{\hat{R}}(\hat{R}, \hat{R})$.

Proof. If $n = 0$ this is the first corollary to Theorem 1. Assume the statement holds for n. Then, since \hat{R} is regular; $\text{Tor}^n_{\hat{R}}(\hat{R}, -)$ is an exact functor from \hat{R}-modules to R-modules. The long exact sequence then shows that $\text{Tor}^n_{\hat{R} + 1}(\hat{R}, -)$ is a right exact functor of \hat{R}-modules. Since this functor preserves coproducts, $\text{Tor}^n_{\hat{R} + 1}(\hat{R}, A) = A \otimes_{\hat{R}} \text{Tor}^n_{\hat{R} + 1}(\hat{R}, \hat{R})$.

Corollary. If $\text{Tor}^p_{\hat{R}}(\hat{R}, \hat{R}) = 0$ for each $p > 0$, then $\text{gl. dim}(\hat{R}) \leq \text{gl. dim}(R)$.

Proof. Straightforward induction shows that if A is an \hat{R}-module and $\text{Tor}^p_{\hat{R}}(\hat{R}, A) = 0$ for each $p > 0$, then $\text{h. dim}_R(A) \leq \text{h. dim}_R(A)$. Now apply Proposition 6.

Unfortunately, the hypotheses of the corollary are not likely to hold under very general conditions. In fact, $\text{Tor}^p_1(\hat{Z}, \hat{Z}) \neq 0$, since the torsion subgroup of \hat{Z} is easily seen to be $\bigoplus \Sigma_p \mathbb{Z}/(p)$.

6. The functor $R \rightarrow \hat{R}$. Let k be a fixed commutative ring, and let \mathcal{C}_k denote the category of commutative unitary k-algebras. Let \mathcal{U}_k denote the full subcategory of \mathcal{C}_k whose objects are the regular k-algebras. If $R \in \mathcal{C}_k$ clearly $\hat{R} \in \mathcal{U}_k$. Suppose $\theta: R \rightarrow S$ is a morphism in \mathcal{C}_k. Let $\hat{\theta}: \hat{R} \rightarrow \hat{S}$ be the unique homomorphism such that $(R \xrightarrow{\theta} \hat{R} \xrightarrow{\hat{\theta}} \hat{S}) = (R \xrightarrow{\theta} S \xrightarrow{\phi} \hat{S})$. From the construction of $\hat{\theta}$ (§1) it is clear that $\hat{\theta}$ is a k-algebra homomorphism. Thus $V_k: \mathcal{C}_k \rightarrow \mathcal{U}_k$ taking R to \hat{R} is a functor. In fact, using [6, p. 128], we can say much more.

Proposition 7. \mathcal{U}_k is a full, coreflective subcategory of \mathcal{C}_k. In fact $V_k: R \rightarrow \hat{R}$ is the left adjoint of the inclusion $\mathcal{U}_k \rightarrow \mathcal{C}_k$.

Corollary. If R is the direct limit of the k-algebras R_i then $\hat{R} = \lim_i (\hat{R}_i)$. If R and S are k-algebras, then $(R \otimes_k S)^\sim = (\hat{R} \otimes_k \hat{S})^\sim$. If either of the natural maps $R \otimes_k R \rightarrow R$ or $S \otimes_k S \rightarrow S$ is an isomorphism then $(R \otimes_k S)^\sim = \hat{R} \otimes_k \hat{S}$.

