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EVERY GENERALIZED PETERSEN GRAPH HAS
A TAIT COLORING

FRANK CASTAGNA AND GEERT PRINS

Watkins has defined a family of graphs which he calls
generalized Petersen graphs. He conjectures that all but the
original Petersen graph have a Tait coloring, and proves the
conjecture for a large number of these graphs. In this paper
it is shown that the conjecture is indeed true.

DEFINITIONS. Let n and k be positive integers, k ^ n — 1, n Φ

2k. The generalized Petersen graph G(n, k) has 2n vertices, denoted
by {0, 1, 2, , n - 1; 0', Γ, 2', , , (n - 1)'} and all edges of the
form (ΐ, ί + 1), (i, i'), (ί', (i + k)f) for 0 ̂  i ^ n — 1, where all numbers
are read modulo n. G(5, 2) is the Petersen graph. See Watkins [2].

The sets of edges {(i, i + 1)} and {(i', (i + k)f)} are called the
outer and inner rims respectively and the edges (£, i') are called the
spokes.

A Tait coloring of a trivalent graph is an edge-coloring in three
colors such that each color is incident to each vertex. A 2-factor of
a graph is a bivalent spanning subgraph. A 2-factor consists of dis-
joint circuits. A Tait cycle of a trivalent graph is a 2~factor all of
whose circuits have even length. A Tait cycle induces a Tait coloring
and conversely.

The method that Watkins used in proving that many generalized
Petersen graphs have a Tait coloring was to prove that certain color
patterns on the spokes induce a Tait coloring. Our method for the
remaining cases consists of the construction of 2-factors and of proof
that these 2-factors are Tait cycles under appropriate conditions.

We restrict ourselves to the generalized Petersen graphs G(n, k)
with the properties:

n — 1
n odd, n Ξ> 7, (n, k) = 1, and 2 < k < — - — .

Δ

All other cases (and some special instances of the above) were
dealt with by Watkins.

We construct three types of 2-factors. The first type is a Tait
cycle when k is odd. The second type is a Tait cycle when k is even
and n = 3(mod 4) and also when k is even and n = l(mod 4) with k~ι

even. (As (n, k) — 1, we define krι as the unique positive integer
< n, for which kk~ι = l(mod n).) The third type takes care of the
remaining graphs.
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The principal tool in the proofs is the automorphism φ (hence-
forth fixed) of G(n, k) defined by φ(i) — n — i; φ(i') — (n — ϊ). In each
case φ induces an automorphism (also called φ) of the constructed
2-factor. To facilitate notation we write n = 2m + 1.

CONSTRUCTION 1. The subgraph H of G(n, k) has the following
edges:

(a) On the outer rim: (m + k, m + k + 1), (m + k + 1, m + k +
2), . . . , ( w - 1,0), (0,1), (1,2), . . . , ( m - k,m- k+ 1),
(m - k + 2, m — k + 3), (m - k + 4, m - k + 5), ,
(m + k - 2, m + k - 1).

The last line may be written as (m — fe + 2 ,̂ m — A: + 2j + 1),

(b) Spokes: (m + A, (m + k)'), (m — k + 1, (m -

2, (m - fc + 2)% (m + k - 1, (m + k - I)').

(c) On the inner rim: (i\ (i + fc)'), m + l ^ i ^

(i - k)'), k<:i<: m.

+ 1)'),

EXAMPLE. , 3)

10

FIGURE 1

Clearly H is a 2-factor, and φ{H) = H. If Co is the circuit of
H which contains 0, then φ(C0) = Co. If Co has odd length, then it
must contain an odd number of edges of the form (i, — ί) and {ί\ —i')
The only candidates are:

(A) (m, m + 1)

A;
(B)

<C ((

_ AY fJL\'\
71 2 ) ' V 2 / )
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The edge (C) is not in H by our construction. Either the presence
of (A) in H or the existence of edge (B) will imply that k is even.
We conclude that if k is odd Co has even length.

Let m — k + 2^i^m + k — 1. Then either i\ i, i + 1, (i + 1)'
or i\ i, i — 1, (i — 1)' are 4 consecutive vertices on a circuit of if. We
call such sets 4-sets. If every point of a circuit is on a 4-set, then
the circuit has even length.

N o w c o n s i d e r a v e r t e x i ' , m + k < i ^ n — l o τ 0 ^ i < m — k -{- 1,
which is not on Co. The circuit of H which contains V passes con-
secutively through the the vertices i', (i + k)', (i + 2k)f (i + rk)f,
(i + (r + ΐ)k)', where i + rk < m — k + 1, i + (r + l)k > m — k + 1,
r >̂ 0. The vertex (i + (r + 1)&)' is on a 4-set, and also i + (r + l)fc ^
m, hence the circuit continues through the vertices i + (r + 1)&, i +
(r + 1)& ± 1, (ί + (r + l)fe ± 1)', (i + rΛ ± 1)' (i ± 1)'. The circuit
continues to (i ± 1 — k)r and by an identical argument eventually
returns and hits V or (i + 2)' or (i — 2)'. In the first case the circuit
is complete and it is easily seen that it has even length. The other
two cases lead to a contradiction; for assume (w.l.o.g) that the circuit
is on (i\ (i + 1)', (i + 2)'). Then by the above argument the circuit
will eventually hit either (i + 1)' again or else (i + 3)'. But the first
case is impossible, because H is bivalent. Hence the circuit contains
(i + 3)' and further (i + 4)' (m - k + 1)', but this contradicts our
assumption, as (m — k + 1)' is on Co.

