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A characterization is given of the finitely generated non-
singular left R-modules N such that Exti(N,M) =0 for
every singular left R-module M. As a corollary, the rings
R, over which the singular submodule Z(A4) is a direct
summand of every finitely generated left R-module A, are
characterized. This characterization takes on a simplified
form whenever E is commutative. An example is given to
show that a ring R, over which the singular submodule Z(A4)
is a direct summand of every left K-module A, need not be
right semi-hereditary.

In this paper, all rings R are assumed to be associative with an
identity element, and, unless otherwise stated, all R-modules will be
unitary left R-modules.

A submodule B of an R-module A is an essential submodule of
A if BNC # 0 for all nonzero submodules C of A. A left ideal I
of R is essential in R if it is essential in R as a submodule of R.
If A is an R-module, Z(A4) = {ac A|(0:a) is essential in R} is the
singular submodule of A. A is called a singular module if Z(A) =
A; and A is a nonsingular module if Z(4) = 0. A submodule B of
A is closed in A if B has no propsr essential extension in 4. If A
is nonsingular, then a submodule B of A is a closed submodule of A
if and only if A/B is a nonsingular module. A simple R-module S
is nonsingular if and only if it is projective. For an R-module A,
Soc (A) denotes the sum of all simple submodules of A or 0 if A4 has
no simple submodules.

Motivated by a definition of Kaplansky [6], we say that an
R-module N is UF if N is a nonsingular module and Ext} (N, M) =0
for all singular R-modules M. An R-module A is said to split if
Z(A) is a direct summand of A. Asin [2], a ring R has the finitely
generated splitting property (FGSP) if every finitely generated R-
module splits.

We shall use the following result of Cateforis and Sandomierski
[2, Proposition 1.11], which is included here for completeness.

LemMMA 1. For any ring R, the following statements are equiva-
lent:

(a) R has FGSP.

(b) Z(R) =0, and every finitely generated nonsingular R-module
is UF.
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An R-module K is said to be almost finitely generated if K =
U@V, where U is a finitely generated R-module and V = Soc (V).
Then an R-module N is called almost finitely related if there exists
an exact sequence of R-modules

0 K r N 0,

where F is a finitely generated free module and K is almost finitely
generated.
Before stating our main results, we prove several lemmas.

LeMMA 2. If N is an almost finitely related R-module and if
0 K F N 0

s any exact sequence of R-modules with F a finitely generated free
module, then K is almost finitely generated.

Proof. Since N is almost finitely related, there exists an exact
sequence of R-modules

0 K, F, N 0,

where F', is a finitely generated free module and K, is almost finitely
generated. By a result of Schanuel [9, p. 369], KPF, =K P F.
Since K, and F are almost finitely generated, then so is K F, =
K @G F. Therefore (KP F)/Soc (KD F) is finitely generated. Since

KQF, KPF . K o F,
Soc (KB F)  Soc(K) P Soc (F)  Soc (K) Soc (F)

then K/Soc (K) is also finitely generated.

Now we write K = Rx, + Rx, + --- + Rz, + Scc (K), where
Wy gy ooy, € Ko Let W= (Soc(K)) N (Re,+ Rxy+ -+« + Re,). Then
there exists an R-module V such that Soc (K) = W V. It follows
that K = (Rx, + Rx, + -+ - Rx,) @V, and hence K is almost finitely
generated.

A finitely generated nonsingular R-module N is called finitely
generated torsion inducing (FGTI) if N has the following property:
If M is any finitely generated R-module with M/Z(M) = N, then
Z(M) is finitely generated.

LEMmA 8. Let Z(R) = 0, and let 0 — K — F— N — 0 be an exact
sequence of R-modules, where F is a finitely generated free module.
If N is nonsingular, then the following statements hold:

(a) If N is FGTI and if K/Soc(K) is a direct sum of countably
generated modules, then N is almost finitely related.
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(by If N is almost finitely related, then N is an FGTI module.

