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The purpose of this paper is to investigate how the purely
algebraic structure of the Royden algebra relates to the
metric structure of the underlying Riemannian manifold.
This investigation is motivated by the question: what potential-
theoretic properties are intrinsically determined by Royden
algebras,

In order to develop the potential theory systematically on Rieman-
nian 2-manifolds based on the Dirichlet principle, Royden [11,12]
introduced an algebra of continuous functions which now bears his
name. A comprehensive survey of this algebra can be found in [14].
Royden algebras are equally powerful in the potential theory for
higher dimensional Riemannian manifolds. (Cf. e.g. Nakai [6].)

In the 2-dimensional case we have seen (Nakai [4]) that the al-
gebraic structure of the Royden algebra is characteristic of the quasi-
conformal structure of the manifold. In the present paper we shall
show that in higher dimensional cases (m = 3) the algebraic structure
of the Royden algebra is characteristic of the quasi-isometric structure
of the underlying manifold. Our results will be precisely stated and
a program for their proofs given in § 1.

We will consider metric tensors, not necessarily continuous, by
which Riemannian structures are given on manifolds. This seems to
be the most appropriate frame work for classical potential theory,
both from the view point of generality and for technical reasons.

1. Main results.

1. By a Riemannian manifold M we mean a connected, separable,
and orientable m-dimensional (m = 2) differentiable manifold of class
C* with fundamental tensor

Gu ¢ Oin
¢=|: :
gml b gmm
satisfying the following conditions:
In each parametric ball or cube’ B with local parameter x =

L If we use the terms parametric ball (B, ), parametric cube (B, x), or parametric
region (B, x), we always suppose that Bis compact in M and x is defined in a neighborhood
of B. We also say that B itself is a parametric ball, cube, or region if # is clearly
understood.

397
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(«', +++, ™), the local expressions g;;(x) of g;; (4,5 = 1, -+, m) of func-
tions of z are Borel measurable in B and there exists a finite constant
kz = 1 such that

(1) PR EPS B 0@ <k 3 @)

for every x in B and for every m-tuple (&, ---, &™) of real numbers.
Moreover there exists a covering {B} of M consisting of parametric
balls or cubes B such that

(2) 1=k =<
for every B of the covering and for some constant e (1, )

We can, therefore, consider the inverse matrix G~ of G. We set

gt e e . g gu * * * Ginm
G=|: ] g=detG=|:
gml ¢ gmm gml ¢ gmm

In terms of the local parameter ¥ = (&', --., ™), the line element ds
on M is given by ds* = 3.7, g;;(x)da’dx’, and since the g,,;(x) are Borel

measurable, the line integral S ds along any rectifiable curve v in M

T
can be defined. Therefore the natural distance 0,(p, ¢) of two points
p and ¢ in M is given by

(3) ox(p, @ = int | ds

where the infimum is taken with respect to all rectifiable curves <
in M joining p and gq.

2. Let M; (j =1,2) be two Riemannian manifolds with the
natural distances o, = oy, (J = 1, 2). A topological mapping T of M,
onto M, is said to be a quasi-isometry if there exists a finite constant
K =1 such that

(4) K~po(p, q) = oTp, Tg) = Kpo.(p, 9)

for any two points p and ¢ in M,. Clearly the inversemapping 7
of T is also a quasi-isometry of M, onto M,.

A quasi-isometry T is necessarily a quasiconformal mapping, the
latter being characterized by the existence of a finite constant K > 1
such that

