MATRIX INEQUALITIES AND KERNELS OF LINEAR TRANSFORMATIONS

PETER BOTTA
MATRIX INEQUALITIES AND KERNELS
OF LINEAR TRANSFORMATIONS

PETER BOTTA

Let V be a finite dimensional unitary space and $\otimes^n V$ the unitary space of m-contravariant tensors based on V with the inner product induced from V. If T is a linear transformation on $\otimes^n V$ to itself and $X = (x_i, x_j)$ any positive semidefinite hermitian matrix define

$$d^p(X) = \| T(x_1 \otimes \cdots \otimes x_m) \|^2.$$

Let $\| \cdot \|_1$ be any norm on the space of $m \times m$ complex matrices, and $\mathcal{I} = \{ x_1 \otimes \cdots \otimes x_m; \ x_i \in V \}$. The main result is that if T and S are any two linear transformations on $\otimes^n V$ to itself then the following are equivalent:

(a) $\ker(T) \cap \mathcal{I} \subseteq \ker(S) \cap \mathcal{I}$

(b) If X is positive semidefinite hermitian and $d^p(X) = 0$ then $d^q(X) = 0$.

(c) There exists a positive integer k and a constant $c > 0$ such that for all positive semidefinite hermitian matrices X

$$c \| X \|^1 \| d^p(X) \|^k \geq (d^q(X))^k.$$

Some applications to inequalities for generalized matrix functions are given.

1. Introduction. Let V be a finite dimensional unitary space with inner product (\cdot , \cdot) and $\otimes^n V$ the space of m-contravariant tensors based on V. The inner product on V induces an inner product on $\otimes^n V$ as follows. If $x_1, \cdots, x_m; \ y_1, \cdots, y_m \in V$ define

$$(x_1 \otimes \cdots \otimes x_m, y_1 \otimes \cdots \otimes y_m) = \prod_{i=1}^m (x_i, y_i).$$

Since the elements of the form $z_1 \otimes \cdots \otimes z_m, \ z_i \in V$, span $\otimes^n V$ we may extend the above to all of $\otimes^n V$ by conjugate bilinear extension and it is easy to check that this does define an inner product.

Let S_m be the symmetric group of degree m and suppose $\sigma \in S_m$. We define a linear map $P(\sigma) : \otimes^n V \to \otimes^n V$ by

$$P(\sigma)(x_1 \otimes \cdots \otimes x_m) = x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(m)} \ (\alpha = \sigma^{-1})$$

and linear extension. If G is a subgroup of S_m and χ an irreducible character on G let

$$T_\chi^g = \frac{\chi(1)}{|G|} \sum_{g \in G} \chi(g) P(g). \ (|G| = \text{order of } G).$$
It is not difficult to verify that T_G° is an idempotent hermitian operator and hence a projection onto its range. T_G° is called a symmetry operator. If $\bar{X} = (x_{ij})$ is a m-square complex matrix then the generalized matrix function associated with G and χ, d_G° is defined by

$$d_G^\circ(\bar{X}) = \frac{\chi(1)}{|G|} \sum_{g \in G} \chi(g) \prod_{i=1}^{m} x_{ig(i)}.$$

If \bar{X} is positive semidefinite hermitian then \bar{X} is a Gram matrix based on some set of vectors $\{x_1, \ldots, x_m\}$. That is, $x_{ij} = (x_i, x_j)$. A simple computation shows that

$$|| T_G^\circ(x_1 \otimes \cdots \otimes x_m) ||^2 = d_G^\circ(\bar{X}).$$

Hence the generalized matrix functions may be interpreted as norms of certain elements in a subspace of $\bigotimes^m V$.

In 1918 I. Schur [4] proved that G is any subgroup of S_m and χ is a character of degree r then

$$d_G^\circ(\bar{X}) \geq r \det (\bar{X})$$

for all positive semidefinite \bar{X}. It is easy to see that the determinant arises from the symmetry class associated with S_m and the alternating character. Recently Marcus [1, 3], Williamson [5] and others have discovered several inequalities of Schur type, that is, if G and H are subgroups of S_m and χ and ν are irreducible characters on G and H respectively then for certain choices of G, H, χ and ν there exists a constant $c > 0$ such that $c d_G^\circ(\bar{X}) \geq d_H^\circ(\bar{X})$ for all positive semidefinite \bar{X}. It is clear that if such an inequality exists then $d_G^\circ(\bar{X}) = 0$ implies that $d_H^\circ(\bar{X}) = 0$. It is the purpose of this note to give a type of converse to this result.

