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D. W. Kahn defined a spectral sequence “(X; R) for
the Postnikov system .F°(X) of a l-connected CW-complex
which converges to H.(X; R), the singular homology of X with
coefficients in E. We study & (X; R) in two settings: (a) to
give a generalization of the classical theorem of Eilenberg
and MacLane concerning the dependence of H/(X;Z) on the
first nonzero homotopy group of X (2.1) and (b) to give a
complete computation of H,(X; Q) (Q = rationals) for 7 < 3-¢(X)
(¢(X) = connectivity of X) in terms of the graded homotopy
group /IR Q={#(X)XQ|0<?=<3-¢(X)} and the Whitehead
produact on this group (0.1 and 0.2).

In §1 we give a quick description of %’ (X; R) for later use and
in §2 we generalize the Eilenbsrg-MacLane theorem by giving an
exact sequence involving the first ¢wo nonzero homotopy groups.
& (X, @) is studied in § 3, with the result that we are able to identi-
fy EY(X; Q) somewhat above the diagonal (Kahn identified it below the
diagonal in [7]) (3.8) and to show that the Whitehead product is the
only non-zero differential operator, provided the total degree is less than
3-¢(X) (3-10). Section 4 gives the computations of H,(X; @) and vari-
ous other applications.

1. Description of the Spectral Sequence of .Z7°(X). In this note
X is a (n — 1)-connected space, n > 1, having the homotopy type of
a CW-complex. All maps and spaces are “pointed”.

Let {X;, r;, m} = .Z°(X) be a Postnikov system for X (see [6] for
definition). Choose m > » and convert the map r,: X — X,, into a fiber
map. Use the same notation for the new map. In the tower of spaces

X x, X, 2 2R X = K (X), n)
a0 e 200, = Tey (B + 1= a<m). Let r,, denote this composi-
tion, « =n + 1, ---, m. Since all these maps are Hurewicz fibrations,
Feo(@ — 1 < m) is a fiber map. Let F;., = r;7 (base point) denote the
fiber of r;: X— X;,¢ = m. The following is proved in [7].

LEmma 1.1. (a) F., is t-connected.
(b) Fiy, ts fibered over K(m; (X), + 1), with fiber
Fis, via the map v, | Fiy,.
(¢ X=F,DF, DD F,DF,. ts a finite de-
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60 MICHAEL DYER
creasing filtration of X.

For each m, the exact couple ([7]) & (=°(X), m; G) is defined by

o {HH,S(FT; G, if rs=0.
"o, otherwise,
Hr FS(FF’ Fr+1; G)y if T, S Z O .

B - {
" 0, otherwise,

where G is any abelian group and H, is singular homology. If D' =
S D, E' =>4 E., then the couple maps ¢: D'— D', j: D' — E' and
k: E'— D' are of bidegree (respectively) (—1, 1), (0,0), (1, —2). The
bidegree of the differential operator d;: £ — E* is (¢, —¢ — 1).

In [7], Kahn shows that

(1.2) B = H, (F,, F 6) 25 By (74X), 5 6)
is an isomorphism, provided s £ j, where
(]j = rile: (Fj'y Fjﬂ) - (K(EJ(X)’ -7)7 4) ’

thus indentifying the E' term below the diagonal.

2. Generalization of a theorem of Eilenberg-MacLane. In [4],
Eilenberg and MacLane showed the depzndence of the first few homology
groups of a space X upon the first nonzero homotopy group of X.
We prove the following generalization.

THEOREM 2.1. Let X be an (n — l)-connected space having the
hometopy type of a CW-complex, n=2. Suppoese m,(X) =0 for n<i<p
and p <1< q=2n Then H(X;G) ~ H(r,(X),n;G) for n =1 <p
and ary abelian group G. Furthermore, if we abbreviate H,(z,(X), ; G)
by H;(l; G), we have the exvacl sequence

(Dl 7&(1“1 q--1 (1(1-—1
Hq(n; G) ~1s }Iq~1(p; G) — Hq——l(X; G) }—" Hq~1(n; G) )—" ot

cee s Hp; )~ HA(X: G) —2 Hi; G) —2 Hi (3 G) ——
s Hy (3 G) s HY(X G) 2 H(0; G) —— 0

O; = Tio(k),, where ki K(n,(X), n) — K(z,(X), p + 1) is the first k-in-
variant mn a Postntkov decomposition of X and T,: H;(w,(X), p+1; G) —
H; (n(X), p; G) is the transgression, which is an isomorphism provided
0 <j=2p. Further, +r, 1s the Hurewicz homomorphism.