2 If (gi;) is a comtinuous positive symmetric tensor, then (1) and (2) are automatically
satisfied. Actually, in this case - may be chosen as close to 1 as we wish.
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(5 ) llm sup max!’qj(?:p()):?‘ IOJ( Tipy Tipo) < K
=0 ming; ,,p=r 0:(Tip, T:po)

at every point p, in M;, where (¢,7) = (1,2) or (2,1), and T, = T,
T, =T

3. A function f defined on a parametric cube B: o' < o' < b®
(=1, --.,m) is said to be absolutely continuous on lines (abbreviated
as ACL) if it is absolutely continuous on almost all line segments
parallel to coordinate axes; explicitly, if we denote by B; the face of
B given by 2f = o', then the function f(C + &e;), e; = (6%, ---, 0'™), is
absolutely continuous in & e (a%, b*) for almost every { € B; with respect
to the (m — 1)-dimensional Lebesgue measure (1 =1, ---, m). A func-
tion f on a Riemannian manifold M is said to be ACL if f|Bis ACL
for every parametric cube in M. For such a function f on M the
Dirichlet integral D,(f) over M is defined:

6) Dutn=|| 200 L@ Lovimar ... d.

It may or may not be finite.

We denote by R(M) the class of bounded continuous ACL func-
tions f on M which have finite Dirichlet integrals D,(f) < «. With
the scalar multiplication (a-f)(p) = a-f(p), the addition (f, + f) =
Ji(®) + f.(p), and the multiplication (f-g)(p) = f(p)-g(p) as its algebraic
operations, the class R(M) constitutes an algebra over the field of
real numbers, called the Royden algebra associated with M. We are
interested in the algebraic structure of R(M). Specifically, we ask
how the algebraic structure of R(M) relates to the metric structure
of M.

4. In a previous paper [4] we saw that if m = 2, then the al-
gebraic structure of the Royden algebra R(M) determines and is
determined by the quasiconformal structure of M:

THEOREM. Let M, and M, be 2-dimensional Riemannian mani-
folds. If there exists a quastconformal mapping T of M, onto M,,
then the mapping f— foT is an algebraic isomorphism of R(M)
onto R(M,). Conversely, if there exists an algebraic isomorphism o:
f—7°of R(M,) onto R(M,), then there exists a unique quasiconformal
mapping T of M, onto M, such that f° = foT~' for every f in R(M,).

However, in [4], this theorem was proved for Riemann surfaces
M, and M, It is not necessarily possible to give conformal structures
to the M,; compatible with the original metric structures of the M;
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in our present general setting. Therefore, to prove the above theorem,
we need a minor modification of the discussion given in [4].

5. In view of the above, our main interest in the present paper
is to study what happens when m = 8. In contrast with the preced-
ing theorem we shall show that if m = 3, then the algebraic structure
of the Royden algebra R(M) determines and is determined by the quasi-
isometric structure of M:

THEOREM. Let M, and M, be Riemannian manifolds whose di-
mensions are greater than or equal to 3. If there exists a quasi-
isometry T of M, onto M,, then the mapping f— fo T~' is an algebraic
isomorphism of R(M,) onto R(M,). Conwversely, if there exists an al-
gebraic isomorphism o: f— f° of R(M)) onto R(M,), then there exists
a unique quasi-isometry T of M, onto M, such that f°= fo T for
every f in R(M,).

In the above theorem, we do not make, for the existence of an
algebraic isomorphism ¢ of R(M,) onto R(M,), the priori assumption
that the dimensions of M, and M, are the same; this will be a
consequence.

6. For the proofs of Theorems in 4 and 5, it is convenient and
of independent interest to consider the following class of mappings:
A Dirichlet mapping is a topological mapping T of M, onto M, with
the property that fe R(M,) if and only if f,T'e R(M,).

We will see in § 2 that for any Dirichlet mapping T there exists
a finite constant K = 1 such that

(7) K7Dy (f) = Du(fo T7') £ KDy (f)

for every fe R(M,).

By means of inequality (7) we will prove in § 3 that a mapping
T of M, onto M, is a Dirichlet mapping if and only if T is a quasi-
conformal mapping (dim M, = dim M, = 2) or a quasi-isometry (dim M, =
dim M, = 3). This result in the 2-dimensional case has long been
known at least for Riemann surfaces if Dirichlet mappings are sup-
posed to satisfy (7). Thus the emphasis here is again on the charac-
terization of Dirichlet mappings as quasi-isometries in the higher
dimensional case.

