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Let F be a family of functions on subsets of a real
Euclidean space E into a commutative subalgebra with iden-
tity T, of the algebra 7T of linear transformations of £ into
itself. If a suitable integration condition, motivated by
Morera’s theorem in complex function theory is placed on
the elements of F, F becomes an algebra of ‘‘integrable’’
functions which can be realized as the derivatives of trans-
formations of E into itself. It is asked what properties of
the algebra of complex analytic functions from the complex
plane K into K are satisfied by such algebras F. Simple
examples show that analyticity and even differentiability
are lost. However various forms of the maximum modulus
theorem are still satisfied. Three such theorems are presented
here:

(A) If commutivity of T, is replaced by the requirement
that the elements of T, are ‘‘orientation preserving’’ then
the elements of F' are maximized on the boundary of a

sphere.
(B) There exists N > 0, such that for all fcF,

U={teE; ||t|| <1} < domain f, zc U,
implies
Hf @l = N sap{l SOOI 11 ¢l =1}
(C) For all fe F, U < domain f, x¢ U, implies
Hf @) lls = sup{ll SOl 1121 =1},

where for Ae T, || A{|s is the spectral norm of A.

1. Introduction. The theory of complex valued integrable
functions was developed by Heffter [1], Macintyre and Wilbur [6],
and this author [4]. The generalization to the operator valued case
was introduced in [5].

The first two results of this paper employ degree theoretic meth-
ods from algebraic topology as developed in [3] to obtain similar
results. The methods of [3] represent a generalization to higher
dimensional speces of methods of G. T. Whyburn [8] in the plane,
employed by him to handle complex analytic functions. The third
result follows from a construction of the spectral norm of an operator
employing irreducible subspaces invariant under a family of operators.

Let K denote the complex plane. For ac K, set A.,(z) = az for
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all ze K. Then A, is a bounded linear transformation of K thought
of as a real Euclidean space FE. into itself. Set T, = {4,; a e K}.
Let f be a continuous function on an open set S < E, into the space
B, of bounded linear transformations of FE, into itself, and let P be
a path (rectifiable arc) with endpoints « and B. Then for any sub-
division ¢ = 2, < »++ < 2,,, = 8 of P, a Riemann sum, the vector
R =3 f.(2;+: — 2) can be formed. If range f lies in T, then for
ze S, f. = f(2) = A,,, for some ¢(2) ¢ K, and we may write

R=36() — 2) -

Taking the limit as the norm of the subdivision defining R approaches
zero, we obtain the vector 4 = Sﬁ f(®)dz = Sﬁ f.(dz). If range f< T,
aP aP

we can interpret ¢ as the complex number Sﬁ #(r)dz.
f is said to be integrable if for closed paths (rectifiable simple
closed curves) C= S, we have g f()dz :g f.(dz) =0. If range fS TV,
C 4

then S #(2)dz = 0 for all closed paths C & S, and by Morera’s theorem
4

¢ is analytic; consequently, f is itself Frechét differentiable, where
f7 is a linear transformation of E, into B, for ze S.

The general case studied in this paper is obtained by replacing
E, by an arbitrary real Euclidean space E of dimension p, p > 1.
Let T be a commutative subalgebra of the Banach algebra of bounded
linear transformations of E into K and let F be the family of con-
tinuous integrable functions on open subsets of K into T.

Let feF, S = domain f simply connected. Let z,¢S and for

ze S, set g(r) = Sz f(z)dz. Then g maps S into E, and for z¢ S, the

Frechét derivaﬂ;ive0 g. of g at z is the operator f(z) = f, of T.

In [5], employing arguments reminiscent of the proof of the
Cauchy-Goursat theorem, it is shown that the family of continuous
integrable functions on a simply connected subset of E into T form
an algebra.

In [5] differentiability and analyticity of integrable functions is
discussed. Simple examples of integrable but nondifferentiable funec-
tions are given. Since the context of [5] and this paper is a real
variable context a definition of analyticity motivated by Schwarz’s
lemma was employed [2].

The development of this paper is no way affected if the only
paths of integration permitted are those formed from straight line
segments or arcs of circles.

2. Notation and definitions. Let @ denote the positive integers.
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If Z is a Banach space, 6 >0, ve Z, set U,(0) ={teZ;i|t — x| < o},
U@©) = Ud), and U = U 1); and set V,(0) = {teZ; ||t — x| = o},
V() = V,©6), and V = V,(1). If f is a function with domain S and
H < FE, then the restriction f|H of f to H is the function ¢ with
domain H N S such that g(x) = f(x) for all xc HN S. For H a sub-
space of K and G a family of functions defined on subsets of K, F'|H
denotes the family {f | H; fe F}.

An element A of B is said to be orientation preserving if 4
inverts and if the degree ¢(4) of A is one (or equivalently if the
determinant associated with A4 is positive). A collection of operators
Z of B is said to be an orientation preserving family if for all Ae¢ Z,
r = 0, we have that if A4 4 re inverts, then A + re is orientation
preserving.

