Vol. 40, No. 2, 1972

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 325: 1
Vol. 324: 1  2
Vol. 323: 1  2
Vol. 322: 1  2
Vol. 321: 1  2
Vol. 320: 1  2
Vol. 319: 1  2
Vol. 318: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
Exponential sums over GF(2n)

Kenneth S. Williams

Vol. 40 (1972), No. 2, 511–519
Abstract

Let F = GF(q) denote the finite field with q = 2n elements. For f(X) F[X] we let

       ∑
S (f ) =   e(f(x)).
x∈F

A deep result of Carlitz and Uchiyama states that if f(X)g(X)2+g(X)+b,g(X) F[X],b F, then

|S(f)| ≦ (degf − 1)q1∕2

This estimate is proved in an elementary way when deg f = 3,4,5 or 6. In certain cases the estimate is improved.

Mathematical Subject Classification
Primary: 12C25
Milestones
Received: 6 August 1970
Published: 1 February 1972
Authors
Kenneth S. Williams