If T is a linear transformation on $\bigotimes^m V$ to itself and $\bar{X} = (x_{ij})$ is a positive semidefinite hermitian matrix, choose x_1, \ldots, x_m in V such that $x_{ij} = (x_i, x_j)$ and define

$$d^T(\bar{X}) = || T(x_1 \otimes \cdots \otimes x_m) ||^2.$$

Further, let \mathcal{T} be the set of all elements in $\bigotimes^m V$ of the form $x_1 \otimes \cdots \otimes x_m$ with x_i in V. The main result of this note is the following:

Theorem. Let $|| \ ||$ be any norm on the vector space of m-square complex matrices. If T and S are any two linear transformations on $\bigotimes^m V$ to itself then the following are equivalent

1. $\ker(T) \cap \mathcal{T} \subseteq \ker(S) \cap \mathcal{T}$
2. If \bar{X} is positive semidefinite hermitian and $d^T(\bar{X}) = 0$ then $d^S(\bar{X}) = 0$
There exists a positive integer \(k \) and a constant \(c > 0 \) such that for all positive semidefinite hermitian matrices \(X \)
\[
 c \| X \|^{m(k-1)} d^r(X) \geq (d^s(X))^k.
\]

In the case that \(T \) and \(S \) are symmetry operators this result shows that a knowledge of \(\ker(T) \cap \mathcal{F} \) and \(\ker(S) \cap \mathcal{F} \) would allow us to decide whether an inequality of type (3) exists or not: For example, if \(\chi \) is identically equal to one then one may show that \(\ker(T \chi G) \cap \mathcal{F} = \{ 0 \} \) hence there is always an inequality of type (3). Unfortunately the determination of \(\ker(T \chi G) \) is a difficult problem and other than when the character is identically one or \(T \) is the alternating operator little is known in this direction.

2. Proof of Theorem. Let \(e_1, \cdots, e_n \) be an orthonormal basis for \(V \) and let \(I = \{ \omega = (\omega_1, \cdots, \omega_m): 1 \leq \omega_i \leq n, \ \omega_i \text{ and integer} \}. \) It is known that the set \(\{ e_\omega = e_{\omega_1} \otimes \cdots \otimes e_{\omega_m}: \omega \in I \} \) is an orthonormal basis for \(\bigotimes^n V. \) If \(x_j = \sum_{i=1}^n x_i e_i \) then one computes, using the properties of the space of \(m \)-contravariant tensors, that
\[
x_1 \otimes \cdots \otimes x_m = \sum_{\omega \in \Gamma} p_\omega e_\omega, \quad p_\omega = \prod_{i=1}^n x_{\omega_i}.
\]

If the \(x_i \) are considered as variable vectors then the \(p_\omega \) are just polynomials in the \(mn \) unknowns \(x_{\omega_i}. \)

Let \(T(e_\omega) = \sum_{\tau \in \Gamma} t_{\tau \omega} e_\tau \) and \(S(e_\omega) = \sum_{\tau \in \Gamma} s_{\tau \omega} e_\tau \) then
\[
 T(x_1 \otimes \cdots \otimes x_m) = \sum_{\tau \in \Gamma} \left(\sum_{\omega \in \Gamma} t_{\tau \omega} p_\omega \right) e_\tau
\]
and
\[
 S(x_1 \otimes \cdots \otimes x_m) = \sum_{\tau \in \Gamma} \left(\sum_{\omega \in \Gamma} s_{\tau \omega} p_\omega \right) e_\tau.
\]