For Ae B, set || A|l, = limsup,_. || A"|/"". 1t shall be shown in
§ 7, that |/ - |, is a multiplicative semi-norm.

3. Statement of main results. Let 0> 1, and let f be an
integrable function on U (p) into B. Then the principle results of
this paper are:

(A) The strong maximum modulus theorem which states that
if range f lies in an orientation preserving family Z of B, Z a linear
subspace of B, then for all z¢ U,

W@l = M=sup{[[fO)I te V}.

(B) The weak maximum modulus theorem which states that
there exists N > 0 such that if fe F, then for all z¢ U,

Hf@) |l = NM.

(C) The maximum spectral norm theorem which states that if
fe F, then for x¢ U,

WF@)ll = sup {[[f@) [l; te V}.

We note that for F and T isomorphic and isometric to K, that
7 is an orientation preserving family and that in this case for Z = T,
(4) and (C) reduce to the standard maximum modulus theorem of
complex function theory.

4. Preliminaries. We shall need two lemmas from [5].

A subspace W < FE is said to be invariant if T(W)<E W. Let
27 be the family of all nontrivial irreducible invariant subspaces of
E, i.e., the family of all invariant subspaces H < E, H + {0}, such
that H contains no proper invariant subspace H, = {0}.
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LEmMMA 4.1. For He o7, T, = T|H s a field with the same
dimension as H.

We observe from the fundamental theorem of algebra that T, is
isomorphic (but not necessarily isometric) to R or K.

Proof. Let Ae T, A+ 0. Then A is one-to-one on H. Indeed,
for De T, setting D, = D | H, we have

DIA(H)] = D[A(H)] = A[Dy(H)] = A[D(H)] & A(H) ,

and hence A(H) is an invariant subspace of H; and consequently,
since H is irreducible, A(H) = H.

Let xe H, x+ 0, and set 6(4) = A(x) for all A€ T,., Now range
0 = {A(x); Ae T} is clearly an invariant subspace of H and hence
range 0 = H. Suppose for A, Be T, 6(A) = 6(B). Then A(x) = B(w)
and (A — B)(z) = 0. Since A — B is not one-to-one on H, A — B = 0,
and thus ¢ is an isomorphism of T, onto H.

Let AeT,. Since A(H) = H, there exists ye H, such that
A(y) = ®. Now there exists a € T, such that 6(a) = y. Then a(x)=1y
and 6(Aa) = (Aa)(z) = Ala(z)] = A(y) = . Since 60(¢) = x, we have
Aa = ¢ and o = A7, and thus T, is a field.

LemMMA 4.2. Let f be an integrable function on U into B, and
S and W subspaces of E such that for xc U, te S, f(x)(t) lies in W.
Then for x, ye U such that y — x lies in S, we have

[f@) — fWI®) e W  for all teE.

Proof. For ze U, set g(x) = Sx f(®)dz. Let w ye U such that

x#y and y— xS, and let 2 =2, < +++ < %0y, =Y, NEW, be a
subdivision of the interval [z, y¥] of E. Then for

1=0,1, -, m, do; = 2, — x,€ 8,
and hence f(z;)(dx;)€ W. Thus the Riemann sum > f(x)(4x)e W.
Hence S:f(z)dze W and g(y) — g(x) = SZf(z)dze w.
Let te E and re R such that ¢ + »t, y + rte U. Then

(y+rt)—(@+7rt)y =y —2e8,

and hence g(y + rt) — g(x + rt)e W. Thus for all te £

F@O = f@)O = lim [gly+rt) =g — Um [g(z+7t) —g(@)]r™

= tim {{g(y+7t) —g(a+70)] — lo@) @]} e W .
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5. Strong maximum modulus theorem and the uniqueness
theorem. The principle result of this section is (A4). The three
lemmas of this section involving orientation preserving operators are
also used to obtain (B) in §6. A simple consequence of (A4) or (B)
is the uniqueness theorem which states that an integrable function
of the family of functions in question, defined on U, is uniquely
determined by its value on the boundary V of U. Indeed by the
same methods used to prove (A), the uniqueness theorem can be
shown to hold for an arbitrary algebra of integrable functions,
defined on U, without any condition of commutivity being placed on
the algebra.

(A) makes no requirement that the family of functions in question
even form on algebra. All results in this paper with the exception
of (A) and the uniqueness theorem are stated only for the com-
mutative case. It is conjectured that some kind of maximum modulus
theorem holds for noncommutative algebras of integrable functions.

From the standpoint of [3] the most obvious example of an
orientation preserving family is Z = {Ae€ B; AI = IA}, where [ is an
element of B such that I* = —e. In this case one can interpret F
as a complex Euclidean space and Z as the family of complex homo-
geneous linear operators acting on E. A less obvious but important
example is Z, = {Ae B; A* = 0 for some ke w).