Proof. To show (a), we need to show that K is almost finitely
generated. By hypothesis, Y = K/Soc (K) = @ >\, .- M., where each
M, is a countably generated R-module. First we show that Y is,
in fact, countably generated also. Let <% = {ae.o | M, contains a
proper essential submodule}. Thus if awe. . — <%, then M, is a
direct sum of singular simple R-modules or zero. For each ae .7,
let L, be a proper essential submodule of M,. Define L =@ >,. . L,,
and let J be a submodule of K containing Soc (K) such that J/Soc (K)=
L. Since

Z(F|J) = Z((F[Soc (K))/(J[Soc (K))) 2 Y/L = KJJ ,

then K/J is a singular module; but since Z(F/K) = 0, it follows that
Z(F|J) = K/J. By hypothesis, N is a FGTI module; hence

KT = (D e M/ L) D (D Zae oo M)

is a finitely generated R-module. Therefore all but finitely many of
the M (ae.o”) must be 0, and hence K/Soc(K) is countably
generated.

Thus there exist ;¢ K (1 = 1,2, -+-) such that K = >.2, R, +
Soc (K). We will show that there exists a positive integer m such
that K = >, Rx; + Soc (K). If this were not the case, then for
each positive integer u, there exists a least positive integer k(n)
such that «,,, ¢ Rx, + Rx, + -+ + Rx, + Soc (K). By Zorn’s lemma,
choose K, maximal with respect to x,., ¢ K, and

Ry + Rey, + <+ + Ry, + Soc (K) S K, S K.

It follows that (Rx,., + K,)/K, is an essential, simple, nonprojective
submodule of K/K,. Since K/K, is an essential extension of a
singular simple module, then K/K, is also a singular module.

Define p: K— P >7. K/K,: v — >3, P.(x), where ¢, K — K/K,
is the natural map. If xve K, then 2 = >! ruo; e >, Ry, & K, for
all » = t. Thus @,(x) = 0 for all n = ¢, and hence @ is well-defined.
If H=ker o, then K/H=im ® is not finitely generated (as ®,(x;.,) #= 0
for each integer n). Moreover, since im® is a submodule of the
singular module @ 7., K/K,, then K/H = im® is also a singular
module. Since K is a closed submodule of F, then Z(F/H) = K/H.
But then F/H does not have a finitely generated singular submodule,
and (F/H)/Z(F/H) = F/K = N. This contradicts the hypothesis that
N is a FGTI module. Thus K = 3>\, Rx; + Soc (K) for some positive
integer m.

Now the argument used in the last paragraph of the proof of
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Lemma 2 shows that K is almost finitely generated. Therefore (a)
holds.

Now we prove (b). Let M be a finitely generated R-module such
that M/Z(M) = N. Let y, %, <-+, ¥y, be a set of generators of M,
and let F be a free R-module with basis u,, %, *++, %,. Then there
exists a commutative diagram with exact rows

0 > K > F N —0

oo

0 Z(M) > M M/Z(M) — 0,

where p: F— M via p¢(u;) = y; is an epimorphism and v is an iso-
morphism. Then A\ must be an epimorphism. By the hypothesis and
Lemma 2, K=U@ YV, where U is a finitely generated R-module
and V = Soc (V). Since MV) is isomorphic to a submodule of the
nonsingular, semi-simple module V and sinece Z(M) is singular, then
MV) = 0. Thus Z(M) is an epimorphic image of the finitely generated
module U. Consequently, Z(M) is a finitely generated module.

REMARKS. (1) If R is a left hereditary ring, then any closed
submodule K of a finitely generated free module F' is projective. So
it follows from [7, Theorem 1] that K/Soc (K) is a direct sum of
countably generated modules. Thus for a left hereditary ring R, a
finitely generated nonsingular R-module N is FGTI if and only if
N is almost finitely related.

(2) Suppose that N, F, and K are as in the hypothesis of
Lemma 3. If N is FGTI and Soc (K) is essential in K, then K/Soc (K)
is finitely generated. So we can conclude the following result from
Lemma 3: If R is a nonsingular ring with essential socle, then a
finitely generated nonsingular FGTI module is almost finitely related.