Set \(f_\tau = \sum_{\omega \in \Gamma} t_{\tau \omega} p_\omega \) and \(g_\tau = \sum_{\omega \in \Gamma} s_{\tau \omega} p_\omega, \) then
\[
 \| T(x_1 \otimes \cdots \otimes x_m) \|^2 = \sum_{\tau \in \Gamma} |f_\tau|^2
\]
and
\[
 \| S(x_1 \otimes \cdots \otimes x_m) \|^2 = \sum_{\tau \in \Gamma} |g_\tau|^2.
\]

Hence, if (2) holds then \(f_\tau = 0 \) for all \(\tau \in \Gamma \) implies that \(g_\tau = 0 \) for all \(\tau \in \Gamma. \)

Let \(J \) be the ideal in \(C[x_{i_1} \cdots x_{m_n}] \) generated by the polynomials
\(f_\tau, \ \tau \in \Gamma \) and \(V = \{ (a_{i_1} \cdots a_{m_n}) \in C^{m_n}: f(a_{i_1} \cdots a_{m_n}) = 0 \ \text{for all } f \in J \}. \)

Applying Hilbert's Nullstellensatz we conclude that
\[
g_\tau \in \text{rad } J = \{ h: h^k \in J \text{ for some positive integer } k \}. \]
Therefore there exists a positive integer k_τ such that $g^{k_\tau} \in J$. If k is
the least common multiple of all the integers $k_\tau (\tau \in \Gamma)$ then $g_k^\tau \in J \quad \forall \tau \in \Gamma$ so there exist $q_{\tau w} \in C[x_{11}, \ldots, x_{mn}]$ such that

$$g_k^\tau = \sum q_{\tau w} f_w \quad .$$

Let $K = \{(a_{11}, \ldots, a_{mn}) \in C^{mn}: \text{if } A = (a_{ij}) \text{ then } A \text{ is positive semi-definite hermitian and } ||A|| = 1\}$. Then K is a compact set in C^{mn} since the set of positive semidefinite hermitian matrices is closed.

Set $c_{\tau w} = \sup_{x \in K} |q_{\tau w}| < \infty$ (since $q_{\tau w}$ is continuous) and $a = \max_{w, \tau \in \Gamma} c_{\tau w}^2$. Then on K

$$|g_k^\tau|^2 = \left| \sum_{w \in \Gamma} q_{\tau w} f_w \right|^2 \leq \sum_{w \in \Gamma} |q_{\tau w}| |f_w|^2 \leq a \sum_{w \in \Gamma} |f_w|^2 .$$

Now note that Γ contains n^m elements and apply inequality 2.4.6 in [2, p. 105] to obtain

$$\left(\sum_{\tau \in \Gamma} |g_k^\tau|^2 \right)^k \leq n^{m(k-1)} \sum_{\tau \in \Gamma} |g_k^\tau|^k \leq a n^m \sum_{w \in \Gamma} |f_w|^2 \quad \text{on } K .$$

Letting $c = an^m$ the above becomes $(d_s(X))^k \leq c \cdot d^r(X)$ for all positive semidefinite hermitian matrices X such that $||X|| = 1$. Now note that a simple calculation shows that $d_s(aX) = a^m d_s(X)$ for $a \geq 0$ and similarly for d^r, therefore if $X \neq 0$, $||1/||X|| X|| = 1$, so

$$1/||X||^m (d_s(X))^k = (d_s(1/||X|| X))^k \leq c d^r(1/||X|| X) = 1/||X||^m d^r(X) .$$

Hence $c ||X||^m (d^s(X))^k \leq (d^s(X))^k$ if $X \neq 0$. However, if $X = 0$ both sides are equal to zero so the result is trivial. This establishes that (2) implies (3).

The implications (1) if and only if (2) and (3) implies (2) are trivial.