Let re R, r >0, Ac Z, and suppose A 4 re does not invert.
Then there exists xe E, x + 0, such that (4 + re)(x) = 0. Then for
some ke w, A* =0, A(x) = —rx, and 0 = 0(x) = A%x) = (—1)r*z, and
2 = 0. Thus 4 + re inverts for all » > 0, and hence from Lemma
5.3, below, A 4 re is orientation preserving for all » > 0. In §7 it
shall be shown for Aec B, that Ae Z, if and only if ||A]|,=0. Let
F, be the family of all integrable functions on open subsets of K
into Z,.

A simple example of an orientation preserving family that is a
commutative algebra is that generated by the operator L acting on
E,=RORHLRDH---PR, new, such that for (v, ---,2,)e K,
Lz, «+-,2,) = (2, +++, 2, 0). @Glearly L" = 0.

The following two lemmas show that for a suitably chosen family
of integrable functions, the integrals of the elements of F' gsatisfy a
maximum modulus theorem, allowing us to obtain a maximum
modulus theorem (A) for the elements of F proper.

LEMMA 5.1. Let f be a (Frechét) differentiable function on an
open set in K into E such that:

(1) U < domain f, and for xe U, if f. is an invertible element
of B, then f, is orientation preserving.
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(2) There exists a dense subset H of U such that for xe H, f, is
tnvertible.
Then for we U, || f(x) || = sup{| F@)|; te V}.

Proof. This lemma may be found in [3]. The proof employs
degree theoretic methods from algebraic topology.

LEMMA 5.2. Let p > 1, and f an integrable function on U(p)
wmto B such that for xe U(p), » >0, if f(x)+ re itnverts, then
f(@) + re is orientation preserving. Let F' be an algebra (not neces-
sarily commutative) of integrable functions on U(p) into B, with

identity, and let ge F'. Set u(x) = Y f(zYdz and v(z) = ngg(z)dz for
xe U(p). Then for w = u,v, vc U,

Hw@) il = M =sup{|| f()]; te V}.

Proof. Set w=wu or v, and H, = {x ¢ U; w), inverts}. If H, is dense
in U, the lemma follows from Lemma 5.1. Suppose now that H, is
not dense in U. We shall prove the lemma by uniformly approxi-
mating w by functions satisfying the hypothesis of Lemma 5.1.

Let 2, #,, --- be a countable dense subset of U. For ic w, set
C;, = {reR; f(x;) + re or g(x;) + re does not invert}. Since FE is finite
dimensional, C; must be finite for 7€ w, and thus C = U C; must
be countable. Let », > r, > ... be a sequence in R — C which con-

verges to 0, and for xe U(p), 1 w, set u,(x) = Sx [f(z) + riz] dz and
0
v(x) = go [9(2) + riz]dz.

Let tew, xe U(p). Then (u,), = f(x) + r.e is orientation pre-
serving if invertible by hypothesis, and trivially [g(x) + 7;¢]* is orien-
tation preserving if invertible. For 7, j€ w, since »;€ C, r;€C;, and
hence f(x;) + e and g(z;) + r,e invert. Whence [g(x;) +7e]* inverts.
Then from Lemma 5.1, for ie w, xe U, w, = u; or v,,

lwi(w) || = sup {[Jw.(D)[l; te V}.

Letting 7 — 0, w;, — w, and the lemma follows.

THEOREM 5.1. (Strong maximum modulus theorem). Let p > 1,
and let f be an integrable function on U(0) into an orientation pre-
serving family G of B, G a linear subspace of B. Then for xe U,

If@ = M=sup{llf@O)];teV}.

Proof. Let F’ bz the family of all integrable functions on opsn
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subsets of K into G. Since G is a linear space, F'’ is a linear space
closed under the operation of translation.

For x¢ U(p), set u(w) — g f(2)dz. For aeV, 0<r< (p—1)/2,
Q
ze U[A + 0)/2], set wu(a, r)(x) = [u(x + ra) — ufx)]r~'. Let &> 0.
Then there exists 0 << d < o — 1, such that for xe £, 1 —d < |2l <
1+ 0, we have || f(®)l] £ M + . Then for 0 < <4, v, xc V,

Hu(r, a)(@) || = [ [u(@+ra) — u(x)] r~]|
= H‘ Shmf(z)dz Hr“ < (M+2) | (x+ra)y—a] ||+

= (M+e¢)|lraf[r™
=M+ c.

For xeU,0<r <9, e V, we have
wr, @), = [f+ra)—f@hr'eG,
and hence from Lemma 5.2,

lu(r, a)(@) || < sup {||u(r, )@) |l;te V} = M+ ¢,
and

1 f@) @) || = lim [fu(r, @) | = M + .

Thus for xe U, o€ V, since ¢ is arbitrary, || f(z) (@) ]| £ M, and thus
| f)]] = M.

One additional lemma and we will be able to obtain the unique-
ness theorem.

