THE SINGULAR SUBMODULE OF A FINITELY GENERATED
MODULE SPLITS OFF

JOHN FUELBERTH AND MARK LAWRENCE TEPLOY
THE SINGULAR SUBMODULE OF A FINITELY GENERATED MODULE SPLITS OFF

JOHN D. FUELBERTH AND MARK L. TEPLY

A characterization is given of the finitely generated non-singular left R-modules N such that $\text{Ext}_R(N, M) = 0$ for every singular left R-module M. As a corollary, the rings R, over which the singular submodule $Z(A)$ is a direct summand of every finitely generated left R-module A, are characterized. This characterization takes a simplified form whenever R is commutative. An example is given to show that a ring R, over which the singular submodule $Z(A)$ is a direct summand of every left R-module A, need not be right semi-hereditary.

In this paper, all rings R are assumed to be associative with an identity element, and, unless otherwise stated, all R-modules will be unitary left R-modules.

A submodule B of an R-module A is an essential submodule of A if $B \cap C \neq 0$ for all nonzero submodules C of A. A left ideal I of R is essential in R if it is essential in R as a submodule of R. If A is an R-module, $Z(A) = \{a \in A \mid (0 : a) \text{ is essential in } R\}$ is the singular submodule of A. A is called a singular module if $Z(A) = A$; and A is a nonsingular module if $Z(A) = 0$. A submodule B of A is closed in A if B has no proper essential extension in A. If A is nonsingular, then a submodule B of A is a closed submodule of A if and only if A/B is a nonsingular module. A simple R-module S is nonsingular if and only if it is projective. For an R-module A, $\text{Soc}(A)$ denotes the sum of all simple submodules of A or 0 if A has no simple submodules.

Motivated by a definition of Kaplansky [6], we say that an R-module N is UF if N is a nonsingular module and $\text{Ext}_R(N, M) = 0$ for all singular R-modules M. An R-module A is said to split if $Z(A)$ is a direct summand of A. As in [2], a ring R has the finitely generated splitting property (FGSP) if every finitely generated R-module splits.

We shall use the following result of Cateforis and Sandomierski [2, Proposition 1.11], which is included here for completeness.

Lemma 1. For any ring R, the following statements are equivalent:

(a) R has FGSP.

(b) $Z(R) = 0$, and every finitely generated nonsingular R-module is UF.

73
An R-module K is said to be \textit{almost finitely generated} if $K = U \oplus V$, where U is a finitely generated R-module and $V = \text{Soc}(V)$. Then an R-module N is called \textit{almost finitely related} if there exists an exact sequence of R-modules

$$0 \rightarrow K \rightarrow F \rightarrow N \rightarrow 0,$$

where F is a finitely generated free module and K is almost finitely generated.

Before stating our main results, we prove several lemmas.

Lemma 2. \textit{If N is an almost finitely related R-module and if}

$$0 \rightarrow K \rightarrow F \rightarrow N \rightarrow 0$$

\textit{is any exact sequence of R-modules with F a finitely generated free module, then K is almost finitely generated.}

\textit{Proof.} Since N is almost finitely related, there exists an exact sequence of R-modules

$$0 \rightarrow K \rightarrow F \rightarrow N \rightarrow 0,$$

where F_i is a finitely generated free module and K_i is almost finitely generated. By a result of Schanuel [9, p. 369], $K \oplus F_i \cong K_i \oplus F$. Since K_i and F are almost finitely generated, then so is $K \oplus F_i \cong K_i \oplus F$. Therefore $(K \oplus F_i)/\text{Soc}(K \oplus F_i)$ is finitely generated. Since

$$\frac{K \oplus F_i}{\text{Soc}(K \oplus F_i)} \cong \frac{K}{\text{Soc}(K)} \oplus \frac{F_i}{\text{Soc}(F_i)},$$

then $K/\text{Soc}(K)$ is also finitely generated.

