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Let " be an unequal characteristic local field. The aim of
this paper is to outline a block form of the Cartan-Brauer
modular decomposition theory which incorporates the notion
of defect groups. The irreducible F-representations of a finite
group G are associated with blocks in the group algebra over
the residue field 7. The defect groups of a block to which
an irreducible F-representation 7T belongs are shown to coin-
cide with the defect groups of the block to which any absolute-
ly irreducible constituent of T belongs. A result on the Schur
index of an absolutely i¢reducible representation belonging to
a block of defect zero is proven which yields an analogue to
the Brauer-Nesbitt Theorem on blocks of defect zero. The
number of F-blocks of highest defect is shown to be equal to
the number of p-regular F-conjugacy classes of highest defect.

Let G be a finite group and let F be an unequal characteristic
local field; i.e., a field of characteristic zero, complete with respect to
a discrete non-Archimedean valuation, whose residue field /7 is of char-
acteristic p. The aim of this paper is to initiate a study of a block form
of the Cartan-Brauer decomposition theory [2, §83A] which incorporates
the notion of defect groups. Defect groups for F-blocks are defined as
in [9]. The irreducible F-representations and the indecomposable F-rep-
resentations are associated with F-blocks. In Theorem 2 we show that
the defect groups of a block to which an irreducible F-representation
T belongs are the same as the defect groups of the blocks to which the
absolutely irreducible constituents of T belong. Using Theorem 2 and
assuming that the residue field F' is perfect, we obtain a result on the
Schur index which yields an analogue to the Brauer-Nesbitt Theorem
on blocks of defect zero. [2, 86.3]. In §4 we use some lifting tech-
niques together with a permutation lemma of Brauer to show that the
number of F-blocks of highest defect is equal to the number of p-
regular F-conjugacy classes of highest defect. This last result has
been obtained independently by W. F. Reynolds as a consequence of
some work on blocks in twisted group algebras [8]. Also L. G. Kovaecs
in some unpublished notes has obtained the result for blecks in group
algebras over finite fields using the theory of vertices and sources.

Some of the results in this paper are essentially contained in a
thesis presented to the Department of Mathematics and the Graduate
School of the University of Oregon in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy. The author wishes to
take this opportunity to thank Professor C. W. Curtis for his valu-
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able assistance and kind encouragement.

First we make some preliminary definitions and observations. De-
note the conjugacy classes of G by &, -+, &, and let C; be the class
sum corresponding to the class &7, Let F be a field of characteristice
p. Primitive idempotents in the center Z(FG) of the group algebra
FG are called F-block idempotents, or more simply, F-blocks. Suppose
E is a Galois extension of F. Denote the Galois group of E over F
by & (FE/F). Each oe¢ < (E/F) induces an automorphism of the group
algebra EG which permutes the E-block idempotents. The following
result characterizes F-blocks with a given defect group in terms of
E-blocks.

ProposiTiON 1. [7, Theorem 2] Let <7 be the set of E-blocks
whose defect groups are conjugate to some p-subgroup D of G. Then
G(E/F) acts as a permutation group on < and the orbits of <& re-
lative to < (E/F) are in one-to-one correspondence with the set of K-
blocks whose defect groups are conjugate to D. If 7 is an orbit,
then e = Xd, where the sum is over 7, 1s the F-block corresponding
to 7.

Proof. The fact that F-blocks correspond to orbits of FE-blocks
relative to the action of Z(E/F) is a consequence of a well-known
result about idempotents in commutative algebras [10, § 124]. If an
E-block d is written as in [9, 3.2], it is easy to see that d and ¢(d)
have the same defect groups, and hence that each ¢ ¢ & (E/F) parmutes

Let 2 be an algebraic closure of E. If e is an F-block, then
Z(FG)e is a completely primary algebra and so Z(F&)e/rad Z(FG)e is
a finite extension of F. The natural homomorphism + of Z(F'G) onto
Z(FG)e/rad Z(FG)e has as its kernel the maximal ideal Z(FG)(1 — ¢) +
rad Z(FG). Any homomorphism from Z(F'G) into £ with kernel
Z(FG)(1 — e) + rad Z(F'G) is said to be associated with e. Observe that
if 4 is associated with e, then +(e) = 1.

Let e = Yo,(d), where the sum is over an orbit <7, be an F-block.
Write

e :;Zfici + ZijCj

and

ied’ jeB’

as in [9, 3.2]. To show that ¢ and d have defect 'groups conjugate
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to D it suffices to show that AN A" % @. We have f;, = Yb°. Thus
if £, 0, then b, = 0, and so AU BZ A’ U B'. Therefore, AS A’ UB.

