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A tournament T, with » nodes is k-strong if k is the
largest integer such that for every partition of the nodes of
T, into two nonempty subsets A and B there are at least k&
arcs that go from nodes of A to nodes of B and conversely.
The main result is that every k-strong tournament has at
least k different spanning cycles.

1. Introduction. A tournament T, consists of a finite set of
nodes 1,2, -++, n such that each pair of distinct nodes 4 and j is

joined by exactly one of the arcs Z or y—; If the arc ;; is in T, we
say that 7 beats j or j loses to © and write ¢ —j. If each node of a
subtournament A beats each node of a subtournament B we write
A— B and let A + B denote the tournament determined by the nodes
of A and B. A tournament T, is k-strong if k is the largest integer
such that for every partition of the nodes of T, into two nonempty
subsets A and B there are at least & arcs that go from nodes of A4
to nodes of B and conversely; a tournament T, is strong if n =1 or
if it is k-strong for some positive integer k. If a tournament T, is
not strong, or weak, it has a unique expression of the type T, = A +
B 4 -+« +J where the nonempty components A, B, ---,J all are
strong; we call A and J the top and bottom components of T,. (The
top or bottom component of a strong tournament is the tournament
itself.)

An l-path is a sequence 7 = {p, s, **+, P+, of nodes such that
P; — P, for 1 <4 < I; we assume the nodes of &7 are distinet except
that p,., and p, may be the same in which case we call the sequence
an l-cycle; it is sometimes convenient to regard a single node as a 0-
path or a l-cycle. A spanning path or cycle of T, is one that in-
volves every node of T,.

Camion [1] proved that every strong tournament contains a spann-
ing cycle. Our main object is to prove the following result.

THEOREM 1. Any k-strong tournament contains at least k spann-
ing cycles.

More generally, we shall prove the following result.

TEEOREM 2. Let p denote any node of any k-strong tournament
T, if 31X n, then p is contained in at least k l-cycles.
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In what follows we assume that the node p and the k-strong
tournament 7, are fixed. The case k = 1 is treated, in effect, in [2;
p. 6] so we may suppose that k = 2; since each node of T, must beat
and lose to at least k& other nodes, it follows that 2k + 1 < n or k <
1/2(n — 1). Before proving the theorem we make some observations
about paths and the structure of the k-strong tournament T,.

2. Three lemmas. The following result is obvious.

LeMMA 1. Let &7 denote an l-path from node w to node v. If
node w s not contained in P and w— w and w— v, then w can be
wnserted in the path to form an (I + 1)-path from w to v; in particular
w can be inserted immediately before the first node of &7 it beats.

LEMMA 2. If u and v are any nodes of the top and bottom com-
ponents of a weak tournament W, and 1 £ 1< t — 1, then there exists
an l-path in W, that starts with u and ends with v; furthermore,
Wf 2= 1<t — 1 this path may be assumed to contain any given node
belonging to any intermediate component of W,.

This may be proved by applying the following observations to
the components of W,: Ifa tournament Z, isstrongand 0 1<k—1,
then it contains a spanning cycle and, hence, each node is the first
node, and the last node, of at least one Il-path in Z,; and, if R— S,
then any c-path of R may be followed by any d-path of S to form
a (¢ + d + 1)-path of R + S.

LEMMA 3. Let G denote any minimal subtournament of the k-
strong tournament T, whose removal leaves a weak subtournament W
of the form W = Q + R + S where Q and S are strong and R may
bz empty; then each node of G loses to at least one wmode of S and
beats at least one node of Q, and there are at least k arcs from nodes
of G to nmodes of @ and at least k arcs from mwodes of S to nodes of G.

The conclusion in this lemma follows from the fact that G is
minimal and T, is k-strong. The existence of such a subtournament
G will be shown before each application of this lemma.

We now proceed to the proof of Theorem 2; we have to use
different arguments when ! lies in different intervals.

3. Proof when [ = 3. Let B and L denote the set of nodes
that beat and lose to p, respectively. Since T, is k-strong B and L
are nonempty and there are at least & arcs uv that go from a node



CYCLES IN k-STRONG TOURNAMENTS 91

w of L to a node » of B. The theorem now follows when [ =3
since each such uv determines a different 3-cycle {p, u, v, p} contain-
ing p.