LeMMA 5.3. Let AeT. Then:

(1) If p is even and there exists at most one element re R such
that A + re does not invert, then if A inverts, A is orientation pre-
serving.

(2) If p is odd, there exists at least one element re R such that
A + re does not invert.

3) If for all re R, » # 0, A + re tnverts, then A + re is orien-
tation preserving for all r > 0.

Proof. Let awe{—1, +1} and suppose for all s = 0, that A + as
is invertible. Now extend the reals to include — < and 4 o and set
S(8) = A+ ase for 0 < s <1, set f(s) = A/s + ae for 1 < s < o and
set f(=) = ae. Then f is a continuous map of {0, =] into the space
of invertible elements of B and hence

1t(A) = 1 [F(O)] = pe[f(e=)] = re(exe) .
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We now handle (1). For some ae{—1, +1}, A + sae inverts for
all s > 0. Thus ¢(A) = ;{ae). Since p is even u(—e) = p(+e) =1,
and thus u(4) = 1.

We now handle (2). If A + se inverts for all se R, we have,
since p is odd, 1 = u(e) = (A) = p(—e) = —1.

We now handle (3). Let » >0 and set A, = A + re. Then
A, + se inverts for all s = 0 and hence p(A-+re) = u(4,) = ple) = 1.

To prove the lemma employing determinants, we observe that if
we set h(s) = det(A + se), then & is a polynomial of degree p which
vanishes if and only if A + se does not invert. Moreover for se R,
if h(s) > 0, then p(A +se) =1 and if A(s) < 0, (A +se) = —1. The
lemma would then follow from these facts:

(1) If p were even and s had at most one root 7, then h(s) >0
for all se R, s # r,.

(2) If p were odd, then lim,, A(s) = —c and lim, .k(s) = o,
and thus for some r,€ R, h(r,) = 0.

(3) h(s)y = 0 for se (0, ) and lim,... k(s) = oo, implies h(s) >0
for all se (0, ).

THEOREM 5.2. (uniqueness theorem). Let 0 > 1, and let F' be
an algebra (not necessarily commutative) of integrable functions on
U(p) into B, with identity, and let f, ge F'. Then if f(t) = g(t) for
all te V, then f(x) = g(x) for all xe U.

Proof. Set h=f—g, let meV, and set (@) = S K(2)dz for

ze U(p). Then for all xe V, h*(x) = h(x) = 0, and thus ff)or all ze V,
u(x) = 0. Hence from Lemma 5.2, for all z¢ U,

llu(@) || < sup {||u@)]|l;te V} =0,
and u(x) = 0. Hence for xe U, te K,
R(x)(t) = lim [u(x+rt) —u(x)] " = lim 0/r = 0
and 2#(x) = 0.
Thus range % lies in Z, and he F,. For xe U(p), set
o(@) = S h(2)dz -
2o

Then v(x) = 0 for xe V. From Lemma 5.3, Z, is an orientation pre-
serving family. Hence we may apply Lemma 5.2 to v and obtain as
above in the case of u, for x e U, (f —g)(x) = h(x) = 0 and f(x) = g(x).

6. The weak maximum modulus theorem.
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THEOREM 6.1. There exists N > 0, such that for 6 >1, feF,
domain f = U(d), we have for xe U,

(1) 1 f@ =NM,
where M = sup{|| f()]]; te V}.

Proof. For xze U(@6), set g(x) = Sz f(z)dz. We consider first the

case when there exist two distinet irreducible invariant subspaces
H,, H, of E. In this case we shall employ H, ond H, to form a new
norm on T, || - ||,, and maximize with respect to || - ||,

For ¢ =1, 2, let ¢; be the natural homomorphism of & onto E;, =
E/H;,. For 1 =1,2 AeT, set ||Al; =sup{]||0;A(®)]j; te V}, and set
Al =1lAl., + |]All,e Suppose A is an element of E such that
[[All, =0. If we show that 4 =0, we will have that || -], is a
norm on 7.

Let xe E. Now for © =1,2,||6;A|| = 0 and ;4 = 0, and hence
0 =[6;A)(x) = 6]A(x)]. Thus A(x)e H; for ¢ =1, 2, and thus A(x)
lies in the invariant subspace H, N H, of E. From the minimality
of H, H,, H N H, = {0}, and thus A(x) =0. Thus A =0 and ||| -],
is a norm.

Let ©=1,2, and let 2, ye U such that y — € H;,. Then setting
S =W =H,, we have from Lemma 4.2, for all te E, [f(y)— f(x)](¢) € H;,
and hence 0,1 (y)(t) — 0.f(@)(?) = 0{[f () — f(@)](©)} =0. Thus 0,1 (y) =
0:f () and || f()ll: = | f(@) [l

Now there exist 0 < o < B such that for Ae T,

alfAll=[Al,=gllAll.

