Vol. 40, No. 1, 1972

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 325: 1
Vol. 324: 1  2
Vol. 323: 1  2
Vol. 322: 1  2
Vol. 321: 1  2
Vol. 320: 1  2
Vol. 319: 1  2
Vol. 318: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
Γ-extensions of imaginary quadratic fields

Robert Gold

Vol. 40 (1972), No. 1, 83–88
Abstract

Let p be an odd rational prime and E0 = 𝒬(√ −-m-) a quadratic imaginary number field. There is a unique Γ extension E of E0 for the prime p which is absolutely abelian. For each positive integer n there is a subfield En of E which is cyclic of degree pn over E0 and by Iwasawa the exponent of p in the class number of En is of the form μpn + λn + c for sufficiently large n. We here examine the analytic formula for the class number of En and in the case p = 3 give a simple condition implying that ff = 0. It follows easily from this condition that there are infinitely many imaginary quadratic fields which have Γ-extensions for the prime 3 with the invariants μ = 0 while λ 1.

Mathematical Subject Classification
Primary: 12A65
Milestones
Received: 12 March 1970
Published: 1 January 1972
Authors
Robert Gold