4. Proof when I =4. If w is any node that beats p, let B, L,
M, and N denote the set of nodes that beat both w and p, lose to
both w and p, beat w and lose to p, and lose to w and beat p, res-
pectively. If L = ¢, then M must contain at least £ nodes and N
must contain at least k& — 1 nodes, since p and w must each beat at
least & nodes. In this case there are at least k(k — 1) = k different
4-cycles of the type {p, u, w, v, p} containing p, where ue M and ve
N. We may suppose, therefore, that L = ¢.

There are at least k ares of the type uv whereuwe L and ve BU MU
N. If ve BU M, then the 4-cycle {p, u, v, w, p} contains p. Ifve N
and v beats some other node y of N, then the 4-cycle {p, u, v, y, p}
contains p; if there is no such node y but u loses to some other node
z of L, then the 4-cycle {p, z, u, v, p} contains p. Thus, there are at
least k& different 4-cycles containing p except, possibly, when there
exists an arc wo from L to N such that u beats the remaining nodes
of L and v loses to the remaining nodes of N; there is at most one
such arc wo so in this case the preceding construction provides at
least k& — 1 4-cycles containing p.

If ze M, then {p, z, w, v, p} is a new 4-cycle containing p. Thus
we may suppose that M = ¢; this implies L has at least & nodes
since p beats at least k& nodes. If there exists an arc zy where z =
u, 2¢ L, and ye B then {p, u, z, ¥, p} is a new . 4-cycle containing p.
Thus we may suppose that u is the only node of L that beats any
nodes of B. This implies, since T, is k-strong, that there must be
at least k arcs of the type zy where z == u, ze L, and ye N. In this
case, however, there are at least k 4-cycles of the type {p, u, 2, v, p}
containing p. This completes the proof of the theorem when [ = 4.

5. Proof when 5 <1 <n— k+[l. Let & denote any (I — 2)-
cycle containing p; such a cycle exists, either by virtue of an induction
hypothesis or as a consequence of the result cited in the introduction.
Let B and L denote the set of nodes that beat and lose to every
node of «’, respectively, and let M denote the set of the remaining
nodes of T, that aren’t in &”.

If L + ¢, there exist at least &k arcs of the type wv where ue L
and ve BU M. For each such node v there exists at least one node
q of & such that v-—q. If we insert the nodes » and v immediately
before ¢ in & we obtain an l-cycle containing p; different ares v
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clearly yield different I-cycles. A similar argument may be applied
to B if B # ¢ so we may now assume that L = B = ¢ and M = ¢.
If we M, then there exists a pair of consecutive nodes » and s
of #” such that » — % and u—s. Thus w can be inserted between
r and s in % to form an (I — 1)-cycle &7, containing p. Any other
node v of M can now be inserted between some pair of consecutive
nodes of %, to form an l-cycle &, containing p. Different cycles %,
are formed when different pairs of nodes of M are inserted in %,

Thus, there are at least (n - (é - 2)) = (k Z 1) =k different l-cycles

containing p when 5 < I <% — k + 1. (This argument can be applied
for somewhat larger values of [ as well.)

6. Proof when n —k +2=<1<mn—1. Let T, denote any sub-
tournament of 7T, with [ nodes that contains the node p. If T, is
strong, then it contains an l-cycle containing p, by Camion’s theorem.
Thus, if each such subtournament 7', is strong, then p is contained

in at least (7; B i

We may suppose, therefore, that there exists a minimal subtourna-
ment G of T,, with ¢ < n — ] nodes, whose removal leaves a weak
subtournament W containing node p. Then W can be expressed in
the form W =@ 4+ R 4+ S where @ and S are strong and R may be

empty.

) =n—1>k l-eycles in T,.

There are at least %k arcs 92 in T, that go from a node © of G
to a node ¢ of @, and for each such node x there exists at least one
node s of S such that s-— x; this follows from Lemma 3. We shall
show that for each such pair of nodes ¢ and s, there exists an (I —
2)-path .&” in W that starts with ¢, contains the node p, and ends
with s.