Let ¢ U. Then there exist v, y.€ V, such that y;, — xe H; for ©+ =
1, 2, and thus

allf@ = f@l =@+ 1@l = [ F@) |l + 17 @) .
=Nfw) e+ Il = BIF@) I+ Bl f(w) || = 28M,

and thus || f(») || < NM, where N = 28a".

We now consider the case where there exists exactly one ir-
reducible invariant subspace H of E. If the dimension p of FE is
even we will show that the hypothesis of Theorem 5.1 is satisfied.
If p is odd, we will be able, if T does not possess nonzero elements
with ranges lying in H, to reduce the argument to that employed in
the case of two invariant subspaces. Otherwise we shall be forced to
engage in a lengthy and detailed structural analysis of 7 and f.

Let AeT. Then there exists at most one element »e R such
that A — re does not invert. Indeed suppose that there exist
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r, 1€ R, r, # r, such that A — r,e and A — r,e do not invert. Let
©t=1,2 and set V; = {&c E; (¢ — r,¢})(z) = 0}. Then for e V,, Be T,
y = B(x), we have

(A —rie)y) = [(A—re)B](@) = B[(A—re)@)] = B0) =0,

and thus V; is an invariant subspace of E. Now V; must contain
an irreducible invariant subspace P;, and since H is unique, P; = H.
Thus P, =P, =H, and for xe H, x %0, 0 = A(®@)—A(x) = rx—rx =
(r,—r;)x. But then #, # r, implies z = 0.

If p is even, then from Lemma 5.3, T is an orientation preserv-
ing family, and hence from Theorem 5.1, (1) holds with N = 1.

We now consider the case when p is odd. Suppose for oe T,
o(E)< H, implies 0 = 0, let 6 be the natural homomorphism of E
into E/H, and set ||Al] =||0A]| for AeT. Then |||’ is a norm
on T and the argument reduces to that for || - ||,

Now suppose there exists o, T, 0,:+ 0, such that o,(F) < H.
We shall write £ as the direct sum of the null space S of g, and a
one-dimensional subspace W of FE, and shall write f in the form
oe + o, where o(x)(y) = 0 for xe U(o), yc H. We will show that p
is constant on S and thus that o is integrable on S (and hence on
all hyperplanes parallel to S) and that since S has even dimension
p—1, that o|S satisfies (1). It then remains to relate the behavior
of ¢ in the direction of W to p to complete the argument.

We decompose f. Since p is odd, from Lemma 5.3, for Ae T,
there exists p,e R such that o, = A — p,e does not invert. For
ze U(p), A = f(z), set p(x) = p, and set o(z) = 6,. Then f = pe+o.

We decompose E. Set S = {ze K, o,(x) = 0}, let 2, V such that
o) #= 0, and set W = {rz,; re R}. If H is shown to be one-dimen-
sional, then since o(F) & H, we would have that range o, is one-
dimensional, and thus that the null space S of ¢, is p—1 dimensional,
giving us E=S@H W. Let peH, B8+0. Now for all AeT,
HcS {xcE; [A—p.l(®) =0}, and thus o,(8) =[A—p0,](8B) =0 and
A(B) = p,8. Then H' = {rg; re R} is an invariant subspace of E
lying in H, and thus H'= H and H is one-dimensional. Also
o(x)(H) = {0} for e U(p).

We now show that p is constant on S. Consider po, = fo,— g0,
We first show that oo, = 0 and thus that oo, = fo,, and therefore
that po, is integrable.

Let xe€ U(o) and set @« = o(x). Then a(B) = 0. Now

E2aE)2aXE)2...

is a sequence of invariant subspaces of E, and H must lie in a*(E),
if a¥(E) = (0) for ke w. Suppose a” = 0. Then a”(E) #= {0} and for
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some 1=Zk<p, kew, a/(F) = a*""(F) = a[a®(E)] = {0} and « is
one-to-one on «*(F). But then ge HE a*(E) and a(B) # 0. Thus
a? = 0. Now for some z,€8, se R, a(x,) = %, + sx,. Then &’*(x,) =
a(x) + sa(x,) = a(x,) + s[x,+sx,] = x, + s*x,, where x, = a(x,) + sz, € S.
Continuing, we obtain 0 = a’(x,) = 2z, + s’x,, where z,¢S and
s?e,e W. Thus %, =82, =0 and s* =0, s =10, and a(z,) =x,¢€S.
Thus a(E)=S. Now ¢,(S) = {0}, and thus ac(F) = g [a(FE)] < 0,(S) =
{0} and ag, = 0.

For ze U, te S, we have [p(2)0,](f) = 0. Therefore, setting W=
{0}, we have from Lemma 4.2, for x, ye F such that y—xze S, that
[o(y)o,— p(®)o,](t) = 0 for all te E. In particular

0 = [o(W)oo—p@)a] (@) = [o(y) — p@)]ow(x,)

and hence since oy(x,) == 0, we have p(y) — p(z) = 0 and o(y) = p(x).
Thus on hyperplanes of the form x + S, e E, p is constant and
g = f — pe is integrable. For se[-—1, 1], set ¢(s) = o(sx,).