Proof. We consider &7 (&°(X), m; G) for m > 2n. =n(X) =0 for
n<t<p, p<t<q implies by 1.1 (b) that
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22 X=F,0F,., =+ +=F,5F,  =«-=F D,

Thus E!,=0 for 0<r<n,n<r<p p<r<gq and all s. This
gives a two-term condition (see [5], chapter VIII) on the E'-term of
(P (X), m; G). Using (1.2) we have that H,(X; G) ~ H;(7.(X), n; G)
for n <7 < p (a l-term condition here) and for p = 1+ < ¢ we have the
exact sequence of the theorem. Note that we did not need ¢ < 2n in
order to obtain the two-term condition, but oaly in order to use (1.2).
It is clear from [7] that ., (the edge homomorphism) is the Hurewicz
homomorphism.

We will now show that @, = T;,o(k),. Since @, is essentially
ar: grr, — KB, (17D, we will show that d7 = Tio(k).. As it
has significance in its own right, we give it as a separate lemma.

Lemma 2.3 If (X)) =0forl=i1<m,n<i1<p p<i<gq,then
(ay E.,= K" for r =n,p provided s < q — p.
(b) The following triangle commutes for s < min{n, ¢ — p}.

Eﬁ:” - gn+s(ﬂn(X)y ’17/; G) ﬁlﬁ—i ﬁnis~l(ﬁp(X)y p; G) = Eg,_—'n(zf—ﬂ)'i‘s—i
~__ 7
e T
Hnw"s(ﬂP(X)s p + 1; G)
where (1) k: K(m,(X), n) — K(n,(X), p + 1) @8 the first k-invariant,
(i1) T s the composite Jows*

where K(7,, p) = PK(w,, p + 1) — K(z,, p + 1) (7, = 7,(X)) is the
usual path space fibration. T is an isomorphism provided n + s < 2p.

Proof. (a) follows because m;(X) =0 for 1 <i<n,n<t<p
= K, = £

for all s, since d* ™ E!,— K, ,_,_,_. is the first nonzero differential
operator. E!, = E!;" provided s <q — p since 7,(X) = 0 for n <t <p,
p < i < q implies that d’: E}_;,.;.,— K}, is zero unless 1 = p — n and
dwEi,—E!.. ;. is zero provided s = ¢ — p.

(b) since d>™™ is given by the composition (see 2.2)

Hy o (F,, F) 2 o (F) -2 H,.o (F,, F)

we are asking that the following diagram commute:
(2.4)
, - Jx
Hn'fS(Fny Fp) -_ Hn+s~1<Fp) — Hn+s—1(Fp7 Fq)

i(%)*k s I(EOQP)*
-~ % w . .
H”IH-S(T[WL(X)v n)—j;Hn+s<7rp<X), p + 1)(_>5Hn+s(PK, K(‘Tp(X)y p))—_’Hn-}-s—l(ﬂfp(X)y ) D
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where k is defined by (2.6) below, and ¢, = 7ilp,» (2.4) commutes if
and only if

o

Hn+s(Fny FP I

lw;!ok*OQn* ‘[(qupoj)*
H,.,(PK, K(n,(X), p)) — H,., ,(7,(X), D)

_— ~n+s-—1(F:D)

(2.5)

commutes. We have the following situation:

k
PK
w
k
2.6) X=F, K(z,, n) K(z,, p+1)

PRl N

where kog, = kom,or, = wokor, = wi'okyoq,« = kyor,«. But E"?'pipp =
koq, is clearly the same as kog,oj considered as maps of the pairs
(F, *) — (F,, F,) — (PK, ). This shows that (2.5) commutes.