Proof. Since V_k has a right adjoint, V_k is right-continuous. In particular, V_k preserves coproducts (when they exist) and direct
limits. Since the ordinary direct limit of regular rings is obviously regular, the direct limit in \mathcal{Y}_k is the ordinary direct limit, and the first assertion follows. To prove the second statement, notice that $R \otimes_k S$ is the coproduct of R and S in \mathcal{Y}_k. Therefore $(R \otimes_k S)^\wedge = \widehat{R} \perp \widehat{S}$, where \perp denotes the coproduct in \mathcal{Y}_k. But if A and B are regular, then $(A \otimes_k B)^\wedge = \hat{A} \perp \hat{B} = A \perp B$. In particular, $\widehat{R} \perp \widehat{S} = (\widehat{R} \otimes_k \widehat{S})^\wedge$. To prove the last statement of the corollary, assume $R \otimes_k R \rightarrow R$ is an isomorphism. Then by [9] $k \rightarrow R$ is an epimorphism in \mathcal{S}, the category of not necessarily commutative rings. Since $R \rightarrow \widehat{R}$ is also an epimorphism in \mathcal{S}, the map $k \rightarrow \widehat{R}$ is an epimorphism in \mathcal{S}. By [9] again, $\widehat{R} \otimes_k \widehat{R} \rightarrow \widehat{R}$ is an isomorphism. (A direct proof using associativity formulas is also easy.) The desired conclusion now follows from the next lemma.

Lemma. Let R and S be k-algebras. Assume $R \otimes_k R \rightarrow R$ is an isomorphism and S is regular. Then $R \otimes_k S$ is regular.

Proof. Let A and B be R-S-bimodules. Then $A \otimes (R \otimes S) B = A \otimes (R \otimes_k B) = (A \otimes R) \otimes S B = A \otimes S B$. Therefore $(A \otimes (R \otimes S))^\wedge$ is an exact functor. Since A was arbitrary, $R \otimes_k S$ is regular.

Corollary: If S is an arbitrary R-algebra then $(\widehat{R} \otimes R S)^\wedge = \widehat{R} \otimes \widehat{S}$.

7. Semiprime rings. Let R be a semiprime ring, that is, a ring with no nonzero nilpotent elements. Then the natural map $\phi: R \rightarrow \widehat{R}$ is an embedding, and we identify R with its image in \widehat{R}. Since R is nonsingular (that is, not an essential extension of the annihilator of any nonzero element), the maximal quotient ring of R is the injective hull of $_R R$. (See pp. 58, 64, and Theorem 1. + 2. on p. 69 of [3].) Therefore \widehat{R} is a quotient ring of R if and only if $_R \widehat{R}$ is an essential extension of $_R R$.

Theorem 7. The following condition on a semiprime ring R are equivalent:

(a) \widehat{R} is a quotient ring of R.
(b) Every nonempty subset of $\text{Spec}(R)$ that is open in the patch topology contains a nonempty set of the form $D(s)$.
(c) Distinct compact open subsets of $\text{Spec}(R)$ have distinct closures.
(d) If I is a finitely generated ideal of R and $r \in \sqrt{I}$ then there is an $s \in R$ such that $sI = 0$ but $sr \neq 0$.

Proof. (a) \Rightarrow (b): Let $X = \text{Spec}(R)$ and let U be a nonempty
open subset of \tilde{X}. We may assume U is clopen in \tilde{X}. Let $e \in \tilde{R}$ be the idempotent with support U, and choose $r \in R$ such that $0 \neq re \in R$. Then $\emptyset \neq D(re) \subseteq U$.

(b) \Rightarrow (a): Let σ be a nonzero element of \tilde{R}. Suppose first that there exist $a, b \in R$ and a clopen set $V \subseteq \tilde{X}$ such that $V \subseteq D(b)$, and $\sigma(x) = a(x)/b(x)$ on V and 0 outside V. Then $V \cap D(a) \neq \emptyset$, so let $\emptyset \neq D(s) \subseteq V \cap D(a)$. Then $s\sigma = sa \in R$. Also, $sa \neq 0$, since $0 \neq s \in \sqrt{a}$ and R is semiprime. In general, we can write $\sigma = \sigma_1 + \cdots + \sigma_n$, where each of the σ_i is of the above form, and $\tilde{R}\sigma_k \cap \sum_{i \neq k} \tilde{R}\sigma_i = 0$ for each k. We may assume $\sigma_1 \neq 0$. I claim that for each k there is an $r_k \in R$ such that $0 \neq r_k(\sigma_1 + \cdots + \sigma_k) \in R$. For $k = 1$ this has already been verified. Assume, inductively, that r_k has been chosen. If $r_k\sigma_{k+1} = 0$, let $r_{k+1} = r_k$. If not, let $0 \neq sr_k\sigma_{k+1} \in R$, and let $r_{k+1} = sr_k$.