Dirichlet mappings can also be characterized as mappings which
preserve Sobolev (1, 2)-spaces on Riemannian manifolds with m = 3.
This will be discussed in § 4.

Our main theorems in 4 and 5 above can be expressed in the
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following unified form: An algebraic isomorphism of R(M,) onto R(M,)
wnduces and s nduced by a Dirichlet mapping of M, onto M,. This
will be proved in § 5.

2. Royden algebras.

7. In the Royden algebra R(M) associated with a Riemannian
manifold M, there are the supremum norm [|fl|l. = sup,., |f(»)| and
the Dirichlet seminorm 1" D,(f). Combining these two norms we
produce the third norm

(8) A= 11 flle + V' Du(f) -

We also write ||f]| = |[fllx and [|f]le = || f|l.x When an indication of
the dependence on M is needed. The norm (8) satisfies, in addition
to the usual norm property, the relations ||1||=1 and ||fi-f.]| <
[1fill«{lfe]] for all £, and f, in R(M). Therefore (R(M), ||-||) constitutes
a normed algebra. Moreover we have the following.

ProposiTioN. (R(M), || -|]) is a Banach algebra.

What we have to show is the completeness of R(M) with respect
to the norm || -||. Let {f,}; be a || - ||-Cauchy sequence in R(}M). Since
it is also || - ||.-Cauchy, we can find a bounded continuous function f
on M such that || f, — fll.— 0 (n— o).

Consider the Hilbert space H(M) of Lebesgue measurable 1-forms
a =", ai(x)de’ with

|- [, 2 @a@a@Ve@ - don < oo
The inner product («, 8) of &« and B = X\, b,(x)dx’ is given by

(, B) = S e SM i 09 (@) as(@)b,(@) V I@) datt -+ - da™ .

Clearly df, = >\, (of,/0x")dz’ belongs to H(M) and {df,}; is a Cauchy
sequence in H(M), since
(dfn - dfn-i—py dffn - dfn+p) = DM(fn - fn-p) é ||f'n - fn+pl| d

Let @ = 3, a;(x)dx’ be the limit of {df,} in H(M).
Take an arbitrary parametric cube (B, ) and let k; =1 be the
constant in (1) for B. Then

(9) P 3as 3 i < ks 318 b < (o) < by

for almost every e B and for every m-tuple (&, --+, &,) of real num-
bers. In view of this
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[ 0,22 - aw) @ - dom < k5 - o, df - @) -
Therefore the left-hand member converges to zero as n tends to
infinity.

Let B={z|cf<a*<d,t1=1, -+, m} and let 7; be the largest
subset of the face of B determined by 2’ = ¢' such that every line L
perpendicular to #° = ¢’ and passing through a point in 7; possesses
the following properties: every f, (n =1, 2, --.) is absolutely continu-
ous on LN B, and the a, are integrable on L. In view of the ACL-
property of f,, we can easily see, by the Fubini theorem, that the
complement of z; in the face of B containing =, is of (m — 1)-dimen-
sional Lebesgue measure zero. For each x,, = (&}, - ., xi~, af, i+, «..,
zye LN B and x, = (23, -+, 7)€ LNT;, we obtain

Fula) = Fule) = |7 Dty ooy mi by ad, oo @)
ot Ox*
Since a; is integrable on LN B
P(ay;) = S a; (s, oo, 2i L, 2l oo 2
%o

can be defined. By the Schwarz inequality and the Fubini theorem,
we obtain

S o Sz. | ful@0i) — ful@o) — P (@) [P dac + « « dai™'dacit oo o dap

g(xi)zg .. S 'af"(m) — ()| dat e dam
On letting » — oo, we conclude that
S S N fa@) — fu(@o) — @) [P dach ++ « dag™dag™ -+ - dag = 0.