By an argument similar to Lemma 2.3, we may identify the d!
operator below the diagonal. This was claimed in [7], page 176.

LEMMA 2.4. The following commutes for s < j.

~ A ~ .
H;, (7, ) — H; s (7500, 5 + 1)

N S
(kjoti)e\ yas
H;\ (4, + 2)

where () k;: X;— K(r;.(X), 7+ 2) is the jth k-invariant,
(b) i;: K(n(Y),Jj) = X, is the inclusion, and
(¢) T s the transgression (which is an isomorphism for s <
J+ 2.

3. Rational homology and Whitehead products. In this sec-
tion we consider Kahn’s spectral sequence with coefficients in @, the
rationals. For this special case we are able to identify the E'-term
considerably above the diagonal. This occurs because for @ coefficients,
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H.(z, n; Q) ~ a Hopf algebra over @ on dim, (7 ® Q) generators of
degree n.

In [8], J. P. Meyer demonstrated how to compute Whitehead
products in 7,(X) from a Postnikov system for X and in [7], Theorem
9.1, D. W. Kahn used Meyer’s results to show that a certain higher
differential operator in Z°(X; Q) ¢s the Whitehead product. In the
range of our identification, we show that this differential is the only
nonzero differential operator. This allows a complete computation of
H(X;Q),1 < 3-¢(X), in terms of the homotopy groups of X and the
(rational) Whitehead products, where ¢(X) is the connectivity of X.

DEFINITION 3.1. Let G be an arbitrary Q-vector space and p be a
positive integer. The skew-symmetric tensor product S,(G) is defined
as

5,(G) = (G Q. G)/R

where R is the subspace generated by {9.&g; — (—1)"?¢9;R9:|9;, 9; € G}.
Suppose v = dim, G, and let A(v, p) be the free commutative graded
algebra over @ on generators (¢, -+, ¢,) where degree ¢, = » (v need
not be finite).

Ay, p) Qlt, -, t.] if p even,
P EQ(tI) “'yty) if D Odd ’

where Q[¢,, ---] is the graded polynomial algebra over Q, E,(t, +--)
is the graded exterior algebra over @, on generators ¢, ---, t, of degree
p. Then it is easy to see that S,(G) ~ A(v, p):y, the @-module of
A(v, p) in degree 2p.

LEMMA 3.2. Let G be an abelian group. Then H,(G, p; Q) ~
S(G ® Q).

Proof. This follows because H,(G, p; Q) = A(dim, (G Q Q), p).

THBEOREM 3.3. Lete(X) =n — 1, for n = 2. In € (FP(X), «; Q),
the E'-term is given as follows (Q means Q,): For all p > 0,

ﬂp@Q’ ifq=20

0,if 0<g<up,

S, (7, ®Q), of ¢ =1p

T, R, f p+1=q¢g=2p—-2,

B (X; Q) ~

where w; = 7,(X) (see Figure 3.1).
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12

/

T, 07T, 0Q

\Al\/’_“_’/

//' T 8,7, ®Q)

/rrp®Q

7@\ — P p
0

Fic. 3.1. EYX; Q).

Proof. Let »>1 and consider the homology Serre spectral
sequence [5] for the fibration F,., = (F,, F,.)) — (K(%,, ), *). The
F?-term, with coefficients in @, is

B, ~ H(K(®,, p), s H(Fp1; Q) ~ H(Ty, D; QR H(Fyii; Q) -
Note that if » < 2p, then E?2, = 0 unless r = p and
B~ 7, Qs H(Fpir; Q) -
It is easy to see from this, 1.1 (a), and the fact that
H (7, p; Q) &~ A (dimg (7, ® Q), p)
that
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Er) q(X; Q) ~ Hp"rq(Fm Fpﬂ; Q)
(T @, H(Fpo; @), f 0 ¢=<2p—2,9g%*0p.

4

(H,\(7), p; Q) = S,(m, QQ), if ¢ =1p.