Now assume A< B’. Let % be a homomorphism from Z(EG) into
2 associated with d. Since A & B’, we have by [9, 3.2]

7e) = 347(C) + 3, 7(C) = 0.

But the restriction of 7 to Z(FG) is a homomorphism associated with
e, a contradiction. Thus A & B’ and AN A" = @ and the proof is com-
plete.

2. Block idempotents and representations. Let F be a local
field of unequal characteristic. Denote the ring of integers in F by
O, the unique maximal ideal by P, and the residue field O,/P, by
F. The natural map @« — & from O, onto F induces a homomorphism
from the group algebra 0,G onto FG. By [2, §77] there is a one-to-
one correspondence between O,-blocks and F-blocks, the correspondence
being given by e—eée. Here O,-blocks are primitive central idempotents
in the group algebra O.G.

An irreducible FFG-module X is isomorphic to a minimal left ideal
in some simple component A of F'G. The identity ¢ of A is a primi-
tive central idempotent in F'G. The module X is said to be associated
with €. Observe thet an O,-block ¢ is a central idempotent in FG,
and hence ¢ is the sum of a uniquely determined set of primitive
central idempotents in FG. An irreducible FG-module X belongs to
an F-block & provided the primitive central idempotent &, with which
X is associated, is a summand of e. If X affords a character y, we
shall also say that y belongs to €. An indecomposable F'G-module M
belongs to & in case eM == 0.

Let X be an indecomposable O,G-submodule of an irreducible FG-
module X* obtained by [2, 73.6]. As in [2, §85] we form the FG-
module X; it can be shown that the F-block to which the FG-compo-
sition factors of X belong is the same as the F-block to which X*
belongs. Thus, we can establish a block form of the decomposition
theory of [2, § 83A]. The hypothesis that F is complete is necessary
for such a block decomposition theory; for if T is the irreducible Q-
representation of a cyclic group of order p - 1 associated with the ey-
clotomic polynomial @,_(x), then the composition factors of T lie in
different Q = Z, blocks.

We return to the case where F'is complete. All algebraic exten-
sions of F will be assumed to lie in a fixed algebraic closure Q2 of F.
Denote the unique extension of the valuation on F to 2 by ¢, and for
an extension L set
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0, ={aeLlg(a) =1}
P, ={ae L|¢(a) < 1}
L=0,P,.

f

For ¢ O, set @ = a + P,. We fix the following notation for the
remainder of the paper. Let ® be a primitive nth root of unity where
% = p“m with (p, m) = 1 is the exponent of G. Set E = F(w) and
K = F(w**). From the extension theory of complete fields [11, Chapter
2] it follows that elements ¢ of & (K/F) map Oy onto O, = O, and
P, onto P, = P;. The map & defined by #(@) = o(a) is an automor-
phism of K. Since K is separable over F, the map ¢ — G is a homo-
morphism from = (K/F) onto < (K/F), [11, 3-5-6]. The fact that K
is unramified over F implies that & (K/F) and < (K/F) are isomorphic.
Also since E is totally ramified over K, it follows that £ = K; thus,
the E-blocks are the same as the K-blocks. Since E is a splitting
field for G, the absolutely irreducible representations of G bzlong to
E-blocks, which by the preceding observation are actually K-blocks.

THEOREM 2. Let ¥ be a trreductble F-character with an absolutely
irreducible constituent L. Then the defect groups of the F-block to which
1 belongs are the same as the defect groups of the K-block to which {
belongs.

Proof. Since E is a splitting field for G, { is afforded by an irre-
ducible EG-module. By [3, Theorem 1.4} ¥ = m({)¥ " where the sum
is over a full set of conjugates of £ by < (E/F)and m,({) is the Schur
index of { relative to F.

If 6 and ¢ are the primitive central idempotents in EG and FG
with which { and y are associated respactively, then ¢ = Y0,(d).

New let & and d be the F' and K-blocks to which ¥ and { belong
respectively. Since ¢ is an E-summand of ¢, and ¢ is an F-summand
of the O,-block e; it follows that ¢ is an E-summand of e. If e = Xd;
is a decomposition of ¢ into Ox-blocks, then one easily verifies that o
is an E-summand of some d,. Thus d = d; and by Proposition 1, &
and d have the same defect groups.

In the following two sections we shall say that a block € has de-
feet o in case each of its defect groups have order p“.

