COMPACT FUNCTORS IN CATEGORIES OF NON-ARCHIMEDEAN BANACH SPACES

Kung-Wei Yang
COMPACT FUNCTORS IN CATEGORIES OF NON-ARCHIMEDEAN BANACH SPACES

KUNG-WEI YANG

Let K be a complete, non-archimedean, non-trivially valued field. Let B be the category of all non-archimedean Banach spaces over K satisfying the "condition (N)" with morphisms continuous linear transformations f, $|f| \leq 1$. In this paper, we first characterize all compact functors $F: B \to B$ as functors which take finite dimensional spaces to finite dimensional spaces. We then show that in case K is maximally complete the Mityagin-Shvarts imbedding theorem for duals of functors holds true for functors in B. Finally, using the above results we show that the dual of a compact functor is itself compact.

The present investigation originated in an attempt to apply the Mityagin-Shvarts theory to functors in categories of non-archimedean Banach spaces. In fact, the first and the last results mentioned above are closely related to some problems proposed by Mityagin and Shvarts for functors in categories of ordinary Banach spaces in [4]. Several of these original problems have been solved by a student of mine, Kenneth L. Pothoven, in his thesis [5].

2. Preliminaries. Let K be a complete, non-archimedean, non-trivially valued (i.e., the value group is not trivial) field. We denote by R the valuation ring of K (i.e., the set of all $x \in K$ such that $|x| \leq 1$). A nonarchimedean Banach space over K is a complete normed vector space over K such that the norm satisfies the ultrametric inequality:

$$|x + y| \leq \sup(|x|, |y|) \text{ for } x, y \in X.$$

In this paper we shall assume that all the non-archimedean Banach spaces satisfy the following condition [6].

(N) For each $x \in X$, $|x|$ belongs to the closure of the value group of K.

For the pair (X, Y) of non-archimedean Banach spaces, let $L(X, Y)$ denote the non-archimedean Banach spaces of all continuous linear maps from X to Y with the norm $|f| = \sup(|f(x)|: x \in X \text{ and } |x| \leq 1}$ (See [6, p. 71]). We let X' denote the dual space $L(X, K)$ and for $f: X \to Y$ in B, we let $f': Y' \to X'$ denote its dual.

Now we denote by B the category whose objects are non-archimedean Banach spaces over K (satisfying condition (N)), and whose morphism sets are $B(X, Y) = \{f: f \in L(X, Y), |f| \leq 1\}$. Clearly, each
$B(X, Y)$ is an R-module.

All (covariant) functors $F: B \to B$ are assumed to satisfy the following additional conditions:

1. For each pair (X, Y) of objects in B, the induced map $F_{XY}: B(X, Y) \to B(F(X), F(Y))$ is R-linear, and

2. For each $f \in B(X, Y)$, $|F_{XY}(f)| \leq |f|$. Such functors are called functors in the category B.

A functor $G: B \to B$ is a subfunctor of $F: B \to B$ if for each X in B, $G(X)$ is a closed subspace of $F(X)$, and for each $f: X \to Y$ in B, $G(f): G(X) \to G(Y)$ is the restriction of $F(f): F(X) \to F(Y)$ to $G(X)$.

Natural transformations $t: F \to G$ where F and G are functors in B, are assumed to satisfy, in addition to the usual naturality condition, the following conditions:

1. For each X in B, $t_X: F(X) \to G(X)$ is K-linear.

2. $|t| = \sup \{ |t_X| : X \text{ in } B \} < \infty$.

Two functors F and G are isometric if there exist natural transformations $t: F \to G$ and $u: G \to F$ such that $u \cdot t = 1_F$ and $t \cdot u = 1_G$ and for each X in B, t_X and u_X are isometries. A functor F is isometrically embedded in G if there is a natural transformation establishing an isometry of the functor F and a subfunctor of G.

For functors F and G in the category B, we denote by $[F, G]$ the class of all natural transformations from F to G. Note that if $[F, G]$ is a set, $[F, G]$ has a natural structure of a non-archimedean Banach space with norm defined as in (2) above.