If pe R, then the existence of .7° follows immediately from
Lemma 2 since W has n—g nodes and 21 —-2<n—-g—1. If
pe@, let & denote any spanning path of @ that starts with q.
We observe that if @ has m nodes then m <[ — 3 since otherwise
node s would lose to at least 1 —2=(n — %k + 2) — 2 = n — k nodes
and this is impossible since T, is k-strong. Let &% denote any (I —
m — 2)-path of R + S that ends with s; the existence of .7 follows
from Lemma 2 since R+ S has # — ¢ — m nodes and 1 <1 — m —
2=n—g—m—1. If & = . + &7 then .&” is an (I — 2)-path in
W with the required properties and we can also find such a path when
pe S by a similar argument.

This suffices to complete the proof when n -k +2=<51<n -1
since {x} + .7° + {#} is an l-cycle containing p and it is clear that
different arcs gz yield different Il-cycles.
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7. Proof when | = u; a special case. Since T, is k-strong,
there exists a partition of the nodes of T, into two subsets 4 and B
such that precisely % arcs go from nodes of A to nodes of B. At
least one of these subsets has more than %k nodes; if the nodes in
this subset that are incident with the % arcs that go from A to
B are removed, then the subtournament determined by the
remaining nodes is weak. It follows, therefore, that there exists a
smallest subtournament G, with at most % nodes, whose removal
leaves a weak subtournament W of the form W =@ + R + S where
@ and S are strong and R may be empty. We may now apply
Lemma 3 to 7,. There are at least & arcs that go from a node of
G to a node of @ and we shall prove the case [ = n of the theorem,
in general, by constructing a different n-cycle of T, for each such are;
the node p plays no special role in this case since it automatically
belongs to every n-cycle. First, however, we dispose of a special case.

Suppose R is empty and @ = {g} so that W ={¢} + S. Then G
must have precisely & nodes all of which beat ¢ for otherwise there
wouldn’t be k ares going from G to Q. Consequently, S has
n —1—k =k nodes. There must be at least k& nodes S that don’t
lose to all nodes of G for otherwise these nodes would determine a
subtournament smaller than G whose removal from T, would leave a
weak subtournament.

Let s denote any node of S that beats some node x of G. It
follows from Lemma 2, that there exists a spanning path <2 of W
that starts with ¢ and ends with s and a path & in G that
starts with © and contains all nodes of G except those belonging to
components of G that are above the component X that contains z.
Hence, the cycle & = & + <7 + {a} contains all nodes of T, except
those nodes, if any, belonging to components of G above X. These
nodes, however, can all be inserted in % by Lemma 1, since they
all beat = and lose to at least one node of S. The node s in the
resulting n-cycle is the last node of S that occurs before the node g¢.
Thus, in this way we can construct a different n-cycle for each of the
at least & nodes of S that beat some nodes of G. Similarly, the
theorem holds when W = @ + S and S consists of a single node.

8. Proof when [ = n; the general case. Let xg denote any
arc that goes from a node 2 of G to a node ¢ of @ in the tournament
T,. Next, let sy denote any arc that goes from a node s of S to a
node y of the top component of G; if the component X of G containing
« is the top component of G let ¥ be the immediate successor of =
in some fixed spanning cycle of X unless X = {#} in which case let
y = 2. Finally, let ©7(q, s) denote some spanning path of W that
starts with ¢ and ends with s and let .2°(y, ) denote a path from
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y to x in G that contains all the nodes in components of G that
are not below x; it is not difficult to see that these paths exist and
that we may suppose ¢ loses to the last node of @ other than itself
that occurs in .9°(q, s).

Insert as many as possible of the nodes in the components of G
below X between ¢ and s in the path .5”(q, s) to form an augmented
path .2°'(q, s) and let .<°(f, g) denote any spanning path, starting and
ending with some nodes f and g, of the subtournament F determined
by those nodes that can’t be so inserted; it may be that .Z2(f, g) is
empty or consists of a single node. If ¢ is any node of f, then (i)
t—gq, (ii) s—t, and (iii) ¢ — u, where u is the immediate successor
of ¢ in .2?'(q, s). The node ¢ beats at least one node of @ and loses
to at least one node of S; hence, by Lemma 1, it could be inserted
in .Z”'(q, s) unless (i) and (ii) hold. Since ¢ doesn’t beat itself or
node x, and since there are at most k¥ — 2 other nodes of G, it must
be that ¢ beats at least one other node of W besides ¢ if it is to
beat at least k nodes altogether; this implies (iii) in view of Lemma 1.