3. Defect zero. Throughout this section we assume that the
residue field F is perfect. Sincz K is the residue field of E and E is
a splitting field for &, it follows that the Brauer-Nesbitt Theorem [2,
86.3] holds for K-blocks. Let @ bz an F-block of defect z2ro. By Pro-
position 1, we have e = >/, zi((z) where the J!s are chosen so that
(G(d)}r., is an orbit of K-blocks each of defect zero.
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LEMMA 3. The F-block & contains ewvactly one irreducible FG-
module, one irreducible FG-module, and one projective indecomposable
module. If M 1s the unique irreducible FG-module belonging to €,
then

MF = 3 Vi
i1
where V is the unique irreducible KG-module belonging to d and the
Gis are determined by the K-decomposition of €.

Proof. Observe that & = 3.7, 5,(d) where {o;(d)};_, is an orbit of
Ox-blocks relative to < (K/F). Since d contains only one irreducible
EG-module [2, 86.3], it follows that d is itself a primitive central
idempotent in both EG and KG. Therefore, e is a primitive central
idempotent in F'G; hence, e contains only the irreducible FG-module
associated with the primitive central idempotent e.

Let V be the unique irreducible KG-module which bzlongs to d
[2, 86.3]. For e <« (K/F), let V? bz a KG-module affording the rep-
resentation 77 where T is a representation afforded by V. Here T%(g)
is the matrix obtained by conjugating the entries of T(g9) by 6. Now
each V7 belongs to G;(d), and by the fact that each 7,(d) has defect
zero and hence [2, 83.3] contains only V7, it follows that {V7i}/_, is
a full set of distinet conjugates of V by < (K/F).

By [3, Theorem 1.4] and the fact that the Schur index mz(V) = 1,
it follows that

M’?zZ,V;i

for some irreducible F'G-module M. Since the V7 are uniquely deter-
mined up to isomorphism by the K-blocks ,(d), it follows by [2, 29.11]
that M is the unique irreducible FG-module bzlonging to &. The fact
that € contains only one projective ind2composable F'G-module follows
from [2, §55].

LEMMA 4. Let L be an arbitrary field and let N be an arbitrary
wrreducible LG-module havirng an absolutely irreducible constituent W
which affords a character w. Then (Hom,,(N, N): L) = m3(W)(L(w): L),
where m (W) is the Schur index of W wrelative to L.

Proof. For characteristic zero see [2, § 70 espzcially p. 469]. For
characteristic p, let C bz a Galois extension of L so that C is a splitting
field for G and suppose that W is an irreducible CG-module. Then
by [3, Theorem 1.4] N° = YW? where the sum is over a full set of
conjugates of W by < (C/L).
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Hom, (N, N)®, C = Hom,(N*, N)

by [2, 29.5]. Since Wi = W< for ¢ % 5, (Hom (N, N):C) is equal
to the number of distinet conjugates of W. By [2, 30.15] this is the
number of distinct conjugates of W by < (C/L). But from Galois
theory this is (L(w): L). Thus (Hom,.(N, N): L) = (L(®): L) and the
lemma is proven.

Let X* be the unique irreducible FG-module belonging to e.
Choose an indecomposable O,G-submodule X with X* = FX and
(X:0p) = (X*: F) [2, 73.6]. Denote by M and U respectively the
unique irreducible and projective indecomposable F'G-modules belonging
to e.

THAEOREM 5. Let { be an absolutely 1rreducible character belonging
to a block of defect zero. Then my(Q) = 1.

Proof. Let ¥ be the irreducible F-character of which £ is a con-
stituent. By [3, Theorem 1.4] ¥ = m () 3., £ where {{°+},., is a full
set of conjugates of { by < (E/F). Since { belongs to a block of de-
fect zero, we have by [2, 83.6] {(9) = 0 for non p-regular g. Since
{(g) e K for p-regular g, we may assume that each g;¢ < (K/F). Let
d be the K-bleck to which ¢ belongs. Observe that the restriction of
{ to the p-regular element of G is the Brauer character of the unique
irreducible KG-module V which belongs to d. |2, 83.6] Also since
each G,(d) has defect zero,  is the Brauer character of Vi, It follows
by Lemma 3 that p¢ = X is the Brauer character of the unique irredu-
cible F'G-module M which belongs to &. Since ¥y = m,(0)y, it follows
that the multiplicity of M in X is m ().

Since X* belongs to a block of defect zero, the O,G-module X is
projective [5, Corollary to 4.1a]. Select a primitive idempotent ¢ ¢ O,G
so that X = 0,Ge. Since X* = FX, it follows that X* = FGe, and
so by [2, 54.19] we have

(3.1) (eX*: F) = (Hom,,(X*, X*): F) .