Now we write $K = Rx_1 + Rx_2 + \cdots + Rx_m + \text{Soc}(K)$, where $x_1, x_2, \cdots, x_m \in K$. Let $W = (\text{Soc}(K)) \cap (Rx_1 + Rx_2 + \cdots + Rx_m)$. Then there exists an R-module V such that $\text{Soc}(K) = W \oplus V$. It follows that $K = (Rx_1 + Rx_2 + \cdots + Rx_m) \oplus V$, and hence K is almost finitely generated.

A finitely generated nonsingular R-module N is called \textit{finitely generated torsion inducing} (FGTI) if N has the following property: If M is any finitely generated R-module with $M/Z(M) \cong N$, then $Z(M)$ is finitely generated.

Lemma 3. Let $Z(R) = 0$, and let $0 \rightarrow K \rightarrow F \rightarrow N \rightarrow 0$ be an exact sequence of R-modules, where F is a finitely generated free module. If N is nonsingular, then the following statements hold:

(a) \textit{If N is FGTI and if $K/\text{Soc}(K)$ is a direct sum of countably generated modules, then N is almost finitely related.}
(b) If N is almost finitely related, then N is an FGTI module.

Proof. To show (a), we need to show that K is almost finitely generated. By hypothesis, $Y = K/\text{Soc}(K) = \bigoplus_{\alpha \in \mathcal{A}} M_{\alpha}$, where each M_{α} is a countably generated R-module. First we show that Y is, in fact, countably generated also. Let $\mathcal{B} = \{ \alpha \in \mathcal{A} \mid M_{\alpha}$ contains a proper essential submodule$\}$. Thus if $\alpha \in \mathcal{A} - \mathcal{B}$, then M_{α} is a direct sum of singular simple R-modules or zero. For each $\alpha \in \mathcal{B}$, let L_{α} be a proper essential submodule of M_{α}. Define $L = \bigoplus_{\alpha \in \mathcal{B}} L_{\alpha}$, and let J be a submodule of K containing $\text{Soc}(K)$ such that $J/\text{Soc}(K) = L$. Since

$$Z(F/J) \cong Z((F/\text{Soc}(K))/(J/\text{Soc}(K))) \cong Y/L \cong K/J,$$

then K/J is a singular module; but since $Z(F/K) = 0$, it follows that $Z(F/J) = K/J$. By hypothesis, N is a FGTI module; hence

$$K/J \cong \left(\bigoplus_{\alpha \in \mathcal{A}} (M_{\alpha}/L_{\alpha}) \right) \bigoplus \left(\bigoplus_{\alpha \in \mathcal{B}} M_{\alpha}\right)$$

is a finitely generated R-module. Therefore all but finitely many of the $M_{\alpha}(\alpha \in \mathcal{A})$ must be 0, and hence $K/\text{Soc}(K)$ is countably generated.

Thus there exist $x_{i} \in K$ ($i = 1, 2, \cdots$) such that $K = \sum_{i=1}^{m} Rx_{i} + \text{Soc}(K)$. We will show that there exists a positive integer m such that $K = \sum_{i=1}^{m} Rx_{i} + \text{Soc}(K)$. If this were not the case, then for each positive integer n, there exists a least positive integer $k(n)$ such that $x_{k(n)} \in Rx_{1} + Rx_{2} + \cdots + Rx_{n} + \text{Soc}(K)$. By Zorn’s lemma, choose K_{n} maximal with respect to $x_{k(n)} \in K_{n}$ and

$$Rx_{1} + Rx_{2} + \cdots + Rx_{n} + \text{Soc}(K) \subseteq K_{n} \subseteq K.$$

It follows that $(Rx_{k(n)} + K_{n})/K_{n}$ is an essential, simple, nonprojective submodule of K/K_{n}. Since K/K_{n} is an essential extension of a singular simple module, then K/K_{n} is also a singular module.