(b) \Rightarrow (c): Let U and V be compact open subsets of X, and suppose $U \nsubseteq V$. Then $U - V$ is a nonempty clopen subset of \tilde{X}, so let $\emptyset \neq D(s) \subseteq U - V$. Then $D(s) \subseteq \bar{U}$ but $D(s) \cap \bar{V} = \emptyset$, so $\bar{U} \nsubseteq \bar{V}$.

(c) \Rightarrow (d): If $r \in \sqrt{I}$ then $D(r) \nsubseteq D(I)$. Choose a point $x \in D(r) - D(I)$. Let $D(s)$ be a neighborhood of x that misses $D(I)$. Then $sI = 0$ but $sr \neq 0$.

(d) \Rightarrow (b): Recall that the sets $D(r) \cap V(I)$, I a finitely generated ideal of R, form an open base for X. If $D(r) \cap V(I) \neq \emptyset$, then $r \notin \sqrt{I}$. Choose $s \in R$ such that $sI = 0$ and $sr \neq 0$. Then $\emptyset \neq D(sr) \subseteq D(r) \cap V(I)$.

COROLLARY: If \tilde{R} is a quotient ring of R and R is either weakly noetherian or semihereditary, then $R = \tilde{R}$.

Proof. Suppose R is weakly noetherian, and let M be an arbitrary maximal ideal of R. Then $X - \{M\} = D(M)$ is a compact open subset of $X = \text{Spec}(R)$. By (c) of Theorem 7, $D(M)$ must be closed in X. It follows easily that M is a direct summand of R. Therefore R is semisimple with minimum condition.

Now assume R is semihereditary. By (d) of Theorem 7, R has the following property: (*) Every finitely generated proper ideal of R has nonzero annihilator. But Bass [2, Theorem 5.4] has shown that condition (*) is equivalent to the condition that every finitely generated projective submodule of a projective module is a direct summand. Therefore every finitely generated ideal of R is a direct summand, and R is regular.

F. L. Sandomierski has pointed out that if R satisfies (*) then the weak dimension of every $_RA$ is strictly less than $h. \dim_A(A)$ (if A is not projective). By induction, it suffices to show $_RA$ is flat
whenever $h. \dim_B(A) \leq 1$. Write $A = P/K$ with P and K projective. Let $K \oplus T = F$, a free module. Then $A = (P \oplus T)/F$. But F is the direct limit of free submodules of finite rank, and (*) implies that each of these is a direct summand of $P \oplus T$. It follows that A is a direct limit of projective modules and therefore is flat.

A module of projective dimension 2 may fail to be flat. In fact, we give an example of a non-regular ring with global dimension 2 that satisfies the conditions of Theorem 7.

Example 4. For each positive integer k let d_k be the product of the first k primes, and let R_k be the ring of integers modulo d_k. Let $P = \bigoplus \Sigma R_k$, and let R be the subring of $\prod R_k$ generated by P and the identity element. (R consists of all “eventually constant” sequences.) Since R/P is isomorphic to the ring of integers, R is not regular. For each $x \in R$ let $x(k) \in R_k$ denote the k^{th} coordinate of x. Let $x, y_1, \ldots, y_n \in R$. It is easy to see that $x \in \sqrt{(y_1, \ldots, y_n)}$ if and only if, for each k, $x(k) \in \sqrt{(y_1(k), \ldots, y_n(k))}$. We now show that R satisfies condition (d) of Theorem 7. Assume $x \notin \sqrt{(y_1, \ldots, y_n)}$. Since each of the rings R_k is regular, there is some k and an $r \in R_k$ such that $rx(k) \neq 0$ but $ry_i(k) = 0$ for each $i \leq n$. If s is the element of R with r in the k^{th} position and 0's elsewhere, clearly $sx \neq 0$ and $sy_i = 0$ for each i, as desired. To show that $\text{gl. dim}(R) = 2$, we know $\text{gl. dim}(R) \geq 2$, by the corollary to Theorem 7. But since $\text{Soc}(R) = P$ and $R/P \cong \mathbb{Z}$, it follows from [4, Cor. 4] that $\text{gl. dim}(R) \leq 2$.