Also by [2, § 77] ¢ is primitive idempotent in F'G and hence U=F G é.
Using the fact that F is perfect, we apply [2, 54.19] again to con-
clude that

(3.2) EX: F) = d-(Homzo(M, M): F)

where d = m,({) is the multiplicity of M in X. Now by Lemma 4,
(Hom, (X, X): F) = m(Q(F(Q): F) and (Home (M, M): F) = (FQ): F)-
Since (eX*: F) = (¢X: F) and (F({): F) = (F(0): F), we have by (3.1),
and (3.2),
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mz(C) = my(Q) .

Thus, m({) = 1 and Theorem 5 is proven.

COROLLARY. Let G be a finite group with a unique K-block d of
defect zero, and let L be the absolutely irreducible character belonging
to d. Then £ is a rational-valued and the representation affording ¢
is realizable in the p-adic completion Q, of the rational field.

THEOREM 6. Let & be an F-block of defect zero. T@n ¢ contains
exactly one irreducible FG-module X*, one irreducible FGLmodule M,
and one projective tndecomposable module U. Moreover, X = U = M.

Proof. The first part is Lemma 3. That X = U = M follows
from the fact that m,({) = 1. For then Brauer character p of M is
equal to the Brauer character y of X.

4, Highest defect. Our notation is as in § 2. Observe that the
Galois group 7 (K/F) is isomorphic to a subgroup of U,, the units
modulo m. In §4 we let o; denote the element of <7 (K/F) which
maps a primitive m'™ root of one to its i** power. Two p-regular ele-
ments z and y of G are said to be F-conjugate in case a' = gyg™ for
some ge G and o;e 2(K/F). F-conjugacy is an equivalence relation
on the p-regular elements of G and the equivalence classes are called
p-regular F-conjugacy classes. A defect group of an F-class .27 is
any p-Sylow subgroup of the centralizer C(x) where z¢.22". We es-
tabilsh the following result using an argument similar to that in [4,
12.3].

THEOREM 7. The number of F-blocks of highest defect is equal to
the number of p-regular F-conjugacy classes of highest defect.

Proof. By [9, Theorem 6.1] the number of K-blocks of highest
defect is equal to the number of p-regular conjugacy classes of highest
defect. Let {Z, -+, &} be the ordinary p-regular conjugacy classes
of highest defect and let {d,, - --, d,} be the K-blocks of highest defect.
Now write each d; as in [9, 3.2].

(4.1) d; = 30.9,)C; + 3, b.C,, 9, -
Let B be the t x t matrix

B = (bi(g,)) -

Using the homomorphisms associated with the d’s in the proof of Pro-
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position 1, one can show that the rows of B are independent, and thus
that B is nonsingular.

By Proposition 1, & (K/F) acts as a permutation group on the set
{d;} and the orbits of {d,} relative to Z7(K/F) are in one-to-one corres-
pondence with the F-blocks of highest defect. We observe that the
action of Z7(K/F) on {d;} induces an action of % (K/F) on the rows
of B, and thus the orbits of the rows of B relative to %7 (K/F) are in
one-to-one correspondence with the F-blocks of highest defect.

For a p-regular class &; and o0, ¢ & (K/F) define 0,(%";) = & where
&'e &, for xe %, We observe that the action of <7 (K/F) on the p-
regular classes preserves defect groups. The orbits of the set {&}i,
relative to <7 (K/F) are in one-to-one correspondence with p-regular
F-conjugacy classes of highest defect. Also the action of Z°(K/F) on
{#}.. induces an action of & (K/F) on the columns of the matrix B
and thus the p-regular F-classes of highest defect are in one-to-one
correspondence with the orbits of columns relative to & (K/F).

By a well-known permutation lemma of Brauer [1, Lemma 3],
Theorem 7 is proven once we establish that b{¥(g;) = b;(¢*¥) for each
b;(g,) in the sum (4.1) and ¢, € & (K/F). For non-p-regular g, b;,(g) = 0.
For p-regular g, we have b;(g) = ¢;,(g) where d; = 3,.,ci(g)g. But d =
Y6(¢) where 6(0) is the primitive central idempotent in EG with which
{ is associated and the sum is over all { belonging to d. By [2, § 33]

5(2) = %1% PITETR
Thus
R
c(g) = ch e

K is unramified over F and therefore & (K/F) = < (K/F) under the
map ¢ — &. It is easy to check that o, is the element < (K/F) cor-
responding to the unit % in U, if and only if 6,¢ (K/F) corresponds
to k. Thus

sy — s SDEHG™)
C; (0) _Cg:_'i ]Gl
= ¢i(g%)
and therefore

bir(g) = bilg") -

REMARK. If L is any field of characteristic p, then L = I for some
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I" where F is an unequal characteristic local field. [6, Theorem 2]
Thus, Theorem 7 is actually a result on the number of blocks over an
arbitrary field of characteristic p.
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