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The main purpose of this paper is to prove that a finitely
generated lattice is projective iff it is imbeddable in a free
lattice. This result appears as a consequence of a more
general theorem, in which a sufficient condition for projecti-
vity is given in terms of the notion (due to Ralph McKenzie)
of bounded homomorphism.

In [1, Theorems 4.1, 4.4] Baker and Hales completely describe
the distributive projective lattices and obtain as a corollary the fact
that a finite distributive lattice is projective iff it is imbeddable in
a free lattice. This last result has been improved by McKenzie, who
finds in [6, proof of Theorem 6.3] that for any finite lattice L, L is
projective iff it is imbeddable in a free lattice. McKenzie’s proof uses
some ideas due to B. Jonsson. To extend the theorem to finitely
generated lattices we sharpan arguments of [6]. As stated above,
we use the notion of bounded homomorphism; this idea is defined by
McKenzie in [6], and it plays an important role in that papsr.
Theorem 3.4 below was first announced in the author’s abstract [4].

1. Preliminaries. We regard a lattice as an algebraic structure
{L, +, +> in which the sum (join) and product (meet) satisfy the
usual equational axioms. It will not cause confusion to refer to a
lattice by naming its universe. We denote by < the ordering of
the lattice L, that is, the partial ordering naturally associated with
L (x <y means v < y and « = y). If the greatest lower bound (least
upper bound) of a subset U of L exists in L, it is denoted A U (A U).

The notation and terminology used for maps is largely standard.
By an epimorphism of a lattice L into a latticc M we mean a
homomorphism of L onto M. For any sets L, M, N, and any maps
f: L — M and g: M — N, the composite map (of L into N) is denoted
gof. (In the arrow notation, maps-—whether homomorphisms or not—
which are onto may be indicated by the usz of a double-headed arrow,
-,

)A chain is a lattice whose ordering is a linear ordering. A chain
is bounded iff it has a least element and a greatest element. Any
ordinal & may be viewed as the chain whose ordering is the natural
ordering of @. The set of all natural numbers is denoted w.

We regard Boolean algebras as lattices (thus, zero, one, and com-
plementation are not primitive operations).
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112 ALAN KOSTINSKY

The terms of the language of lattice theory are built up from
individual variables v, v,, --- and the binary operation symbols Vv
and A (interpreted in lattices as + and -, respectively). The notion
of length of a term is assumed familiar. Let ¢ be a term of lattice
theory with variables among v, ---,%,; let L be a lattice and
Ty, +++, &, € L. Then by t[L, x, ---, ,] we mean the denotation of
7 in L under the assignment v, — 2; (¢ £ n). If 7 is a term of lattice
theory, L and M are lattices, x, ---, 2, € L, and f is a homomorphism
of L into M, then f(z[L, %, ---, x,]) = t[M, f&, ---, fz.].

The free lattices are especially important for our present work.
For any nonempty set X, we let FL(X) denote some fixed lattice
freely generated by X. Recall that if X,, X, are disjoint nonempty
subsets of X, and if x; is in the sublattice of FL(X) generated by
X, (1=0,1), then z,-0, <z, < 2, + 2, in FL(X).

Whitman’s famous solution to the word problem for lattices, in
[7], provides a characterization of the free lattice as follows. Suppose
L is a lattice generated by X % ¢. Then L is freely generated by
X (that is, L = FL(X)) iff all of the following hold in L: (W0) for
all 2,2’ e X, if x < 2’ then x = &’; (W1) for all e X and all a, be L, if
a-b<zxthena<zxorbdb<z and if t<a+ b then t=<a or 2 < b;
(W2) for all @, b,¢,de L, ifa-b<c+dthena<c+dor bc+d
or ab=<cor a-b <d. The latter two properties (which we refer to
as Whitman’s (W1) and (W2)) are frequently used below. Note that
(W2) makes no reference to a generating set; for any lattice L, there
is no ambiguity in saying that Whitman’s (W2) holds (or does not
hold) in L.

We also use the following theorem, derived by Jénsson from a
result of Whitman [7]:

THEOREM 1.1. (Jénsson [3, Lemma 2.6, p. 262]) In any free lattice
FI(X), the following hold: for all w,a, b, ce FL(X), if v =a-b=a-c
then w = a-(b+c¢); if u=a +b=a+ c then uw =a + b-c.