Define $\varphi : K \to \bigoplus_{n=1}^{\infty} K/K_{n}$: $x \to \sum_{n=1}^{\infty} \varphi_{n}(x)$, where $\varphi_{n} : K \to K/K_{n}$ is the natural map. If $x \in K$, then $x = \sum_{i=1}^{t} r_{i}x_{i} \in \sum_{i=1}^{t} Rx_{i} \subseteq K_{n}$ for all $n \geq t$. Thus $\varphi_{n}(x) = 0$ for all $n \geq t$, and hence φ is well-defined. If $H = \ker \varphi$, then $K/H \cong \text{im} \varphi$ is not finitely generated (as $\varphi_{n}(x_{k(n)}) = 0$ for each integer n). Moreover, since $\text{im} \varphi$ is a submodule of the singular module $\bigoplus_{n=1}^{\infty} K/K_{n}$, then $K/H \cong \text{im} \varphi$ is also a singular module. Since K is a closed submodule of F, then $Z(F/H) = K/H$. But then F/H does not have a finitely generated singular submodule, and $(F/H)/Z(F/H) \cong F/K \cong N$. This contradicts the hypothesis that N is a FGTI module. Thus $K = \sum_{i=1}^{m} Rx_{i} + \text{Soc}(K)$ for some positive integer m.

Now the argument used in the last paragraph of the proof of
Lemma 2 shows that K is almost finitely generated. Therefore (a) holds.

Now we prove (b). Let M be a finitely generated R-module such that $M/Z(M) \cong N$. Let y_1, y_2, \ldots, y_n be a set of generators of M, and let F be a free R-module with basis u_1, u_2, \ldots, u_n. Then there exists a commutative diagram with exact rows

$$
\begin{array}{ccccccccc}
0 & \rightarrow & K & \rightarrow & F & \rightarrow & N & \rightarrow & 0 \\
\downarrow{\lambda} & & \downarrow{\mu} & & \downarrow{\nu} & & & & \\
0 & \rightarrow & Z(M) & \rightarrow & M & \rightarrow & M/Z(M) & \rightarrow & 0,
\end{array}
$$

where $\mu: F \rightarrow M$ via $\mu(u_i) = y_i$ is an epimorphism and ν is an isomorphism. Then λ must be an epimorphism. By the hypothesis and Lemma 2, $K = U \oplus V$, where U is a finitely generated R-module and $V = \text{Soc} (V)$. Since $\lambda(V)$ is isomorphic to a submodule of the nonsingular, semi-simple module V and since $Z(M)$ is singular, then $\lambda(V) = 0$. Thus $Z(M)$ is an epimorphic image of the finitely generated module U. Consequently, $Z(M)$ is a finitely generated module.

Remarks. (1) If R is a left hereditary ring, then any closed submodule K of a finitely generated free module F is projective. So it follows from [7, Theorem 1] that $K/\text{Soc} (K)$ is a direct sum of countably generated modules. Thus for a left hereditary ring R, a finitely generated nonsingular R-module N is FGTI if and only if N is almost finitely related.

(2) Suppose that N, F, and K are as in the hypothesis of Lemma 3. If N is FGTI and $\text{Soc} (K)$ is essential in K, then $K/\text{Soc} (K)$ is finitely generated. So we can conclude the following result from Lemma 3: If R is a nonsingular ring with essential socle, then a finitely generated nonsingular FGTI module is almost finitely related.

(3) There seems to be some independent interest in determining when the singular submodule of a finitely generated module is finitely generated. Indeed, Pierce [8, p. 109] asks questions along this line. Lemma 3 and the first of this remark shed some light in this direction.

We shall use $\text{hd}(N)$ to denote the projective homological dimension of an R-module N.

We now need an obvious generalization of a result of Kaplansky, [6, Theorem 1]:

Lemma 4. If N is a UF R-module, then $\text{hd}(N) \leq 1$.

Proof. Let N be a UF R-module, and let M be any R-module. The exact sequence
induces the exact sequence

\[
\text{Ext}_R^1(N, E(M)/M) \longrightarrow \text{Ext}_R^2(N, M) \longrightarrow \text{Ext}_R^3(N, E(M)) = 0,
\]

where \(E(M)\) denotes the injective hull of \(M\). Since \(N\) is \(UF\) we have \(\text{Ext}_R^1(N, E(M)/M) = 0\); and hence \(\text{Ext}_R^2(N, M) = 0\) by exactness.

We now give a characterization of \(UF\) modules.