CONSTRUCTION 2. H has the following edges:
(a) On the outer rim: (n - 1, 0), (0, 1), (2, 3), , (2j, 2j + 1)

(n — 3,n- 2).
(b) Spokes: all, except (0,0').
(c) On the inner rim: (0', W), (2k', 3&'), (2jk\ (2j + l)fc'),

((n - l)fc', 0').

(For the sake of clarity we have written ckf instead of the for-
mally more correct (c/c)'.)

EXAMPLE. G(15,4). See Figure 2.

Again, one checks easily that H is a 2-factor and that φ{H) = H.
Looking at the edges (A), (B), and (C) of Construction 1, we note
that (C) is not an edge if k is even. If edge (A) occurs, then m =
(n — l/)2 is even and n = l(mod 4). If edge (B) occurs, and we write
k/2 = jk(moά ri), j < n, then j is odd by our construction. But then
k ΞΞ 2jk(mod n) => (2j — 1) = 0 (mod n) => n = 2j — 1 => n = 1 (mod 4).

Hence if n ΞΞ 3(mod 4) and k is even none of the lines (A), (B),
and (C) occur, and we may conclude by the argument used in Con-
struction 1 that the circuits through 0 and 0' have even length. All
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FIGURE 2

the points of every other circuit belong to a 4-set, and hence also
have even length. Therefore H if a Tait cycle if n = 3(mod 4) and fc
is even.

If n = l(mod 4) and fc and fc"1 are both even, then the edge
{{k + 1)', 10 = (Γ, (k + 1)0 = (ft-'ft', (ft-1 + l)ft') exists in H, and so does
the edge (— Γ, — (fc + 1)0- We then obtain the circuit:

0', fc', k,k+l,(lc+ 1)', Γ, 1, 0, - 1, - 1',

- (k+ 1)', -(k+ 1), -fc, -fc', 0'

which has length 14 and contains both 0 and 0'.

We conclude that in this case H is again a Tait cycle.

CONSTRUCTION 3. For this construction we assume n = l(mod 4),
k even, krι odd and > n/2. This last assumption is no real re-
striction, because if k~ι is odd and < n/2, then Construction 1 gives
a Tait cycle for G(n, krι) and Watkins has shown that G(n, k) and
G(n, krι) are isomorphic. Finally we need to assume k > 2; this
restriction was not needed in Constructions 1 and 2.

H has the following edges:
On the outer rim: ( - 1, 0), (0, 1), (2, 3), . , (k - 4, fc - 3), (k - 2,

k - 1), (k - 1, k), (k + 1, k + 2), - (n - k - 2, n - k - 1), (n - k, n -
k + 1), (n- k + 1, n- k + 2), (n - ft + 3, n - fc + 4), , (n- 3, n- 2).

Spokes: all except (0r00, (fc - 1, (ft - 1)0, (n - fc + 1, (n - k + 1)0-
On the inner rim: (0', ft'), (2ft', 3ft'), , ((w - ft-^ft', (n - krι +

l)fcθ, ((n - fc-1 + l)fc', (n - fc-1 + 2)fcO, ((n - fc"1 + 3)fcr, (n - k~ι + 4)ft')),
. , ((fc-1 - 2)ft', (fc-1 - l)fcθ, ((fc"1 - l)ftf, fc"Lfc0, ((ft""1 + l)fcf, (^"L + 2)ft'),
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EXAMPLE. G(17,4)

14

15

H is a 2-factor, as long as n — k~ι + 1 < krι — 1, which assures
that the constructed edges on the inner rim cover all vertices of the
inner rim. But this condition holds whenever krι > (n + 1/2) or alte-
natively when k~ι > (n/2), and k > 2. It is clear that φ(H) = if.

Since n = l(mod 4), m is even and (m, m + 1) is not an edge of
H. As (w — k/)2 is not an integer if does not have an edge((n — fc)/2)',
O + &)/2)'). Finally, since n - k~ι + 1 ^ (w - l)/2 = m < m + 1 =
(n + l)/2 ^ fc"1 — 1, and m is even, H does not contain the edge
(mh\ (m -f ϊ)k') = (- Λ'/2, A'/2)* As before we conclude that the
circuits containing 0 and 0' have even length. The circuit con-
taining 0 also contains n — 1, (n — 1)', (k — 1)' and 1, Γ, (n — k + 1)',
while the circuit containing 0' also contains k\ k, k — 1, k — 2, (k — 2)'
a n d (w — A)', n— k,n— k+1, n — k + 2, (n —k + 2)'. H e n c e t h e o t h e r
circuits only contain vertices of 4-sets and every circuit of H has
even length.

We note that our constructions are not mutually exclusive. For
example, Construction 1 also produces a Tait cycle, when k is even,
and the largest positive integer q such that qk < n is an odd number.

We conclude with a new conjecture. G. N. Robertson [1] has
shown that G(n, 2) is Hamiltonian unless n = 5(mod 6). As G(n, 2) =
G(n, (n + l)/2) ~ G(n, (n - l)/2) = Gin, n - 2) (see [2]), none of these
graphs has a Hamiltonian if n = 5(mod 6). We conjecture that all
other generalized Petersen graphs are Hamiltonian. In all examples
that we have worked out G(n, k) possesses a Hamiltonian H with
φ(H) = Hy but our three constructions are Hamiltonians only in a
minority of cases.
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