Finally we recall some basic facts about linear sums of lattices.
Let <E, <> be a linearly ordered structure and let {(L,:ec E) be a
system of lattices such that e = ¢’ implies L,N L, = @. Then the
linear sum Y.L, is the lattice L completely determined by the following:
L = U{L.:ec E}; for each ec E, L, is a sublattice of L; and when-
ever e # e, zeL,yel,, then x <y in L iff e <e¢' in E. Roughly
speaking, L is constructed simply by stacking up the L, in accordance
with the ordering of E.

A lattice is linearly indecomposable iff it is not the linear sum
of two lattices. For any lattice L there are a linearly ordered struc-
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ture E (unique up to isomorphism) and a system of lattices {L,:
ec K> (with range {L,:ec E} uniquely determined by L) such that
each I, is linearly indecomposable and L = 3,L,; the L, are called
the linear components of L.

2. Projectivity and bounded homomorphisms.

DEFINITION 2.1. A lattice L is projective (in the category of all
lattices and lattice homomorphisms) iff for any lattices M, N, and
any lattice homomorphisms h: L — N and g: M - N (g onto), there is
a homomorphism f: L — M such that gof = h.

It is well-known that there are simpler descriptions of projectivity
than 2.1; in particular, we have:

Note 2.2. For any lattice L the following three conditions are
equivalent:

(1) L is projective;

(2) for any lattice M and any epimorphism f: M -» L, there is
a homomorphism ¢: L — M such that fog is the identity map on L;

(3) there are a free lattice FL(X), an epimorphism f: FL(X) —»
L, and a homomorphism ¢g: L — FL(X) such that fog is the identity
map on L. '

We shall use formulation (3) in this paper; (2) is used in [1].

Note that every projective lattice is isomorphic to a sublattice
of a free lattice (the map ¢ of (3) clearly must be one-to-one). Also,
every free lattice is obviously projective. Baker and Hales [1, Theo-
rem 3.1, p. 473] prove that a countable lattice is projective iff each
of its linear components is projective.

In [2, Theorem 6, p, 271] Galvin and Jénsson show that a dis-
tributive lattice L is imbeddable in a free lattice iff L is countable
and each linear component of L is one of the following: a one-element
lattice, an eight-element Boolean algebra, or an isomorphic image of the
direct product of a countable chain and a two-element chain. Using this
result, Baker and Hales [1, Theorem 4.1, p. 474] characterize the dis-
tributive projective lattices as follows: a distributive lattice L is pro-
jective iff L is countable and each linear component of L is one of the
following: a one-element lattice, an eight-element Boolean algebra, or an
isomorphic image of the direct product of a countable bounded chain
and a two-element chain.

As to non-projective lattices, the above remarks readily yield
many examples. Thus, all the non-distributive modular lattices are
non-projective', for they are not imbeddable in free lattices (recall

1 This fact was pointed out by the referee.
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that the five-element lattice with three mutually incomparable ele-
ments is imbeddable in every non-distributive modular lattice; apply
Jonsson’s Theorem 1.1). And, as observed in [1], the above-mentioned
results on distributive lattices show that the direct product 2 x w
is a distributive non-projective lattice imbeddable in FL{w) (and hence
imbeddable in FL(3), by Whitman [8, Theorem 6, p. 109]).

DEFINITION 2.3 (McKenzie [6, Definition 5.2]) Suppose L, M are
lattices and f is a homomorphism of L into M. We say f is upper
bounded iff for each be M, {ac L: fo < b} either is empty or has a
greatest element; f is lower bounded iff for each be M, {a e L: b < fa}
either is empty or has a least element. We say f is bounded iff it
is both upper and lower bounded.

N. B. These notions are defined with respsct to the entire co-
domain M of f, not merely with respect to the range of f. The
intended codomain will be specified below in the rare cases where
there is ambiguity.

NoTE 2.4. Suppose L, M are lattices and f is a homomorphism
of L into M; suppose that f, viewed as a homomorphism of L into M,
is bounded. Then if N is any sublattice of M which includes the range
of f, f is also bounded as a homomorphism of L into N. (Trivial.)