From this we obtain

f(xé, M) xg_ly xiy xé+l’ Yy x(’;n) —f(xé, t xsn)

= (a5, + oo, T3 X, wFT e e, 27

for every rational ' and for every (xf, .-, 2%, @it!, «oo, 2™ en,Cm,
with z; — 7} of (m — 1)-dimensional Lebesgue measure zero. Since
both members of the above equality are continuous in «f, we conclude
that

f(x(liy Tty xé—l, mi5 x§+l, * xgn) (xo’ °t mgn)

2%
= S ; A G I e R T Y i V) 1

%o
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for every ‘e (c*, d) and (), +«-, 25", @™, ++« ar)eni. Since this is
true for every 1 =1, .++,m, fis ACLon Band a;, = of/ox* (i =1, «++, m)
almost everywhere on B. Therefore fe R(M)and ||f, — f||— 0 (n— o).

8. We denote by C'(M) the class of C'-functions on M. The
following will be useful in calculations:

ProrosITioN. R(M)NC' (M) is dense in R(M) in the norm || -||.

For an arbitrary fe R(M) and a positive number ¢, we have to
find a v in R(M)NC'(M) with ||f— v|| <e. Let {p.};° < C(M) be a
partition of unity with the following properties: the support of each
@, is contained in a parametric ball (B,, z); for each compact set K
in M, KNB, = @ except for a finite number of n; >,°®, =1 on M.
Observe that ¢, fe R(M) (n =1,2, ++-). If we can find a +, € C'(M)
with its support in B, such that ||@,f — .|| < &/2", then + = 3\,
is well-defined and belongs to C'(M). Since

1 =3l = | £ @ = v = Sllonr = wall <,

we see that e C'(M)NR(M), i.e.  is the required function.

In view of the above, we have only to consider an f in R(M)
whose support is contained in a parametric ball (B, ). By the regu-
larization method (cf. e.g. Yoshida [17; p. 29, 58]), we can find a C'-
function +r in B with its support in B such that

— cee 3 .a‘_f_. — _allp__ : ] e m e
1 =l + ([ S L @ - L@ @ - do)
< sk—l;m/Z—-l
where k; is the constant in (1) for B. From this we conclude that
1=l =1If— ¥l <e.

9. For two functions f. and f, on M, we define the lattice opera-

tions U and N by (fiUf)(p) = max(fi(p), fu(p) and (£inf)(p) =
min (f,(p), f:(p)). The following property of R(M) is important for
our purposes:

PROPOSITION. R(M) s closed under the lattice operations U and
N, and

(10) Du(f) = Dy(fe) + Du(fU0),
(11) Di—o(f) = Ds-o(fN6) = Dyooy(fUc) = 0

Jfor every functions f in R(M) and every real number c.
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Observe that f,U f, = (f, — fH) U0 + frand fiN f. = —((-fl)u(_-f2))'
Therefore to prove that R(M) is closed under the lattice operations,
it is sufficient to show that fUOe R(M) for every fe R(M). If f is
absolutely continuous on a line segment in a parametric ball, then
f U0 has the same property. Therefore fUO0 is ACL on M along with
f- It is also clear that if both df/ox* and o(f UO0)/éx' exist at x, then

(12) AV < | L) .

Therefore D,(f U0) < D,(f) and we conclude that fU0e R(M).

It is easy to see that (11) implies (10). To prove (11) we only
have to treat the case ¢ = 0. In view of (12), both D ;_,(fU0) and
D (fN0) are dominated by D ;-,(f). Hence we have to prove that
D;_y(f) = 0. Let (B, x) be an arbitrary parametric cube. In view of

D(f:o)rlg(f) < kz‘/Z“S cen S Z
(F=0O)NB i=1

af(x){ dat -+ da™

it is sufficient to show that

(13) ng oNnB

for every 1 =1,.--,m. Let B={zx|cf<a'<d,i=1,.-.,m} and
let 7; be the largest subset of the face of B determined by ‘= ¢
such that, for every line L perpendicular to & = ¢‘ and passing through
a point in 7, f(x) is absolutely continuous on LN B. Since the com-
plement of ; with respect to the face of B containing 7; is of (m — 1)-
Lebesgue measure zero, the Fubini theorem assures that (13) is
equivalent to