For each A in B, we define the functor Ω_A by:

1. $\Omega_A(X) = L(A, X)$, for X in B

2. If $f \in B(X, Y)$, then $\Omega_A(f): \Omega_A(X) \to \Omega_A(Y)$ is the morphism $(\Omega_A(f))(g) = f \cdot g$, for $g \in \Omega_A(X)$.

For each A in B, we define the functor Σ_A by:

1. $\Sigma_A(X) = A \otimes X$ (See [6, p. 73])

2. If $f \in B(X, Y)$, then $\Sigma_A(f): \Sigma_A(X) \to \Sigma_A(Y)$ is the morphism $1_A \otimes f$.

Note that for any $h \in L(A, B)$, there corresponds a natural transformation $\Sigma_h: \Sigma_A \to \Sigma_B$ defined by:

For each X in B, $\Sigma_h: \Sigma_A \to \Sigma_B$ is equal to $h \otimes 1_X \in L(\Sigma_A X, \Sigma_B X)$.

3. Compact Functors.

Definition. A functor $F: B \to B$ is compact (resp. of finite rank), if whenever $f: X \to Y$ in B is compact (resp. of finite rank), then $F(f): F(X) \to (F(Y)$ is compact (resp. of finite rank).

Here "compact" means "complètement continu" in [6, p. 72],
and "f is of finite rank" means \(\dim f(X) < \infty \).

Lemma 1. For \(X \) in \(\mathcal{B} \), \(1_X: X \to X \) is compact \(\iff \dim (X) < \infty \).

Proof. The assertion follows immediately from [1, Result 2, p.298] by letting \(u = 1_X \) there.

Theorem 1. Let \(F: \mathcal{B} \to \mathcal{B} \) be a functor. The following are equivalent:

(i) \(F \) is compact,
(ii) \(F \) takes finite dimensional spaces to finite dimensional spaces,
(iii) \(F \) is of finite rank.

Proof. (i) \(\Rightarrow \) (ii). Let \(F \) be a compact functor. Let \(X \) be a finite dimensional space in \(\mathcal{B} \). By Lemma 1, \(1_X: X \to X \) is compact. Hence, \(1_{F(X)} = F(1_X): F(X) \to F(X) \) is compact. By Lemma 1 again, we see that \(F(X) \) is finite dimensional.

(ii) \(\Rightarrow \) (iii). We first note that a morphism \(f: X \to Y \) is of finite rank if and only if \(f \) factors through a finite dimensional space \(Z \) as in

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
& Z & \\
\end{array}
\]

Clearly, if \(F \) takes finite dimensional spaces to finite dimensional spaces and if \(f \) is of finite rank then \(F(f) \) is of finite rank.

(iii) \(\Rightarrow \) (i). Let \(F: \mathcal{B} \to \mathcal{B} \) be a functor of finite rank. Let \(f: X \to Y \) be a compact morphism in \(\mathcal{B} \). By the definition of compactness of morphisms and by the ultrametric inequality, there exists a sequence of morphisms \(f_n: X \to Y \) in \(\mathcal{B} \) of finite rank converging, in the norm, to \(f \). The morphisms \(F(f_n): F(X) \to F(Y) \) are of finite rank and \(|F(f_n) - F(f)| \leq |f_n - f| \) for \(n = 1, 2, \cdots \). Hence \(F(f) \) is compact.

The following corollaries are immediate consequences of Theorem 1.

Corollary. The following are equivalent:

(i) \(A \) in \(\mathcal{B} \) is finite dimensional,
(ii) The functor \(\Sigma_A \) is of finite rank,
(iii) The functor \(\Sigma_A \) is compact,
(iv) The functor \(\Omega_A \) is of finite rank,
(v) The functor \(\Omega_A \) is compact.

Definition. A functor \(F: \mathcal{B} \to \mathcal{B} \) is of null type (type \(N \) in [4,
p. 75]) if $F(K) = 0$.