(3) There seems to be some independent interest in determining
when the singular submodule of a finitely generated module is finitely
generated. Indeed, Pierce [8, p. 109] asks questions along this line.
Lemma 3 and the first of this remark shed some light in this
direction.

We shall use hd(N) to denote the projective homological dimen-
sion of an R-module N.

We now need an obvious generalization of a result of Kaplansky,
[6, Theorem 1}:

LEMMA 4. If N is a UF R-module, then hd(N) < 1.

Proof. Let N be a UF R-module, and let M be any R-module.
The exact sequence
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0— M— E(M) — E(M)/M— 0
induces the exact sequence
Ext} (N, E(M)/M) — Ext}, (N, M) — Ext} (N, E(M)) =0,

where E(M) denotes the injective hull of M. Since N is UF we
have Exti (N, E(M)/M) = 0; and hence Ext%(N, M) =0 by exactness.
We now give a characterization of UF modules.

THEOREM 1. Let Z(R) =0, and let N be a finitely generated
R-module. Then N is UF if and only if the following conditions
are satisfied:

(i) N is an almost finitely related, nonsingular module.

(iil) Rhd(N) £ 1.

(iii) Torf (Hom,(A, D), N) = 0, where A s any singular R-
module, D is any divisible Abelian group, and Z denotes the ring of
integers.

Proof. We develop a diagram (see (*)), which we use in both
directions of the proof. For any finitely generated R-module N,
there is an exact sequence

0 K F— N 0,

where F' is a finitely generated free R-module. If D is any divisible
Abelian group and if 4 is any singular R-module, then Hom, (A4, D)
is a right R-module. Hence there is an exact sequence

0 — Tor? (Hom, (A, D), N) — Hom, (4, D) ®, K
—— Hom, (4, D) R, F .

The exact sequence
Hom,, (¥, A) — Hom, (K, A) — Ext}, (N, A) — 0
induces an exact sequence

0 — Hom, (Ext}, (N, A), D) — Hom, (Hom, (K, A), D)
—— Hom, (Hom, (F, 4), D) .

It is well-known [1, p. 120] that there exists a homomorphism ~y and
an isomorphism B making the following diagram commutative:

0 — Tor} (Hom, (4, D), N)—> Hom, (4, D)®,K — Hom,(4,D)®,F
) al |
Q ~—> Hom, (Ext} (N, A), D) — Hom, (Hom, (X, 4), D) —s Hom, (Hom,, (F, 4), D) .
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“only if”: Let N be a finitely generated UF R-module. Then
there exists an exact sequence

0 K F N 0

of left R-modules, where F' is a finitely generated free module. By
Lemma 4, K is a projective R-module; thus K = @ >... . K., where
each K, is countably generated by [7, Theorem 1]. Since

K __ D2 K. K,
Soc(K) D ... Soc(K,) D e Soc (K,) '

then K/Soc (K) is a direct sum of countably generated R-modules.
Since a UF module is FGTI, then Lemma 3 (a) implies that N is
almost finitely related, i.e., (i) holds.

Lemma 4 implies that Ad(IN) < 1; so (ii) holds.

Now we show that (iii) holds. Let A, D, F, and K be chosen
as in (*). Then by (i), K= U@ V, where U is finitely generated and
V=S8oc(V). But for any nonsingular simple R-module S, Hom, (S, A)=
0 (as A is singular). Thus by [1, VI. Prop. 5.2], Hom, (4, D) ®, S =
Hom, (Hom, (S, 4), D) = 0. Therefore Hom, (4, D)X, V =0, and
Hom, (V, A) = 0. Hence there exist obvious isomorphisms ¢ and 7
making the diagram

Hom, (4, D) ®, K —— Hom, (4, D) ®, U

/| /|

Hom,, (Hom,, (K, A), D) — Hom,, (Hom,, (U, A4), D)

commute, where " is the restriction of + in (*) to Hom, (4, D) ®, U.
By [1, VI. Prop. 5.2] + is an isomorphism; whence +r is forced to
be an isomorphism also. By the commutativity of (*) and the fact that
Ext), (N, A) = 0, it is now easy to obtain Torf (Hom, (4, D), N) = 0.