We now study the relationship between of( - )(x,), and p. Let
s,eR, |s,]<1, and let », y be distinct points of the line L =
{sex, + sB; s€ R} such that x, ye U. Then o(y) = p(x) = 4(s;). Since
S is an invariant subspace of E, B8e HZ S, and thus y — 2¢S.
Now there exists 7, > 0 such that for 0 < 7w < 7, the contour C =
[e, ¥1 U ly, y+7x,] U ly +7x,, v+, U [£+72,, 2] as well as its interior
lies in U(5).

Let 0 < 7w < 7w, Since o(z)(B) = 0 for all z¢ U(9),

S o(d)dz =0  and g o()dz = 0 .

z+rzg

Moreover, since for 0 < s < 7, (x+sx,) — (y+sx,) = x—yeS, we have
o(x+sx,) = o(y +sv,) and thus

Sm+mop(z)dz = gzﬁﬂop(z)dz .

@z

Thus
0= SC f)dz = SC o(2)dz + Sop(z)edz

- [g o(2)dz — S””"o(z)dz]
+ 0@y —x) — p(@+ 7w (y +7x,) — (@ +7x,)] -
Hence since p(x) = ¢(s,) and o(x+7x,) = é(s,+7), we have
(2)  [(s047)— (s (y—2) = 7 S:”“"a(z)dz e Sjwoa(z)dz ,

Now as w — 0, the right hand side of (2) must converge to
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o(x)(2e) — o(y)(x,)
and thus ¢'(s,) exists and
¢'(s)(y—x) = a(@)(@) — a(y)(%) .

Let o', y'e LNV, ' # y'. Then ¢'(s)(¥' —") = o () () —a(y') (),
and

16'(s0) | = [lo@ W) —a(@ ) (@) || = [|y' =" |7 = 2M, || y' =2 ||,
where M, = sup{|lo@®)|; te V}. Then for xe LN U, ¢'(s))(x—2") =
o(x)(x,) — o(x')(w,), and
lo@)(@) | = || ¢"(s)(@—2") + (@) () ||
= o'(s) [l - [le — @[] + [[o@)(x) [

3

@) <20, |y — @ o — o + I,
= 3M,,

where clearly ||y — o'||7' ||z — o’|| < 1.

We are now ready for the concluding arguments. For ac T, set
[lell, = sup{lla®)|l; te SN V} and set |[all = {fall, + |Ja(x)|]. Since
S has even dimension p — 1, we have for xe€ U and the hyperplane
Sa: =& + S7

(1)  le@ . =sup{llo@® s teS.0 V)= M, .

Since T is the direct sum of {re; re R) and D = {aeT; o = 0}
the mappings

Pire+a—>r and Q:re t+a—« (re R; cce D)

are uniquely defined linear transformations. Hence there exists N, >0
such that for z = re + o, re R, ae D,

(5) Ir[=[PRE|=N]z] and [[af =[QR) | =Nz,
and thus
(6) M, < N,M.

Clearly || - |l; is @ norm on T and hence there exists N, > 0 such
that ||a|] < N, ||al, for «e T. Then from equations (8) —(6) for
xe U, we have for some ye V,

Hf@ I = llo@e+o@) |l = [o@e]l + [[o@) ]| = |o@) | + N, | o).
=[]+ N.[Jo@) ||, + N, [l o(@)(x) ||
=< N,M + N.M, + N,(3M1,)
< N,M + N,N,M -+ 3N,N,M = NM,
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where N = N,(14+4N,).

7. Maximal spectral norm theorem. Let f¢F, U < domain f,
xze U. In this section we show that

© Hf@ I, = sup {[[f@ 1l te V}.

Now for ne w, f*¢ F, and from the weak maximum modulus theorem,
Theorem 6.1, there exists N > 0, determined by F, such that

@) |l = N sup{l|f"®)|l}; te V},
and hence
(1) [l f@)" ' = N sup {|| FO)"I['!"; te V}.

If we let n — o, we obtain || f(z) |/, from the left hand side of (1),
and would expect to obtain sup {|] f(¢)|l,; t€ V} from the right hand
side of (1), thus yielding us (C). The latter conclusion, however, is
not obvious and requires Lemma 7.3 in its proof. Thus, especially in
view of the lengthy and highly technical proof of Theorem 6.1, it is
highly desirable to have a direct proof of (C); which is given in
Theorem 7.2.

To this end we first prove (C) for a semi-norm || - ||,, defined in
terms of the family 57 of irreducible subspaces of E invariant under
T and show that this new semi-norm coincides with the spectral
semi-norm.

For He 575, xe T, setting 2z, = x| H, set

ey = Il ll, = lim sup || «f || .
N—rc

Then for xe T, we set |||, = sup{|| x|y He &#}. Clearly |[z|,, <
Nell, < |l2]| for all xe T.