3. Applications. Let $G < S_m$ be a finite group and

$$M: G \rightarrow GL(C, k)$$

an irreducible representation of \(G \) with character \(\chi \). If

\[Z(M) = \{ g \in G : M(g)M(x) = M(x)M(g) \text{ for all } x \in G \} \]

then it is well known that \(Z(M) \) consists of these elements of \(G \) whose image under the representation \(M \) are scalar matrices. If \(g \in Z(M) \) and \(x \in G \) then clearly \(\chi(gx) = 1/k \chi(g)\chi(x) \). Suppose \(H < Z(M) \), let

\[T_H^g = \chi(1)/|H| \sum_{h \in H} \chi(h^{-1})P(h) \text{ and } T_O^g = \chi(g)/|G| \sum_{h \in H} \chi(h^{-1})P(g) \]

be the symmetry operators associated with \(G \) and \(H \) respectively. A simple computation, using the orthogonality relations on characters establishes that

\[T_H^g T_H^g = T_O^g \cdot \]

Hence it follows that \(\ker T_H^g \supset \ker T_O^g \) and we may conclude from the theorem that an inequality of type (3) exists.

In the case that the character \(\chi \) is linear Williamson [5] showed that if \(H < G < S_m \) then for all positive semidefinite hermitian matrices \(X \) there exists a constant \(c > 0 \) such that

\[c \, d_H^g(X) \geq d_O^g(\bar{X}) \cdot \]

Further, Williamson gives a technique of computing the constant \(c \). In a certain sense then, our results include Williamson’s although they are purely of an existence type while his are computable.

In particular, if we choose \(H \) to be the group consisting of the identity alone then certainly \(H < Z(M) \) and so there exists a constant \(c > 0 \) and a positive integer \(k \) such that

\[c \| \bar{X} \|^m \prod_{i=1}^m x_{ii} \geq (d_O^g(\bar{X}))^k \]

for any positive semidefinite hermitian matrix \(\bar{X} \).

References

Received November 10, 1970

University of Toronto
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

C. R. HOBBY
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An elementary definition of surface area in E^{n+1} for smooth surfaces</td>
<td>261</td>
</tr>
<tr>
<td>A three point condition for surfaces of constant mean curvature</td>
<td>269</td>
</tr>
<tr>
<td>On the spectral radius formula in Banach algebras</td>
<td>279</td>
</tr>
<tr>
<td>Matrix inequalities and kernels of linear transformations</td>
<td>285</td>
</tr>
<tr>
<td>Baxter’s theorem and Varberg’s conjecture</td>
<td>291</td>
</tr>
<tr>
<td>Approximation of curves</td>
<td>301</td>
</tr>
<tr>
<td>An algebraic property of the totally symmetric loops associated with Kirkman-Steiner triple systems</td>
<td>305</td>
</tr>
<tr>
<td>Covariant representations of infinite tensor product algebras</td>
<td>311</td>
</tr>
<tr>
<td>Analytic continuation of inner function-operators</td>
<td>327</td>
</tr>
<tr>
<td>Uniform finite generation of the affine group</td>
<td>341</td>
</tr>
<tr>
<td>0-primitive ordered permutation groups</td>
<td>349</td>
</tr>
<tr>
<td>Disjoint maximal invariant subspaces</td>
<td>373</td>
</tr>
<tr>
<td>Radon-Nikodým densities and Jacobians</td>
<td>375</td>
</tr>
<tr>
<td>Royden algebras and quasi-isometries of Riemannian manifolds</td>
<td>397</td>
</tr>
<tr>
<td>A new type of variational theory sufficiency theorem</td>
<td>415</td>
</tr>
<tr>
<td>Fixed point and coincidence sets of biconnected multifunctions on trees</td>
<td>445</td>
</tr>
<tr>
<td>On extremal figures admissible relative to rectangular lattices</td>
<td>451</td>
</tr>
<tr>
<td>The open mapping theorem for spaces with unique segments</td>
<td>459</td>
</tr>
<tr>
<td>Approximation and interpolation</td>
<td>463</td>
</tr>
<tr>
<td>A general Phillips theorem for C^*-algebras and some applications</td>
<td>477</td>
</tr>
<tr>
<td>On the operator $M(Y) = TYS^{-1}$ in locally convex algebras</td>
<td>489</td>
</tr>
<tr>
<td>Asymptotics for a class of weighted eigenvalue problems</td>
<td>501</td>
</tr>
<tr>
<td>Exponential sums over $GF(2^n)$</td>
<td>511</td>
</tr>
</tbody>
</table>