COROLLARY. If a functor F is of null type then it is compact.

4. Duals of compact functors. In addition to all the conditions that are imposed on K in § 2, we shall require throughout this section that the scalar field K is maximally complete. We will continue to use the same letter B to designate the category of all non-archimedean Banach spaces over K satisfying this additional assumption.

LEMMA 2. For each X in B, the natural morphism $a_X: X \to X''$ is an isometric embedding.

Proof. For $x \in X$, $a_X(x)$ is defined by the equation $(a_X(x))(x') = x'(x)$ for all $x' \in X'$. Since X satisfies condition (N), for an element $x \in X$ such that $x \neq 0$, we can find a sequence v_n $(n = 1, 2, \cdots)$ of real numbers in the value group of K such that $v_n \leq |x|$ $(n = 1, 2, \cdots)$ and $v_n \to |x|$. Let $\alpha_n \in K$ be chosen so that $|\alpha_n| = v_n$. Let Y be the (closed) subspace of X generated by x. Define $f_n: Y \to K$ by

$$f_n(\kappa x) = \kappa \alpha_n$$

for $\kappa \in K$. Clearly, $|f_n| \leq 1$. Since K is maximally complete, we can extend each f_n to some $g_n: X \to K$ such that $|f_n| = |g_n|$ ([2]). Now,

$$|a_X(x)| = \sup\{|x'(x)|: |x'| \leq 1 \text{ and } x' \in X'\}$$

$$\geq \sup\{|g_n(x)|: n = 1, 2, \cdots\} = \sup\{v_n: n = 1, 2, \cdots\} = |x|.$$

On the other hand, clearly we have $|a_X(x)| \leq |x|$. Hence a_X is an isometric embedding.

DEFINITION. The dual functor DF of a functor $F: B \to B$ is defined by:

1. For each A in B, $DF(A) = [F', \Sigma_A]$,
2. For each morphism $e: A \to B$ in B, $DF(e): DF(A) \to DF(B)$ is defined by the equation $(DF(e))(t) = \Sigma'_e \cdot t$.

It will become evident in the course of the proof of Theorem 2 that $DF(A)$ is actually a non-archimedean Banach space.

For a functor $F: B \to B$, we define the functor $F^u: B \to B$ by:

1. For each A in B, $F^u(A) = (F(A)')'$
2. For each morphism $f: A \to B$ in B, $F^u(f)$ is equal to $(F(f'))'$.

THEOREM 2. For any functor $F: B \to B$, the dual functor DF is isometrically embedded in F^u.
Proof. (Mityagin-Shvarts-Linton). Let $F: B \to B$ be a functor. For each A in B, we define the morphism in B, $v_A: DF(A) \to (F(A'))'$, by: $v_A(t) = Tr \cdot t_A$ for $t \in DF(A) = [F, \Sigma]$. Here Tr is the trace map. (Clearly, $|v_A| \leq 1$). We would like to show that, for each A, this morphism $v_A: DF(A) \to F''(A)$ is an isometric embedding. To this end, we introduce the functor Σ_A'' by setting $\Sigma_A''(X) = (A \otimes X)''$ for X in B, and $\Sigma_A''(f) = (1_A \otimes f)''$ for $f: X \to Y$ in B. Let $F''(A) = [F, \Sigma]$. By a proof similar to that of [3, Lemma (4.10), p. 339], we show easily that $F''(A)$ is a set (hence a non-archimedean Banach space). By Lemma 2, $A \otimes X$ is isometrically embedded in $(A \otimes X)''$. This means that the functor Σ_A is isometrically embedded in Σ''. The natural transformation $\Sigma_A \to \Sigma''$ gives rise to an isometric embedding $j_A: DF(A) \to F''(A)$.

The theorem follows immediately from the existence of a morphism k_A in B making the following diagram commutative

$$
\begin{array}{ccc}
DF(A) & \xrightarrow{v_A} & F''(A) \\
\downarrow{j_A} & & \downarrow{k_A} \\
F''(A) & & .
\end{array}
$$

This part of the proof, however, follows exactly the same line of argument as in [3, p. 340-41]. So we shall refrain from repeating the argument here.