“if”: Let A, D, F, K be as in (*). Since hd(N) <1 and N is
almost finitely related, then K is an almost finitely gensrated pro-
jective R-module. By the argument used in the preceding paragraph,
+r 18 an isomorphism in (*). From the commutativity of (*) and the fact
that Tor! (Hom, (4, D), N)=0, we now obtain Hom, (Ext}, (N, 4), D)=
0. Since D is any divisible Abelian group, then Ext) (N, A) = 0 for
every singular module A. Thus N is a UF module.

As a corollary, we have the following result for left hereditary
rings:

COROLLARY 1. Let R be a left hereditary ring whose maximal
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quotient ring ,Q (see [3], [11]) ©s R-flat. Then the following state-
ments are equivalent for any finitely generated mnonsingwlar R-
module N:

(a) N is a UF module.

(b) N is almost finitely related.

(¢) N is a FGTI module.

Proof. The equivalence of (b) and (c) is clear from Remark (1)
following Lemma 3. The equivalence of (a) and (b) will follow
immediately from Theorem 1 if we show that the ring hypothesis
implies every nonsingular R-module is R-flat. But this follows from
[11, Cor. 2.5] and [11, Theorem 2.1].

An immediate consequence of Lemma 1 and Theorem 1 is the
following characterization of FGSP:

COROLLARY 2. A ring R has FGSP if and only if the following
statements hold:

(a) Z(R)=0.

(b) Ewvery finitely generated nonsingular R-module is almost
finitely related.

(¢) Rhd(N)Z1 for every finitely generated nonsingular R-module N.

(d) Torf (Hom, (A, D), N) =0, where N is any finttely generated
nonstngular R-module, D 1is any dwisible Abelian group, and Z
denotes the ring of integers.

Combining Corollaries 1 and 2, the reader can easily see that a
left hereditary ring R, whose maximal left quotient ring ,Q is flat,
has FGSP if and only if every finitely generated nonsingular R-module
is almost finitely related. We shall see in Corollary 6 that Corollary
2 also takes on a particularly nice form whenever R is a commutative
ring.

A submodule X of an R-module M is said to be an almost sum-
mand of M if K= UV, where U is a direct summand of M and
V = Boe (V). The next theorem gives a relationship between UF
R-modules and almost summands of free R-modules.

THEOREM 2. Let Z(R) =0, and let N = F/K be a finttely gener-
ated nonsingular R-module, where F is a finitely generaied free E-
module. If K is an almost summand of F, then N is UF. Movre-
over, if N is R-flat, then the converse holds.

Proof. To prove the first statement, it suffices to show that
any homomorphism f: K— A can be lifted to a homomorphism
g: F'— A, where A is any singular module. Now K = U@V, where
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F=U®W for some submodule W of F and V = Soc (V). Since
Z(A) = A and Z(K) = 0, then f(Soc (K)) =0. If xe KN W, it follows
from the direct sum decompositions that x e Soc (K), and hence f(x)=
0. So the desired lifting of f is given by g(u + w) = f(w) for all
ue U and all we W.

Now assume N is an R-flat UF module. By Theorem 1, K =
U@V, where U is finitely generated and V = Soc (V) is projective.
Then there is an exact sequence

0— K/ U— F/U— F/K— 0

with K/U and F/K R-flat. Thus F/U is also R-flat. But F/U is
finitely related (see [5, p. 459]) and therefore projective by [5, p. 459].
Consequently U is a direct summand of F, and K= U@V is an
almost summand of F.

The following corollary is an immediate consequence of Lemma 1
and Theorem 2.

COROLLARY 3. If Z(R) =0 and if every closed submodule of a
finitely gemerated free R-module F is an almost summand of F, then
R has FGSP. Moreover, if every (finitely generated) nonsingular
R-module is flat, then the converse holds.

