DISJOINT MAXIMAL INVARIANT SUBSPACES

MALCOLM JAY SHERMAN
DISJOINT MAXIMAL INVARIANT SUBSPACES

MALCOLM J. SHERMAN

THEOREM. If there exists a maximal invariant subspace of H^2_{∞} not of codimension 1, then there exists an uncountable family $\{M_\alpha\}$ of maximal invariant subspaces such that $M_\alpha \cap M_\beta = (0)$ if $\alpha \neq \beta$.

H^2_{∞} is the (separable) Hilbert space of all functions $F(e^{i\theta})$ defined on the unit circle with values in the separable infinite dimensional Hilbert space \mathcal{H}, and which are weakly in the Hardy class H^2. For a closed subspace of H^2_{∞}, “invariant” means invariant under the right shift operator. In [5], the existence of an uncountable family of pairwise disjoint full range invariant subspaces was established, and it was remarked that while the theorem said full range invariant subspaces could be small in this sense, there was reason to believe maximal invariant subspaces (if they exist) would exhibit the same behavior. We now prove this, making essential use of a theorem of Dixmier on operator ranges. The author is grateful to Jim Williams for interpreting Dixmier’s results to him.

The existence of a maximal invariant subspace of H^2_{∞} not of codimension 1 is equivalent to the existence of a bounded operator on \mathcal{H} with no nontrivial invariant subspaces in the usual sense [3, p. 103]. Bounded one-to-one operators on \mathcal{H} with disjoint ranges have disjoint Rota subspaces [4, p. 169], and these will be maximal if the operators have no invariant subspaces. It therefore suffices to show, assuming the existence of one bounded operator without invariant subspaces, that there are uncountably many such operators with disjoint ranges. If T has no invariant subspaces, then T has purely continuous spectrum, and since T and $(T - \lambda I)$ have the same invariant subspaces, we can assume the range of T (obviously dense) is not all of \mathcal{H}. It follows that the codimension of the range of T is in fact uncountably infinite [2, Theorem 3.6, Corollary 1]. Dixmier’s theorem [1, p. 84] asserts there is a continuous unitary group $\{U_t\}$, $-\infty < t < \infty$, such that $U_t U_{t'}^{-1}$ and $U_s U_{s'}^{-1}$ have disjoint ranges for $s \neq t$. The proof of Theorem 3.6 of [2] can be generalized to yield uncountably many disjoint operator ranges by choosing instead of the function V, a family V_t defined as multiplication by 1 on $[0, t]$, and multiplication by -1 on $[t, 2\pi]$.

373
REFERENCES

Received July 22, 1970. Research supported by NSF grant GP-12020

INDIANA UNIVERSITY
AND
STATE UNIVERSITY OF NEW YORK AT ALBANY
Louis I. Alpert and L. V. Toralballa, *An elementary definition of surface area in E^{n+1} for smooth surfaces* .. 261
Eamon Boyd Barrett, *A three point condition for surfaces of constant mean curvature* .. 269
Jan-Erik Björk, *On the spectral radius formula in Banach algebras* 279
Peter Botta, *Matrix inequalities and kernels of linear transformations* 285
Bennett Eisenberg, *Baxter’s theorem and Varberg’s conjecture* 291
Heinrich W. Guggenheimer, *Approximation of curves* 301
A. Hedayat, *An algebraic property of the totally symmetric loops associated with Kirkman-Steiner triple systems* 305
Richard Howard Herman and Michael Charles Reed, *Covariant representations of infinite tensor product algebras* 311
Domingo Antonio Herrero, *Analytic continuation of inner function-operators* .. 327
Franklin Lowenthal, *Uniform finite generation of the affine group* 341
Stephen H. McCleary, *0-primitive ordered permutation groups* 349
Malcolm Jay Sherman, *Disjoint maximal invariant subspaces* 373
Mitsuru Nakai, *Radon-Nikodým densities and Jacobians* 375
Mitsuru Nakai, *Royden algebras and quasi-isometries of Riemannian manifolds* .. 397
Russell Daniel Rupp, Jr., *A new type of variational theory sufficiency theorem* .. 415
Helga Schirmer, *Fixed point and coincidence sets of biconnected multifunctions on trees* .. 445
Murray Silver, *On extremal figures admissible relative to rectangular lattices* .. 451
James DeWitt Stein, *The open mapping theorem for spaces with unique segments* .. 459
Arne Stray, *Approximation and interpolation* .. 463
Donald Curtis Taylor, *A general Phillips theorem for C^*-algebras and some applications* .. 477
Florian Vasilescu, *On the operator $M(Y) = T Y S^{-1}$ in locally convex algebras* .. 489
Philip William Walker, *Asymptotics for a class of weighted eigenvalue problems* .. 501
Kenneth S. Williams, *Exponential sums over $GF(2^n)$* 511