Let He 57 and set Z = T | H. From Lemma 4.1, Z is a field, and
from the fundamental theorem of algebra, Z is isomorphic to R or
K. However, the spectral norm need not coincide with the natural
operator norm on Z. Hence Z under the natural operator norm need
not be isometric to R or K.

Let f be a functional on T. f is said to be a semi-norm if for
all 2, ye T, r > 0, we have

1 f(z) = 0.

2) f(rz) = rf(z).

3 f@+y) = F@ + F@)-

@ fly) < F@f @)

(6) fle) = 1.

[ is said to be multiplicative if f(x*) = f(x)* for xe T.
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We now show that the spectral norm is a multiplicative semi-norm
and hence trivially that || - ||, is a multiplicative semi-norm. This
can be obtained by complexifying T and applying standard arguments.
A direct argument for the real case consonant with the real variable
approach of this paper is given by Riesz-Nagy [7] and is quite
simple.

THEOREM 7.1. For xzeT, set f(x) =] 2|, = limsup,_. || z"|"".
Then f is a multiplicative semi-norm on T.

Proof. (Riesz-Nagy) Let xe 7. We first show that lim,_.,||x"||'"
exists. Setting a, = [|x"|| for ne w, we have for n, mecw, a,., =
Jerrm || < (2™ - [|[2™]] = ¢,0m- Set a = inf {ai"; ne w} and let ¢ > 0.
Then for some mew, ai™ < a + ¢/2. Let » > m, new. Then n =
mq + r where gew, and 0 < r < m. Clearly a, < (a¢,)’a, and thus
al™ < a¥"al" = (am)™"a)* < (a+¢/2)™al", Now as n— o, we have
gm/n = gm/(gm+7r) — 1 and a;/* — 1, and thus for n sufficiently large
a<a"<a+ e Thus lim,.., ||2"]||"" exists and is equal to a.

Now for z, ye T,

oyl = lim || zy)" [
= lim [la%y" ' < lim |2 [P g {1

=zl |yl
and

o[l = Tim || @) (1% = [tim a2 (1= | = Il

Let A, Be T. We now show that ||A+B|,=<||4]|, + ||B]..
Set a =||A|| and b= || B|| and let ¢ > 0. Then for some mecw,
[[A*[|'* < p = || All, + ¢/2 and |[B*|['* < g = || B|l, + ¢/2 for all n =
m, n€®. Thus for n=2m, ncw,

la+Brl =5 (Pae+ 5 (Hpe+ 5 (7)o

st
= Zl (?)pfq”"’(a/p)" +3 <?>p"q”“i + éﬂ(?)p"q""'(b/q)”"'
[ﬁ(?)piq"“i] : [1 + Sup (a/p)* + sup (b/q)"]

=0 0Sk=m—

< (p+o)"M,

and || (A+B)"||'* £ (p+q)M'", where M is independent of n. Thus
letting n — o, we have [|A+B|, = p+q =z + [yl + e

The next lemma will allow us to conclude |||, = ||x]|, for
xe T from the fact that || - ||, and || - ||, annihilate the same elements
of T.

AN
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LEmMMA 7.1. Let f,, f: be semi-norms on T such that fi(z) = 0 if
and only if fAx) =0 for xeT. Then there exists 8> 0 such that
fix) < Bfu(x) for all xe T. Moreover if f, and f. are multiplicative,
then f, = fi

Proof. Set S ={xeT; fi(x) = 0}. Then for reR, z, yeT,
filrx) =rf(x) =r-0=0, and fi(x+y) < fi(x) + fily) =0, and S is a linear
subspace of E. Let @ be the quotient space 7/S. Now for 7 =1, 2,
x,y, €T such that x —ye S, we have |filx)—fiw)| = filx—y) =0
and thus fi(») = fi(y). For i=1,2 2e T, setting o’ =x + S, set
fi@) = fi(x). Then f/, f are norms on the finite dimensional space
Q. Hence there exist 0 < a < g such that af/(y) < f,(y) < BfI(Y)
for all ye Q. Whence af,(z) < filx) < gfi(x) for xe T.

Let xe T, ne w, and suppose f, and f, are multiplicative. Then
afi(x") = fi(x") = Bfi(x") and since fi(x")" = fi(w) for

=12 a"fi(2) = filx) = B"fi(@) .

Letting n — o, a'™— 1, g»—1, and hence f,(x) < fi(®) < fi(z) and
Ji = fo

LemMMA 7.2. For zeT, ||z, = |2l Moreover for xze T,
Nell, =0 i and only if x® = 0, where p is the dimension of E.

Proof. Set S, ={xeT;||z|.=0}, S,={xecT;| 2|, =0}, and
S={xeT;x*=0}. The theorem follows if we show S =8, = 8S,,
since if S, = S,,, from Lemma 7.1, we would have ||z]||, = ||z|l. for
all xeT. Now for ¢eS, 0 =10, =1!l¢*||, =1cll? and 6eS,, and
for ze S, ||z|l,Z|lzll, =0, and z€8S,. Thus S& S, & S,.