The next corollary is a partial generalization of [11, Corollary
2.7].

COROLLARY 4. If R is a right semi-hereditary ring having o
maximal left quotient ring Q (see [3], [11]), which s a two-sided
quotient ring of R, then the following statements are equivalent:

(a) R has FGSP.

(b) Z(R) = 0, and every closed submodule of a finitely generated
free R-module F 1is an almost summand of F.

Proof. By Corollary 3, we need to show that if R has FGSP,
then every nonsingular R-module is flat. Since Z(R) = 0 by Lemma
1 and since @ is two-sided, then every finitely generated nonsingular
R-module is torsionless by [3, Theorem 1.1]. However R is right
semi-hereditary; hence every torsionless R-module is flat by [5,
Theorem 4.1].

COROLLARY 5. Let R be a commutative ring with Z(R) = 0.
Let N = F/K, where F 1is a finitely generated free R-module. Then
N is UF if and only if N is a nonsingular module and K is an
almost summand of F.
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Proof. By Theorem 2, it suffices to show that any UF R-
module is R-flat. But this follows from the proof of the corollary to
[2, Proposition 1.11].

Pierce [8, p. 109] asks when a finitely generated module over a
commutative regular ring splits. Corollary 5 sheds some light in
this direction. Moreover, since the hypothesis, “R is a commutative
ring with Z(R) = 0,” is used only to establish that nonsingular
modules are flat, the conclusion of Corollary 5 holds true for any
regular ring R. Corollary 5 also generalizes [10, Theorem 3.3],
which deals with the structure of rings for which cyclic modules
split.

In [2] Cateforis and Sandomierski have suggested the question
of determining all commutative rings with FGSP. The final corollary
extends [10, Theorem 3.3] to give an answer to this question.

COROLLARY 6. If R is a commutative ring, then the following
statements are equivalent:

(a) R has FGSP.

(b) Z(R) = 0, and every closed submodule of a finitely generated
free R-module F' is an almost summand of F.

(¢) R 1is semi-hereditary, and every finitely generated non-
singular module is almost finitely related.

Proof. The equivalence of (a) and (b) follows from Lemma 1
and Corollary 5. In view of the corollary to [2, Proposition 1.11},
(¢) is an immediate consequence of (a) and (b). Assuming (c), the
last two sequences in the proof of Corollary 4 show that all non-
singular modules are flat. Hence (b) follows by a slight modification
of the argument used in the last part of the proof of Theorem 2.

The authors conjecture that a ring R has FGSP if and only if
Z(R) = 0 and every closed submodule of a finitely generated free
module F is an almost summand of F.

In view of the preceding corollaries and the corollary to [2,
Proposition 1.11], the reader might conjecture that the messy “Tor
condition” in Corollary 2 (d) can be replaced by the nicer condition,
“R is right semi-hereditary,” or by the stronger condition, “all non-
singular R-modules are flat.” However, the following example shows
that a ring R with FGSP need not be right semi-hereditary.

ExampLE. Let F be a field, and let T be the F-subalgebra of
Tz, F™ generated by @S2, F™ and the identity of [[2., F™,

where FF = F for all n. Let I=P >  F™, and let S = T/I. If
R is the ring of all 2 x 2 matrices of the form
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{ a b
0 ¢
then Chase [4, Proposition 3.1] has shown that R is a left semi-
hereditary ring, which is not a right semi-hereditary ring. Hence

Z(R) = 0, and it is straight forward to check that the only proper
essential left ideal of R is the maximal left ideal

o
J =

0 ¢
Thus if A is any singular R-module, then A is a direct sum of
copies of the simple module R/J. It follows that each singular

module is injective, and hence every R-module splits. Thus R has
FGSP, but R is not right semi-hereditary.

a,beS;ce T} ,

a, beS; ceI} .

Added in proof. K. R. Goodearl has constructed an example
(unpublished) which shows that the conjecture following Corollary 6 is
not true.
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