Now we show that i+f p < q < 2p — 2, then H(F,; Q) ~ H(F,; Q) ~
7, X, Q. If ¢ = p, then H(F,; Q) ~r,XQ by 1.1 (a) and the Hurewicz
theorem. Consider the homology Serre spectral sequence with coeffi-
cients in @ of the fibration F,,, C F,— K(x,, p) given by 1.1 (b). If
p< qg=2p— 2, then the exact sequence of [5], page 284, implies
that <,.: H(F,.) ~ H,(F,). Similar arguments on the homology Serre
spectral sequences for F,,,=—— F;,— K(m;,t),t=p+ 1, ---, ¢ show
that

H(F;Q~H(F,.;Q~ -+ ~H(F,_;Q~H(F;Q ~1m,QQ

~g

provided » £ ¢ < 2p — 2.

COROLLARY 3.4. (Rational Hurewicz Theorem) If i < 2¢(X) then
Q1 7(X) R Q— H(X; Q) 1s an isomorphism.

Proof. This is follows from 3.3 because the only non-zero term
E;, of total degree ¢ (for 7 < 2¢(X)) is E}, = 7:(X) ® Q = E=,. Thus
7 X)® Q@ — H,(X; Q) is an isomorphism. Kahn’s theorem 4.1 [7]
identifies this map (the edge homomorphism) as &, ® 1.

This result was known to Cartan and Serre in [2].

We will now study the differentials in & (X; «=; ). According to
Theorem 2.2 of [3] (see also [9], Chapter 2), given X, 3 aCW-complex
X®Qand a map f: X—>XRQ

(@ mXRQ~r((X)RQ

(b) f is a homotopy equivalence modulo the class .2~ of torsion
groups.

(¢) 3 an isomorphism v such that the following commutes:

} (X ® Q)
mX) P
t T(X)®Q
where t(a) = a ® 1, for aer,(X).
T
Let X & @ be the space obtained from X &® @ by killing off all the
RS
homotopy groups of X @ @ in dimensions = 2-¢(X)+1;1: XRQ—-XXRQ
T

the inclusion map. Consider the composite map iof: X — XX Q. This
induces an exact couple map from
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which we shall see is an isomorphism in a certain range of dimensions
on the E'-term. Theorem 4.4 of [3] implies that all the k-invariants
of X® @ are trivial, i.e.,

N 9.0(X) i
ez I K@X®6i).

This implies that the spectral sequence {E’i(X/@\Q; Q);(fi} collapses;
i.e., all the d* are zero. It follows from a theorem of Kahn [6], that

s
to f induces maps .77 (1o f): F(X) — (X ® Q) such that the following
diagram commutes.

X3 &

\\\\

\\ \ Xy.) (XD Q) = -
| \ 1
W\ e

rn
n-—1
\ (tof)y, L~
(3.5)
T (iof)nfl L
X, 1 (X®RA),_1
l o f)ux)1

(Xi/Q)b\‘

(Tof)2.0x)

\

®)
=

-« 0 ®

-8 0 & <

‘Y('(X)— 1
(1of)z e . . . . _
and w(X,) —— T,(X® Q),) (¢ >0) is an isomorphism mod .o .
The eommutativity of (3.5) = (1o /) (F(X)) C FAXR Q) for n < 2.¢(X).
An easy induction using the mod .~ 5-Lemma [5], and the homotopy
ladder induced by

iof)Fn s o~
Fox)——Den _p (X®0)
v . /\

1
‘ t

¥ RN ¢
K (X), n) M E e gz (X) @ Q, )
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T
shows that (iof|., ). Hy(F.(X); Q) — Hi{(F (XX Q); Q) is a o -iso-
morphism for j = 2.¢(X) (and an epimorphism for 7 > 2-¢(X)). By
the Whitehead theorem mod & [5], page 512, we then have that

(3.6) (Gof o)t HAF(X); @ — HiF (X @ Q) Q)

is an isomorphism for j < 2.¢(X) and an epimorphism for j = 2.¢(X) +
1.

By the naturality of the universal coefficient theorem and the Serre
spectral sequence, we have the following commutative diagram for
p=2¢X)and p<qg=2p— 2.