Theorem 1. Let \(Z(R) = 0\), and let \(N\) be a finitely generated \(R\)-module. Then \(N\) is \(UF\) if and only if the following conditions are satisfied:

(i) \(N\) is an almost finitely related, nonsingular module.

(ii) \(hd(N) \leq 1\).

(iii) \(\text{Tor}_i^R(\text{Hom}_Z(A, D), N) = 0\), where \(A\) is any singular \(R\)-module, \(D\) is any divisible Abelian group, and \(Z\) denotes the ring of integers.

Proof. We develop a diagram (see (*)), which we use in both directions of the proof. For any finitely generated \(R\)-module \(N\), there is an exact sequence

\[
0 \longrightarrow K \longrightarrow F \longrightarrow N \longrightarrow 0,
\]

where \(F\) is a finitely generated free \(R\)-module. If \(D\) is any divisible Abelian group and if \(A\) is any singular \(R\)-module, then \(\text{Hom}_Z(A, D)\) is a right \(R\)-module. Hence there is an exact sequence

\[
0 \longrightarrow \text{Tor}_i^R(\text{Hom}_Z(A, D), N) \longrightarrow \text{Hom}_Z(A, D) \otimes_R K
\]

\[
\longrightarrow \text{Hom}_Z(A, D) \otimes_R F.
\]

The exact sequence

\[
\text{Hom}_R(F, A) \longrightarrow \text{Hom}_R(K, A) \longrightarrow \text{Ext}_R^1(N, A) \longrightarrow 0
\]

induces an exact sequence

\[
0 \longrightarrow \text{Hom}_Z(\text{Ext}_R^1(N, A), D) \longrightarrow \text{Hom}_Z(\text{Hom}_R(K, A), D)
\]

\[
\longrightarrow \text{Hom}_Z(\text{Hom}_R(F, A), D).
\]

It is well-known [1, p. 120] that there exists a homomorphism \(\psi\) and an isomorphism \(\beta\) making the following diagram commutative:

\[
\begin{array}{ccc}
0 & \longrightarrow & \text{Tor}_i^R(\text{Hom}_Z(A, D), N) \\
& & \downarrow \psi \\
& & \text{Hom}_Z(A, D) \otimes_R K \\
& & \downarrow \beta \\
0 & \longrightarrow & \text{Hom}_Z(\text{Ext}_R^1(N, A), D) \\
& & \text{Hom}_Z(\text{Hom}_R(K, A), D) \\
& & \text{Hom}_Z(\text{Hom}_R(F, A), D) \
\end{array}
\]
"only if": Let \(N \) be a finitely generated \(UF \) \(R \)-module. Then there exists an exact sequence

\[
0 \longrightarrow K \longrightarrow F \longrightarrow N \longrightarrow 0
\]

of left \(R \)-modules, where \(F \) is a finitely generated free module. By Lemma 4, \(K \) is a projective \(R \)-module; thus \(K = \bigoplus \sum_{\alpha \in \mathcal{A}} K_{\alpha} \), where each \(K_{\alpha} \) is countably generated by [7, Theorem 1]. Since

\[
\frac{K}{\text{Soc}(K)} = \left(\bigoplus \sum_{\alpha \in \mathcal{A}} \frac{K_{\alpha}}{\text{Soc}(K_{\alpha})} \right) \cong \left(\bigoplus \sum_{\alpha \in \mathcal{A}} \frac{K_{\alpha}}{\text{Soc}(K_{\alpha})} \right),
\]

then \(K/\text{Soc}(K) \) is a direct sum of countably generated \(R \)-modules.

Since a \(UF \) module is FGTI, then Lemma 3 (a) implies that \(N \) is almost finitely related, i.e., (i) holds.

Lemma 4 implies that \(\text{hd}(N) \leq 1 \); so (ii) holds.