Usually we shall deal with epimorphisms. If f is an epimorphism
of L into M, clearly f is uppar iff for each be M, {a e L: fa = b} has
a greatest element; similarly for the other two notions of 2.3.

DEFINITION 2.5. Let <Z be the class of all lattices which are
bounded epimorphic images of free lattices. (Le <% iff there are
a free lattice FIL(X) and an epimorphism f: FL(X) - L such that f
is bounded.)

Trivially every free lattice is in .<#. It follows readily from
McKenzie [6, Lemma 5.2] that every finitely generated sublattice of
a free lattice is in .<Z (see also the proof of Theorem 3.4 below).

An element of < need not be imbeddable in a free lattice. Thus,
according to [6, remarks following Theorem 5.1], every finite Boolean
algebra is in .<#; but, by the Galvin-J6nsson result stated above, a
Boolean algebra with more than eight elements is not imbeddable in
a free lattice. Those elements of .2# which are not imbeddable in
free lattices are, of course, not projective; we shall see that all other
elements of <#Z are projective (Theorem 3.3).

In Corollary 5.3 of [6], McKenzie shows that the two properties
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of free lattices described in Jénsson’s Theorem 1.1 carry over to the
lattices of <#; it follows that every non-distributive modular lattice
fails to be in <7

Recall from above that Baker and Hales have shown that if L
is countable and is a linear sum of projective lattices, then L is pro-
jective. The situation is quite different for <%, as we shall see in
Lemma 2.7. For the moment we remark that every countably infinite
chain is projective, but is not in <%

LEMMA 2.6. Suppose f is a homomorphism of a free lattice FL(X)
into a lattice L. Then the following hold:

(1) if f ts upper bounded then for each be L, {xc X: fo < b} s
findte;

(2) f f is lower bounded then for each be L, {xe X:b < fx} is
finite.

Proof. We prove (1) ((2) is similar). Suppose {re X:fxr < b} is
infinite. Let z be any element of {a e FL(X):fa <b}; let X’ be a
finite subset of X such that z is in the sublattice of FIL(X) generated
by X’; and choose z,e{re X:fx < b ~ X’. Then f(z + ) < b, and
Z2< 2+ 2 in FL(X) (see §1). Thus f is not upper bounded.

LemMA 2.7. Suppose L = ¥,L,, where E is any infinite linearly
ordered structure and the L, are any lattices. Then L ¢ <Z.

Proof. Say f: FL(X)-» L. We show that f cannot be bounded.
For every nonempty subset S of E, {J{L.:ec S} is a sublattice of
L; hence f must map an element of X into every L.,. For each
ec B, choose z,€ X such that fz,e L., The x, are distinct. Let
de E. For each ec E, fx, is comparable to fx, in L; hence either
{xe X: fx < fx;} or {xe X: fo, < fx} is infinite. Thus, by 2.3 and 2.6,
f is not bounded.

3. Main results. Lemma 3.1 and Theorem 3.3 below are closely
based on Lemma 5.2 of McKenzie’s paper [6]; 3.1 generalizes that
lemma.

LEmMA 3.1. Suppose L is a lattice generated (mot necessarily
freely) by a set X, and suppose f is a homomorphism of L into a
Jree lattice FI(Y). Then the following hold:

(1) 2f for each be FL(Y), {xe X: fx < b} s finite, then f is
upper bounded;

(2) if for each be FL(Y), {xe X: b £ fa} s finite, then f is lower
bounded.
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Proof. We prove (1); a dual argument works for (2). Assume
the hypothesis of (1). Let T be the set of all elements b of FL(Y)
such that {a ¢ L: fa < b} either is empty or has a greatest element.
As in [6, Lemma 5.2], we show inductively that 7 = FL(Y); we use
the fact that Whitman’s (W1) and (W2) hold in free lattices (see § 1).