(3.7)
Bl @ L LR Q
X[ 7\, (”:Of“zv‘,,(x))* }" P o~ .
H, (F,(X), Fm(A)‘ Q) - H (FAX®Q), F, (X®Q);Q
0 [ ~ | (xg
. Hﬂ(icfﬂ!‘KIK},,m; (icf“'le)*) - PN ) Q
H(K(7,(X), p) HIF,..(X); Q) H(K=(X® Q), 2 HIF, (X5 0); Q)

ver l =~ ver | =

ifue @ Gof 1y s v
Hywy, 5 © HyF, (X)) @ @ —— D@0 lende @1 o 600 0) @ H(F, (X ® @) ® Q

where s(-) in the above is the isomorphism defined from the Serre
spectral sequence for F,. (:) = F,(+) — K(m,(-), p). In this range of
dimensions (p =< 2-¢(X), p < ¢ = 2p — 2) the vertical arrows are isomor-
phisms. 3.6 implies that the bottom row is an isomorphism, provided
g =< 2.¢(X). A similar argument gives the case ¢ = p.

From this we deduce that

(3.8) E'iof): B} (X; Q) — B (X @ @ Q)

is an isomorphism provided 0 < p < 2.¢(X), 0 £ ¢ < 2.¢(X). See Fig-
ure 3.2. (3.8) implies

(3.9) B (X Q ),

LB XO@Q)

18 an isomorphism for p + ¢ < 3¢(X) + 1, p £ 2¢(X). (see Figure 3.2.)
Assume now that ¢(X) = 2. We will show that

B, =FE, for2<i<q-—2

whenever ¢(X) + 1= p = 2-¢(X), p £ q¢ = 3¢(X) — p. (These are the
only nonzero terms of total degree =< 3¢(X) such that ¢ > 0. See
shaded area in Figure 3.2.) Furthermore, all differential operators
coming into Ei, (i > 0) are zero and all differential operators issuing
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forth from E., are zero except for i =q — 1.

We show this by arguing on the total degree j(2¢(X) +2=7 =
3cX).

(@ p+q=2¢(X)+2=p=c(X)+ 1. Alldifferential operators
with range E'y,, .xs are zero for 7 > 0 'since Ely,, ; ;xi1rirn = 0 for all
i> 0. Similarly all d: Eiz., cxir— Eixiiriex+1i—i are zero for 7=
¢(X) — 1 since the latter group is zero in that range.

q=2p—2
q /

2¢(X) =2n -2 /

2n =3 |TTTTTT T T nad

'
|
|
1
|
|
I
|
|
!
i
|
|
|
L

Y P
77L_’\o/—\—j{[+1p=%c()() 2 X 3cX P+q=3X
|
n

Fic. 3.2. EYX; Q).

(b) Suppose j > 2¢(X) + 2. Consider p + g = j < 3¢(X), where
¢(X) + 1 < p < [5/2], and the following commutative diagram

EYiof)p—1

~
L
Eﬁ—-l,qﬂ

Ezl)—l,q+2

E'Gof)pss 7y

p+1,9—2 ? p+1,9—2

A S
where E' = E{(X;Q), E'= E(X® @ Q). E'(Gof), k=»—1,p,p+1)
is an isomorphism by 3.9 since the total degree in each case is < 3¢(X) +1.
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Since d;, = 0, we have d; =0 for i =p,p + 1. Thus E., = E2, for
(p, q) satisfying the above. Similar arguments imply E},6 = E}), for
¢ = 3,4, eee, g — 2.

(¢) d-Ei,—FEi, ,; iszerofor ¢>¢q —1sinceg—1t1—-1<0=
E, ., i,=0. doE., ;, ., —E. iszerofori=¢q— 1sincei=q — 1,
gzp—=p—t1=p—q+1=E, ;.. =0.

Thus the only (possibly) nonzero differential operator for each (p, q)
satisfying ¢(X) + 1 < p £ 2-¢(X),p < ¢ < 3¢(X) — p is

A B — B -

But this has been identified by Kahn in [7], Theorem 9.1, as the
(rational) Whitehead product: If ¢ > p

[,1®id

Ty ® 71',1 ® Q — n-:o+q—1 ® Q
~ ~ (> )
I dr—1 T
Ey T B

or, if g =1p

S @@ 2% 1, ®q

- .

g—1 —1
Eq,q - ? qu—l,o

where [, ] is the Whitehead product.
We have thus proved the following.