Now we show that (iii) holds. Let \(A, D, F, \) and \(K \) be chosen as in (*). Then by (i), \(K = U \oplus V \), where \(U \) is finitely generated and \(V = \text{Soc}(V) \). But for any nonsingular simple \(R \)-module \(S \), \(\text{Hom}_{R}(S, A) = 0 \) (as \(A \) is singular). Thus by [1, VI. Prop. 5.2], \(\text{Hom}_{R}(A, D) \otimes_{R} S \cong \text{Hom}_{R}(\text{Hom}_{R}(S, A), D) = 0 \). Therefore \(\text{Hom}_{R}(A, D) \otimes_{R} V = 0 \), and \(\text{Hom}_{R}(V, A) = 0 \). Hence there exist obvious isomorphisms \(\sigma \) and \(\tau \) making the diagram

\[
\begin{align*}
\text{Hom}_{R}(A, D) \otimes_{R} K & \longrightarrow \text{Hom}_{R}(A, D) \otimes_{R} U \\
\psi' | & \text{Hom}_{R}(K, A, D) \longrightarrow \text{Hom}_{R}(\text{Hom}_{R}(U, A), D)
\end{align*}
\]

commute, where \(\psi' \) is the restriction of \(\psi \) in (*) to \(\text{Hom}_{R}(A, D) \otimes_{R} U \). By [1, VI. Prop. 5.2] \(\psi' \) is an isomorphism; whence \(\psi \) is forced to be an isomorphism also. By the commutativity of (*) and the fact that \(\text{Ext}^{1}_{R}(N, A) = 0 \), it is now easy to obtain \(\text{Tor}^{1}_{R}(\text{Hom}_{R}(A, D), N) = 0 \).

"if": Let \(A, D, F, K \) be as in (*). Since \(\text{hd}(N) \leq 1 \) and \(N \) is almost finitely related, then \(K \) is an almost finitely generated projective \(R \)-module. By the argument used in the preceding paragraph, \(\psi \) is an isomorphism in (*). From the commutativity of (*) and the fact that \(\text{Tor}^{1}_{R}(\text{Hom}_{R}(A, D), N) = 0 \), we now obtain \(\text{Hom}_{R}(\text{Ext}^{1}_{R}(N, A), D) = 0 \). Since \(D \) is any divisible Abelian group, then \(\text{Ext}^{1}_{R}(N, A) = 0 \) for every singular module \(A \). Thus \(N \) is a \(UF \) module.

As a corollary, we have the following result for left hereditary rings:

Corollary 1. Let \(R \) be a left hereditary ring whose maximal
quotient ring φQ (see [3], [11]) is R-flat. Then the following statements are equivalent for any finitely generated nonsingular R-module N:

(a) N is a UF module.
(b) N is almost finitely related.
(c) N is a FGTI module.

Proof. The equivalence of (b) and (c) is clear from Remark (1) following Lemma 3. The equivalence of (a) and (b) will follow immediately from Theorem 1 if we show that the ring hypothesis implies every nonsingular R-module is R-flat. But this follows from [11, Cor. 2.5] and [11, Theorem 2.1].

An immediate consequence of Lemma 1 and Theorem 1 is the following characterization of FGSP:

Corollary 2. A ring R has FGSP if and only if the following statements hold:

(a) $Z(R) = 0$.
(b) Every finitely generated nonsingular R-module is almost finitely related.
(c) $\text{hd}(N) \leq 1$ for every finitely generated nonsingular R-module N.
(d) $\text{Tor}_i^R(\text{Hom}_R(A, D), N) = 0$, where N is any finitely generated nonsingular R-module, D is any divisible Abelian group, and Z denotes the ring of integers.

Combining Corollaries 1 and 2, the reader can easily see that a left hereditary ring R, whose maximal left quotient ring φQ is flat, has FGSP if and only if every finitely generated nonsingular R-module is almost finitely related. We shall see in Corollary 6 that Corollary 2 also takes on a particularly nice form whenever R is a commutative ring.

A submodule K of an R-module M is said to be an almost summand of M if $K = U \oplus V$, where U is a direct summand of M and $V = \text{Soc}(V)$. The next theorem gives a relationship between UF R-modules and almost summands of free R-modules.

Theorem 2. Let $Z(R) = 0$, and let $N \cong F/K$ be a finitely generated nonsingular R-module, where F is a finitely generated free R-module. If K is an almost summand of F, then N is UF. Moreover, if N is R-flat, then the converse holds.