References

Received December 4, 1970 and in revised form July 9, 1971. This research was partially supported by NSF Grant GP-19102.

UNIVERSITY OF WISCONSIN
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

C. R. HOBBY
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY
UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA
WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY
* *
UNIVERSITY OF OREGON
AMERICAN MATHEMATICAL SOCIETY
OSAKA UNIVERSITY
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFILE CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
William O’Bannon Alltop, 5-designs in affine spaces ... 547
B. G. Basmaji, Real-valued characters of metacyclic groups 553
Miroslav Benda, On saturated reduced products .. 557
J. T. Borrego, Haskell Cohen and Esmond Ernest Devun, Uniquely representable
semigroups. II .. 573
George Lee Cain Jr. and Mohammed Zuhair Zaki Nashed, Fixed points and stability
for a sum of two operators in locally convex spaces ... 581
Donald Richard Chalice, Restrictions of Banach function spaces 593
Eugene Frank Cornelius, Jr., A generalization of separable groups 603
Joel L. Cunningham, Primes in products of rings ... 615
Robert Alan Morris, On the Brauer group of Z .. 619
David Earl Dobbs, Amitsur cohomology of algebraic number rings 631
Charles F. Dunkl and Donald Edward Ramirez, Fourier-Stieltjes transforms and
weakly almost periodic functionals for compact groups 637
Hicham Fakhoury, Structures uniformes faibles sur une classe de cônes et
d’ensembles convexes ... 641
Leslie R. Fletcher, A note on $C\theta\theta$-groups .. 655
Humphrey Sek-Ching Fong and Louis Sucheston, On the ratio ergodic theorem for
semi-groups .. 659
James Arthur Gerhard, Subdirectly irreducible idempotent semigroups 669
Thomas Eric Hall, Orthodox semigroups ... 677
Marcel Herzog, $C\theta\theta$-groups involving no Suzuki groups 687
John Walter Hinrichsen, Concerning web-like continua 691
Frank Norris Huggins, A generalization of a theorem of F. Riesz 695
Carlos Johnson, Jr., On certain poset and semilattice homomorphisms 703
Alan Leslie Lambert, Strictly cyclic operator algebras .. 717
Howard Wilson Lambert, Planar surfaces in knot manifolds 727
Robert Allen McCoy, Groups of homeomorphisms of normed linear spaces 735
T. S. Nanjundiah, Refinements of Wallis’s estimate and their generalizations 745
Roger David Nussbaum, A geometric approach to the fixed point index 751
John Emanuel de Pillis, Convexity properties of a generalized numerical range 767
Donald C. Ramsey, Generating monomials for finite semigroups 783
William T. Reid, A disconjugacy criterion for higher order linear vector differential
equations .. 795
Roger Allen Wiegand, Modules over universal regular rings 807
Kung-Wei Yang, Compact functors in categories of non-archimedean Banach
spaces .. 821
R. Grant Woods, Correction to: “Co-absolutes of remainders of Stone-Čech
compactifications” .. 827
Ronald Owen Fulp, Correction to: “Tensor and torsion products of
semigroups” .. 827
Bruce Alan Barnes, Correction to: “Banach algebras which are ideals in a banach
algebra” ... 828