First we show that Y 7. Suppose ye Y and {aec L: fao <y} =
. Since L is generated by X, repeated application of Whitman’s
(W1) to a relation fo <y (ac L) yields an xe¢ X such that fo < y.
This, together with the hypothesis of (1), shows that a, = V{re X:
fx < y} exists in L and that fa, < y. We claim that for all ae L,
if fa <y then a <a,. To see this, let S be the set of ae L for
which the claim is true. Obviously X & S; and if a,a’e S then,
trivially, « + a’e¢ S. If ¢,a’c S and fa-fa’ <y, then by Whitman’s
(W1), fa<yor fa' <y, so that a < a, or @’ < a,; hence a-a’ £ a,.
Therefore S = L, as claimed. Thus «a, is the greatest element of
laeL:fo <y}, and ye T.

It is easy to see that 7T is closed under product. If b, b, e T
and {a¢ ¢ L: fo < b,-b} is nonempty, then both {a € L: fa < b,} and {a ¢ L:
fa < b} are nonempty, hence have largest elements a,, a,, respectively.
Clearly a,-a, is the largest element of {a ¢ L: fa < b,-b}.

Finally we show that 7' is closed under sum. Suppose b, b, c T
and {ae L: fa < b, + b} = @. For te{0, 1}, in case {ac L: fa < b} +
&, let a; be its largest element. Next consider the set {xe X:fao <
b, + b}; if this set is empty then there is a term ¢ of lattice theory
of some minimum length > 1 such that for some =z, ---, %,¢X,
fEIL, &, -+, 2,]) £ b, + b; 7 must have the form 7, A 7, so that
Z-ovaL(Yv), .fxﬂy o 'yfxn]'z-l[FL(Y)! fxm "ty fxn] =b, + bl; but TJ[FL(Y)y
figo, v, fr,] L b+ b for je{0,1}; hence, by Whitman’s (W2) in
FL(Y), for i =0 or i = 1, f(z[L, @, ++-, %,]) < b,. Therefore, we ses
that at least one of the three elements a, a,, V{re X: fx < b, + b}
is defined in L; let @, be the sum of those that are defined.

Clearly fa, < b, + b,. Now we claim that for all ac L, if fao <
b, + b, then a <a,. Let S be the set of ac L for which this is true.
Obviously X< S; and if a,a¢’'eS then ¢ +a'eS. If a,a’eS and
fa-fa' < b, + b, then by Whitman’s (W2) in FL(Y), we have at least
one of the following: fa < b, + b,, fa' < b, + b, fa-fa’' < b, fa-fa' <
b,; in the first case a < a, by assumption a ¢S, so a-a’ <a,; in the
last case a, must be defined and o -0’ < a, < a,; the other cases are similar,
so a-a’eS. Therefore S = L, as claimed. It follows that b, + b, e T.

Thus, T = FL(Y), that is, f is upper bounded.

COROLLARY 3.2. Suppose f is a homomorphism of a free lattice
FL(X) into a free lattice FL(Y). Then f is bounded iff for each



PROJECTIVE LATTICES AND BOUNDED HOMOMORPHISMS 117

be FL(Y), {x ¢ X: fx is comparable to b} 7s finite. (Immediate from
2.6 and 3.1.)

THEOREM 3.3. Suppose Le <# and Whitman’s (W2) holds in L.
Then L is projective.

Proof. We are given f: FL(X) -~ L, f a bounded homomorphism.
Define & and g, maps of L into FL(X), as follows: for each be L,
ab is the greatest element of {a e FL(X): fa < b}, Bb is the least
element of {a e FL(X): fa < b}. Certain properties of a and B are
immediate. Thus, for each be L, f8b = fab = b and Bb < ab. Also,
£ preserves sum and « preserves product; that is for any b, b, e L,
B, + b)) = Bb, + Bb, and «(b,-b) = ab,-ab,. And both a and B are
order-preserving.

We claim an additional property for 8. Let b, b€ L. By Lemma
2.6, the set S = {xec X: b,-b, < fx} is finite. Our claim is that g(b,-b,) =
(Afee X:b,-b, < fx})-pb,-6b, if S+ @, and Q(b,+b) = Bb,-8b, if S =
. let a, denote the right-hand element; that is, a, = (A S)-B8b,- 8b,
if S+« ©, a,= pb,-pgb, if S= @. Clearly fa, = b,-b,. We show that
for all ae FL(X), if b,-b, < fa then a,<a. Let T be the set of
a e FL(X) for which this is true. Obviously X & T and T is closed
under product. If a,a’e T and b,-b, < fa + fa/, then, by Whitman’s
(W2) in L, we have at least one of the following: b, < fa + fa/, b, <
fa + fa', b,-b, < fa, b,+b, < fa'; in the first case have a + o' = Bb, =a,;
in the third case a,<a by assumption ae T, so a,=<a + a’; the other
cases are similar, so that a + a’'eT. Thus T = FL(X), and «a, =
B(b,-b,), as desired.