THEOREM 3.10. Letce(X)=2. If p+ q = 3-(X) and ¢ = p, then

(a) d:Ei,n.— Ei, is zero for all © > 0.

(b) dE;, —E} ., i, iszerofori=1,2 ---9g—2,¢,q+1, -

(¢) d: By — K%, ts the rational Whitehead product.

4. Applications. We are now in a position to compute H,(X; Q)
(1 = 3.¢(X)) completely in terms of the graded homotopy group /7 =
{7; QRI1 <1 =< 3-¢(X)} and the rational Whitehead product on this

group. For 7 < 2.¢(X) this is given by the rational Hurewicz theorem
(3.4). Let

Ker {1, @7 @ Q1125 7, @ @), o(X) <5 = [*5]

]

. i
0, 1fzodd,g_[?.

2
Ker,;={Ker (S(t;, ® @ €% 7. ®@Q), if i even, j = [

po |

M-



70 MICHAEL DYER

and
Ker, = 69 . Ker (& denotes direct sum),

e(X)<y

where |, ] is the Whitehead product.
Furthermore, let

d . . ]
m {7, QT J®Q-£i®% T, RQQ, i (X)) <g = [—;—
Iy, = Jim (S ® Q) L 2 @ @) i 1+ 1 even, j=[ 1]
cp - . v+ 1
0, it i+ 1 odd, j = |3 ]
and (sinece Im;; C 7, ® @ for each j)
Im; = > Im;; € m;® Q. (+ denotes sum, not necessarily direct)

(<=l iu/2)

THEOREM 4.1. If 2¢(X) <1 = 3.¢(X), then
Hi{(X; Q) ~ Ker; @ (7; ® Q/Im,)

Proof. 3.4, 3.10 = Efy~ (r; Q @/Im,;) and £, (c(X) < p < [i/2],
» + q = i) ~ Ker;,. These are the only nonzero terms of total degree
1. Since all extensmns split we have

HX;Q~E,O © Ey.,

cX)<p=iife]

~ (1, © Q/Im,;) P Ker; .

Since Kahn [7] has identified the edge homomorphism with the
Hurewicz homomorphism we see

THEOREM 4.2. [f 1= 3-¢(X)and h, Q 1L:7z(X) R Q — H{X; Q) is
the Hurewicz homomorphism, then

(a) Kerh,®1=1Im,

(b) ecoker h; ® 1 = Ker,

Proof. This follows because h; ® 1 is the natural map
T, ® Q - Keri @ (7?1 ® Q,’/lmi) .
COROLLARY 4.3. [If 1= 3:¢(X), then

@ h, X1 s a monomorphism < Im; = 0
b)) h; Q1 s an epimorphism = Ker;, = 0.
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Note. By Proposition 2.1 (respectively, 4.1) of [1], #;, ® 1 is epic
(respectively, monic) =the 7** k’-invariant (k-invariant) of any homology
(Postnikov) decomposition is of finite order. 4.3 gives another such
characterization. This gives, for instance, the following theorem.

THEOREM 4.4 If m(X; Q) = 0 for 1>3-¢(X), then all k-invariants
are of finite order < all rational Whitehead products vanish.

Finally, since it is usually easier to compute H,(X; Q) than it is
the Whitehead product, we will use these relations (4.1 and 4.2) to
give information about the Whitehead products themselves.

THEOREM 4.5. Let 1 < 3-¢(X) and consider the following state-
ments:

(a) 7 QR Q is generated by Whitehead products.

() For all r such that ¢(X) <r=[0¢—-1/2], ,®7,_, X Q—
T, R Q s injective.

(¢) If i even, S(wy: ® Q) — 7, Q Q is injective. The following
are true.

(@) h®1=0<=()

(e) cokerh;, X1 = 0= (b) and (c)

() H{(X;Q) =0<=(a), (b) and (o).
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