Proof. To prove the first statement, it suffices to show that any homomorphism $f: K \rightarrow A$ can be lifted to a homomorphism $g: F \rightarrow A$, where A is any singular module. Now $K = U \oplus V$, where
$F = U \oplus W$ for some submodule W of F and $V = \text{Soc}(V)$. Since $Z(A) = A$ and $Z(K) = 0$, then $f(\text{Soc}(K)) = 0$. If $x \in K \cap W$, it follows from the direct sum decompositions that $x \in \text{Soc}(K)$, and hence $f(x) = 0$. So the desired lifting of f is given by $g(u + w) = f(u)$ for all $u \in U$ and all $w \in W$.

Now assume N is an R-flat UF module. By Theorem 1, $K = U \oplus V$, where U is finitely generated and $V = \text{Soc}(V)$ is projective. Then there is an exact sequence

$$0 \rightarrow K/U \rightarrow F/U \rightarrow F/K \rightarrow 0$$

with K/U and F/K R-flat. Thus F/U is also R-flat. But F/U is finitely related (see [5, p. 459]) and therefore projective by [5, p. 459]. Consequently U is a direct summand of F, and $K = U \oplus V$ is an almost summand of F.

The following corollary is an immediate consequence of Lemma 1 and Theorem 2.

Corollary 3. If $Z(R) = 0$ and if every closed submodule of a finitely generated free R-module F is an almost summand of F, then R has FGSP. Moreover, if every (finitely generated) nonsingular R-module is flat, then the converse holds.

The next corollary is a partial generalization of [11, Corollary 2.7].

Corollary 4. If R is a right semi-hereditary ring having a maximal left quotient ring Q (see [3], [11]), which is a two-sided quotient ring of R, then the following statements are equivalent:

(a) R has FGSP.

(b) $Z(R) = 0$, and every closed submodule of a finitely generated free R-module F is an almost summand of F.

Proof. By Corollary 3, we need to show that if R has FGSP, then every nonsingular R-module is flat. Since $Z(R) = 0$ by Lemma 1 and since Q is two-sided, then every finitely generated nonsingular R-module is torsionless by [3, Theorem 1.1]. However R is right semi-hereditary; hence every torsionless R-module is flat by [5, Theorem 4.1].

Corollary 5. Let R be a commutative ring with $Z(R) = 0$. Let $N \cong F/K$, where F is a finitely generated free R-module. Then N is UF if and only if N is a nonsingular module and K is an almost summand of F.
Proof. By Theorem 2, it suffices to show that any $UF R$-module is R-flat. But this follows from the proof of the corollary to [2, Proposition 1.11].

Pierce [8, p. 109] asks when a finitely generated module over a commutative regular ring splits. Corollary 5 sheds some light in this direction. Moreover, since the hypothesis, “R is a commutative ring with $Z(R) = 0$,” is used only to establish that nonsingular modules are flat, the conclusion of Corollary 5 holds true for any regular ring R. Corollary 5 also generalizes [10, Theorem 3.3], which deals with the structure of rings for which cyclic modules split.

In [2] Cateforis and Sandomierski have suggested the question of determining all commutative rings with FGSP. The final corollary extends [10, Theorem 3.3] to give an answer to this question.

Corollary 6. If R is a commutative ring, then the following statements are equivalent:

(a) R has FGSP.
(b) $Z(R) = 0$, and every closed submodule of a finitely generated free R-module F is an almost summand of F.
(c) R is semi-hereditary, and every finitely generated nonsingular module is almost finitely related.

Proof. The equivalence of (a) and (b) follows from Lemma 1 and Corollary 5. In view of the corollary to [2, Proposition 1.11], (c) is an immediate consequence of (a) and (b). Assuming (c), the last two sequences in the proof of Corollary 4 show that all nonsingular modules are flat. Hence (b) follows by a slight modification of the argument used in the last part of the proof of Theorem 2.

The authors conjecture that a ring R has FGSP if and only if $Z(R) = 0$ and every closed submodule of a finitely generated free module F is an almost summand of F.