Let o€ S, and suppose o? + 0. Consider the sequence
E20E)2--- 20%(H) = {0} .

Clearly for some ke{l, 2, ---, p—1}, o%E) = ¢**(E) = olc"(E)] = {0}
and o is one-to-one on W = ¢*(F). Since W is invariant under 7T
and W is finite dimensional, there exists He o7, such that I & W.
From Lemma 4.1, T, = T|H is a field. Now setting o, = ¢| H and
e, = e | H, there exists a e T, such that o, = ¢,, Whence 1 = ||¢||, =
llowlly = lloollx Jally and 0 <|lo|lx = [0l But then o¢S,.
Thus 6> =0 and S, < S, and thus S= S, = S..

LEMMA 7.3. For M > 1, there exists N > 0 such that for ze T,
o]l < M, we have for all n > p, ncw, ||2*]| < N z|»?.

Proof. Set S={oeT;||o|, =0} and let Q be the quotient space
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T/S. For zeT, z, =2+ S, set ||z]l, =||z| =inf{|{|lz+0o]; ceS]}.
Then |||, = 0 if and only if |||, =0 for xe T. From Lemma 7.1,
there exists a = 1, such that [[z[|, < a/«]|, for ze T. Fix xeT,
llz|| < M. Since x, =« + S is finite dimensional, there exists #e =,
such that ||Z]| = ||2 || = [|#{le- Set 0 =2 — Z. Then o€ S and from
Lemma 7.2, o7 = 0.

Let new, n > ». Then

ol = llo=3 1| < |2l + 117] = 21l 2|
and
Il = @+oril = | 3 (Do | = [ S (F)eo
= SN aI ol S 151 M, S = M,
< aliol M,
where

et Tl <az( Yzl

S
(e

[E2 1

I M? BMB

II/\

and thus ||z =

THEOREM 7.2. (Maximal spactral norm theorem). For fe F such
that U < domain f, and ze U,

@), = M=sup{||f@®)|;teV}.

Proof. We show that || f(x)|ly < M for all He 52 and thus
that [ f(@) [, = | /(@) |ln = sup{l| f(@) ;s He 22} = M. Let He .
We first consider the case when H has dimension greater than one.
There are two ways of handling this cass. First, applying the
fundamental theorem of algebra, we observe that 7| H under the
spectral norm is isomorphic and isometric to K. Suitably com-
plexifying H we obtain from classical complex variable theory that
[ f@) lz < supf{llf@® |z te VN[e+H]} = M.

Proceeding directly we observe, setting Z = T'| H, that z — {0} is
connected, and hence u(z) =1 for all ze Z — {0}, and thus Z is an
orientation preserving family. For ne w, from Theorem 5.1.

O @] <sup{lIF@"; te VN [x+H], where f(t) = f(t)|H
for tedomain f. From Lemma 7.1, there exists a > 1 such that
for e T, x, = x| H, we have || £ a||%l], = allz]|ly. Thus for
new, teV,
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NF@ < all fO e = all FONL < all FB) 2,
and thus from (1),

N F@) || < asup{|| F@)|II; te VN [e+H]
Sasup{l|f@) |l te V)
=aM".

Hence
£ (@) llx = lim | f || < lima'"M = M.

We now handle the case when H has dimension one. Suppose
Il f(@) ||z > M. For tedomain f, set g(t) = 2 f(O)[M + || f() [[z]*. Then
lg(@) ||z >1, and M, = sup{|[g(t)ll;te V} <L.

Now from Lemma 7.3, there exists N > 0 such that |[g(®)"] =<
Nllg@®)|[z77 for te V, n > p, ncw. Let a, 8 be points of V such
that [a, 8] = UN[x+H]. There exists ye[a, 8], ¥ # #, such that
lg@)|ly =1 for all te{x, y]. Let A be an arc of V with endpoints
a and B. For tela, B], there exists 7(¢f) =R such that |»(t)| =
Ho®)l: and [g(®)(y) = »(t) y for all ye H. Then for » > p, n even,

new, ¢ = (B—a)/ll| 8—alj|, setting
p= S‘* g(rdt  and Q= S g(t)dt
Ua, ] fa

we have

~

P_Q_Q:S[aﬁ]u‘ig(t)”dt:O and [Pl =lQIl,
and

Q=" loriids < |7 Nilg 1 rds < NMyrez,
A A
and

1P =

Y Yy

r(t)ds = g 1ds

L,y

B B

r(t)”eodsH - g r(t)ds = S

ala, 81 Xa.f) *z yl

where “ds” indicates integration with respect to path length, and
thus 0 <]y —z||Z || P =|Q| & NM > for all n > p, n even,
new. But then since M, < 1, we have ||y — 2|/ = 0 and y = «.
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