Corollary. If the functor $F: B \to B$ is of null type, then so is its dual.

Theorem 3. Let $F: B \to B$ be a functor. Then:

(i) If F is compact, then so is its dual DF.

(ii) If F takes finite dimensional spaces to finite dimensional spaces, then so does its dual DF.

(iii) If F is of finite rank, then so is its dual DF.

Proof. In view of Theorem 1, it is sufficient to prove (ii).

Suppose F takes finite dimensional spaces to finite dimensional
spaces. Let X be a finite dimensional space in B. Then X' is finite dimensional. By the assumption, $F(X')$ is finite dimensional. Hence $(F(X'))' = F^u(X)$ is finite dimensional. By Theorem 2, DF is isometrically embedded in F^u. Obviously, $DF(X)$ is finite dimensional. This completes the proof.

REFERENCES

Received August 19, 1970. This work was supported by a Faculty Research Fellowship from Western Michigan University.

Western Michigan University
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 108 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
William O’Bannon Alltop, 5-designs in affine spaces .. 547
B. G. Basmaji, Real-valued characters of metacyclic groups 553
Miroslav Benda, On saturated reduced products ... 557
J. T. Borrego, Haskell Cohen and Esmond Ernest Devun, Uniquely representable semigroups. II ... 573
George Lee Cain Jr. and Mohammed Zuhair Zaki Nashed, Fixed points and stability for a sum of two operators in locally convex spaces .. 581
Donald Richard Chalice, Restrictions of Banach function spaces 593
Eugene Frank Cornelius, Jr., A generalization of separable groups 603
Joel L. Cunningham, Primes in products of rings ... 615
Robert Alan Morris, On the Brauer group of \mathbb{Z} .. 619
David Earl Dobbs, Amitsur cohomology of algebraic number rings 631
Charles F. Dunkl and Donald Edward Ramirez, Fourier-Stieltjes transforms and weakly almost periodic functionals for compact groups ... 637
Hicham Fakhoury, Structures uniformes faibles sur une classe de cônes et d’ensembles convexes .. 641
Leslie R. Fletcher, A note on $C\theta\theta$-groups .. 655
Humphrey Sek-Ching Fong and Louis Sucheston, On the ratio ergodic theorem for semi-groups ... 659
James Arthur Gerhard, Subdirectly irreducible idempotent semigroups 669
Thomas Eric Hall, Orthodox semigroups ... 677
Marcel Herzog, $C\theta\theta$-groups involving no Suzuki groups .. 687
John Walter Hinrichsen, Concerning web-like continua .. 691
Frank Norris Huggins, A generalization of a theorem of F. Riesz 695
Carlos Johnson, Jr., On certain poset and semilattice homomorphisms 703
Alan Leslie Lambert, Strictly cyclic operator algebras .. 717
Howard Wilson Lambert, Planar surfaces in knot manifolds .. 727
Robert Allen McCoy, Groups of homeomorphisms of normed linear spaces 735
T. S. Nanjundiah, Refinements of Wallis’s estimate and their generalizations 745
Roger David Nussbaum, A geometric approach to the fixed point index 751
John Emanuel de Pillis, Convexity properties of a generalized numerical range 767
Donald C. Ramsey, Generating monomials for finite semigroups 783
William T. Reid, A disconjugacy criterion for higher order linear vector differential equations ... 795
Roger Allen Wiegand, Modules over universal regular rings ... 807
Kung-Wei Yang, Compact functors in categories of non-archimedean Banach spaces ... 821
R. Grant Woods, Correction to: “Co-absolutes of remainders of Stone-Čech compactifications” ... 827
Ronald Owen Fulp, Correction to: “Tensor and torsion products of semigroups” 827
Bruce Alan Barnes, Correction to: “Banach algebras which are ideals in a banach algebra”.. 828