In view of the preceding corollaries and the corollary to [2, Proposition 1.11], the reader might conjecture that the messy “Tor condition” in Corollary 2 (d) can be replaced by the nicer condition, “R is right semi-hereditary,” or by the stronger condition, “all nonsingular R-modules are flat.” However, the following example shows that a ring R with FGSP need not be right semi-hereditary.

Example. Let F be a field, and let T be the F-subalgebra of $\prod_{n=1}^{\infty} F^{(n)}$ generated by $\bigoplus \sum_{n=1}^{\infty} F^{(n)}$ and the identity of $\prod_{n=1}^{\infty} F^{(n)}$, where $F^{(n)} \cong F$ for all n. Let $I = \bigoplus \sum_{n=1}^{\infty} F^{(n)}$, and let $S = T/I$. If R is the ring of all 2×2 matrices of the form
then Chase [4, Proposition 3.1] has shown that R is a left semi-hereditary ring, which is not a right semi-hereditary ring. Hence $Z(R) = 0$, and it is straightforward to check that the only proper essential left ideal of R is the maximal left ideal

$$J = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b \in S; c \in T \right\}.$$

Thus if A is any singular R-module, then A is a direct sum of copies of the simple module R/J. It follows that each singular module is injective, and hence every R-module splits. Thus R has FGSP, but R is not right semi-hereditary.

Added in proof. K. R. Goodearl has constructed an example (unpublished) which shows that the conjecture following Corollary 6 is not true.

REFERENCES

Received December 9, 1970 and in revised form March 22, 1971. This work was partially supported by a University of Florida Graduate School Post Doctoral Fellowship.
Alex Bacopoulos and Athanassios G. Kartsatos, *On polynomials approximating the solutions of nonlinear differential equations* 1
Monte Boisen and Max Dean Larsen, *Prüfer and valuation rings with zero divisors* .. 7
James J. Bowe, *Neat homomorphisms* .. 13
David W. Boyd and Hershy Kisilevsky, *The Diophantine equation*
\[u(u + 1)(u + 2)(u + 3) = v(v + 1)(v + 2) \] 23
George Ulrich Brauer, *Summability and Fourier analysis* 33
Robin B. S. Brooks, *On removing coincidences of two maps when only one, rather than both, of them may be deformed by a homotopy* 45
Frank Castagna and Geert Caleb Ernst Prins, *Every generalized Petersen graph has a Tait coloring* .. 53
Micheal Neal Dyer, *Rational homology and Whitehead products* 59
John Fuelberth and Mark Lawrence Teply, *The singular submodule of a finitely generated module splits off* .. 73
Robert Gold, *Γ-extensions of imaginary quadratic fields* 83
Myron Goldberg and John W. Moon, *Cycles in k-strong tournaments* ... 89
Darald Joe Hartfiel and J. W. Spellmann, *Diagonal similarity of irreducible matrices to row stochastic matrices* 97
Wayland M. Hubbart, *Some results on blocks over local fields* 101
Alan Loeb Kostinsky, *Projective lattices and bounded homomorphisms* 111
Kenneth O. Leland, *Maximum modulus theorems for algebras of operator valued functions* .. 121
Jerome Irving Malitz and William Nelson Reinhardt, *Maximal models in the language with quantifier “there exist uncountably many”* 139
John Douglas Moore, *Isometric immersions of space forms in space forms* .. 157
Ronald C. Mullin and Ralph Gordon Stanton, *A map-theoretic approach to Davenport-Schinzel sequences* 167
Chull Park, *On Fredholm transformations in Yeh-Wiener space* 173
Stanley Poreda, *Complex Chebyshev alterations* 197
Ray C. Shiflett, *Extreme Markov operators and the orbits of Ryff* 201
Robert L. Snider, *Lattices of radicals* .. 207
Ralph Richard Summerhill, *Unknotting cones in the topological category* .. 221
Charles Irvin Vinsonhaler, *A note on two generalizations of QF − 3* 229
William Patterson Wardlaw, *Defining relations for certain integrally parameterized Chevalley groups* 235
William Jennings Wickless, *Abelian groups which admit only nilpotent multiplications* .. 251