If at least one node of the component of G immediately below X
is in .%”'(q, s) or if X is the bottom component of G let

G =& (v, q) = (=} + Z2(f, 9) + F'(q, s) + F(y, 2).

This is an n-cycle in view of the preceding remarks; we shall call it
a type I cycle. The nodes s and g can be identified as the last node
of S and the first node of @ encountered in traversing the cycle from
any node of S to any node of Q. The node x can be identified as
the last node between s and ¢ in < that belongs to a component X
of G with the property that no node of X or any component of G
above X is between ¢ and s in %°. Thus different arcs zq determine
different type I cycles, if they determine any at all.

Let us now suppose that X is not the bottom component of G
and that no node of the component immediately below X belongs to
Z'(q, s). In this case we are unable to identify the node © used in
defining the cycle & (z, ¢) so we must use a different construction.

Let .Z(u, v) denote the nonempty path such that .Z7'(q, s) = {q} +
P (u, v) + {s}. Node x does not lose to itself or to the node f (which
definitely exists in the present case), so it must lose to at least two
nodes of .77'(q, s) if it is to lose to at least k& nodes altogether; but
¢ —gq, so x must lose to at least one node of .&#(u, v). If t is any
other node of .<”(u, x) then ¢ does not lose to itself, its immediate suc-
cessor in .2 (y, x), or to f; hence, t must lose to at least three nodes of
F'(q, s) if it is to lose to k nodes altogether. It follows that every
node of .Z°(y, x) loses to at least one node of .Z(u, v).

If every node of .&”(y, x) beats v then these nodes can all be
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inserted in the path .»°(%, v) to form an augmented path .2°'(u, v) by
Lemma 1; this can be done in such a way that the nodes of .2°(y, @)
occur in the same order in .2°'(u, v) as they do in .2”(y, ). In this
case let

w =, q) = (f, 9 + g + 7w, v) + {s [}

That this is an #n-cycle follows from properties (i) and (ii) of the
nodes F, among other things; we shall call this a type II cycle. The
nodes s and ¢ can be identified in the same way as before. The node
z can be identified as the last node between ¢ and s that comes from
G and beats f, the immediate successor of s in % (we use the as-
sumption about the nodes in the component of G containing f here).
Thus, different arcs xq determine different type II cycles, if they
determine any at all. We can distinguish between cycles of types
I and II because the node following s belongs to the top component
of G in a type I eycle but not in a type II eycle.

If not all nodes of .~°(y, ) beat v, let w denote the first node
of this path that loses to v. The nodes, if any, of .2”°(y, ) that
precede W can be inserted, as before, in .2°(u, v) to form an aug-
mented path .&°'(u, v). If .&”°(w, x) denotes the subpath determined by
the remaining nodes of .2°(y, %), let

e =29 ={x,q,s [} + S, 9 + (W 0) + F(w, ) .

That this is an mn-cycle follows from propsrties (i) and (iii) of the
nodes of F; we shall call this a type III cycle. There are at most
two nodes of @ that are immediately followed by a node of S in Zz°.
If there is only one such node then this node must be ¢, and if there
are two then ¢ is the node that loses to the other one. Thus we can
identify the node ¢ in <° and z is the immediate predecessor of gq.
Hence, different arcs g determine different type III cycles, if they
determine any at all.

It remains to show that we can distinguish a typz III cycle from
a type I or II cycle. Some node of @ is followed immediately by a
node of S in a type III cyecle but not in a type I or II cycle when
R, the subtournament determined by the intermediate components of
W, is nonempty. Thus we may suppose that W = @ + S where the
strong components @ and S have at least three nodes each, in view
of the case treated in §7. In this case, however, the first node of
@ that occurs after a node of S is the same for all nodes of S in a
type I or II cycle but not in a type III cycle.

Thus, in the general case, we can construct a different n-cycle
«’(x, q) corresponding to each arc zg from a node of G to a node of Q.
As there are at least & such arcs, this completes the proof of the
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theorem.
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