Now let the endomorphism h: FL(X) — FL(X) be the extension
of the map » — afw, xc X. We claim that for each a ¢ FL(X), gfe =
ha = afa (so that fha = fa). The property is obvious for xe X. Pro-
ceeding inductively, suppose Gfa; < ha; = «fa; for 7 € {0, 1}; then, using
the properties of @ and B established above, we have pgf(a, + a,) =
B(fa, + fa)) = Bfa, + Bfa, = ha, + ha, = ha, + a,) = afa, + afa, < a(fa, +
Ja,)); similarly, gf(a,-a,) < h(a,-a)) = af(a, ).

Define the map g: L — FL(X) by g = heg. We show that g is a
homomorphism of L into FL(X). Since g and h preserve sum, so
does g. Now for b, b, ¢ L, we must show that 7g8(b,-b,) = hB3b,-hj3b,;
it suffices to show h(g8b,-8b,) < hB(b,+b). 1f B(b,-b) = Bb,- B, this is
trivial; thus we may assume by above that {xe X:b,-b, < fa} # @
and that hgB(b,b) = (A{hx:xe X and b,-b, = f})-hBb,-hGb,. There-
fore, it suffices to show that &(8b,-5b) < hx whenever xe X and
b,-b, < fx. But for any such x, f(8b,-5b,) = fBb,fBb, = b,-b, = fx, so
that Bb,-5b, < afx = ha (see definition of &); thus, using the claim
of the preceding paragraph, we have h(gb,- 8b,) < hhx < afhx = afx =
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hx, as desired. Thus g is a homomorphism of L into FL(X).

To prove L projective it remains only to show that for each
be L, fgb = b. In fact, fgb = fhRdb = f8b = b, as desired (the middle
equality holds by our claim concerning #). This completes the proof
of 3.3.

THEOREM 3.4. A finitely generated lattice is projective iff it is
imbeddable in a free lattice.

Proof. We already know that a projective lattice is imbeddable
in a free lattice. Now suppose that L is a sublattice of FL(Y), L
finitely generated. For some sufficiently large finite X, there is an
epimorphism f of FL(X) onto L. By Corollary 3.2, f, viewed as a
homomorphism into FL(Y), is bounded; by Note 2.4, f is bounded as
an epimorphism onto L. Thus L € <#; and L inherits Whitman’s (W2)
from FL(Y). It follows from 3.3 that L is projective.

Notice that, by Theorem 3.3 and the earlier remarks, for a lattice
L of -2 L is projective iff L is imbeddable in a {free lattice iff
Whitman’s (W2) holds in L.

We have a fair amount of information on the relationship be-
tween <7 and the class of projective lattices. OQur spzacific examples
above include lattices which are in both classes, in neither, in one
class but not the other. From [1] we have the example 2 x w, a
denumerable distributive non-projective lattice imbaddable in FL(3);
it is now clear from Theorem 3.3 that 2 x w¢ <#. In [5, Figure
5B, p. 49] we display a denumerable non-modular sublattice of FL(3)
which also is non-projective and not in <z We sketch a proof of
the following additional fact:

THEOREM 3.5. Suppose L s a distributive lattice, Le <Z, and
Whitman’s (W2) holds in L. Then L is a finite projective lattice.

Proof. We know that L is projective by Theorem 3.3. By
Lemma 2.7, L is a linear sum of just finitely many linear components.
The Galvin-Jénsson result mentioned earlier implies that any infinite
linear component of L must be isomorphic to the direct product of a
countable chain and a two-element chain. An argument similar to
that of Lemma 2.7 now shows that there is no infinite linear com-
ponent of L. Thus L is a finite projective lattice.
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