S Sni <S (f=01N[c%,d%]

Thus to prove (12) it is sufficient to show that

dac1 cde™ =0

Bt

2]—2 (9c)l2 dxi) dzt <o dadattt oo da™ = 0.
x

(14) SE P'(tydt = 0,

where o(t) is absolutely continuous in an interval [¢,d] and E =
{tela, b]|@(t) = 0}). Let E, be the largest subset of E such that
@'(t) exists for each te E,. Put E,={teE |#' () =0}. Pick an
arbitrary point ¢, in E, — E,. Since @(t,) = 0 and @'(t,) = 0, ¢, is an
isolated point in E. This shows that E, — E, is at most countably
infinite and a fortiori E, — E, has Lebesgue measure zero. Since
E — E, also has Lebesgue measure zero, @'(t) = 0 almost everywhere
on E. We conclude that (14) is valid.
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10. Recall that a homeomorphism 7T of a Riemannian manifold
M, onto another M, is a Dirichlet mapping if fe R(M,) is equivalent
to fo T—*e R(M,). We prove here that the induced mapping f— fo T
of R(M,) onto R(M,) has the following continuity property (cf. Nakai

[5D):

THEOREM. For any Dirichlet mapping T of a Riemannian mani-
fold M, onto another M,, there exists a finite constant K = 1 such that

(15) K™ Dy,(f) = Dy,(fo T™) = KDy,(f)

for every fumction f in R(M,).

For simplicity let S = T and S*f = foS. Clearly S* is an al-
gebraic isomorphism of R(M,) onto R(M,. Since R(M,) are Banach
algebras (7 = 1, 2), S* must be bicontinuous in the norm [|-|| (cf. e.g.
Rickart [9]). Hence there exists a finite constant K = 1 such that

(16) K= Fllu, = 1 F My = K[l
for every function f in R(M,). Observe that
(17) S*Flloary = [ fllessry s S*(FiRS) = (S*A) B (S*f2)

for every f, fi, and f, in R(M,).
Let F={feR(M)|0<f=<1}). From (16) it follows that

(18) V' Dy (S*f) = K(1 + V' Dy, (f))

for every fe F. For an arbitrarily fixed function f in F, the functions

f,:n((’i*l Uf)ﬂ—;i——i_1> G=1,---,m)

n n

are all in F. In view of (17),

S*f, = n((";l U(S*f))ﬂ% —”";1> G=1,,m).

Here we have used the relation S*c = ¢ for every constant ¢. Observe
that

Du(f) = wDy(((=2us)0 L),

Dy (8°f) = wDw, (A= u(s*n)n L)

for every © =1, -+, n. Repeated use of (9) yields
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DMl(f) = g DMl ((?, :@ 1

)n%)

DuS°f) = 5 (=L usrn)n L),

and

Therefore
19 wDw(f) = N Du(f),  wDW(S*F) = 3 Du (S -
Since f;e F (¢t =1, ---, m), (18) implies

Dy, (S*f) = K*1 + 2V Dy,(fy) + Du,(f))  (=1,--+,m).

On summing these inequalities with respect to7¢ =1, ..., n, we obtain
by (19)

wD(S°F) £ K*(n + 23V D79 + D () -
Let 4(n) be a fixed integer such that 1 < i(n) £ n and

Dy (fiw) = {2{1}5 Dy (f) -

= (z(n) U f) z(n)
n

The above inequality takes on the following form:

(20) Dy (S*f) = K*Dy(f) + n~K* + 2KV Dy (i) -

We set

Choose a subsequence {n(k)}7-, of the sequence of positive integers
such that a = lim,_. i(n(k))/n(k) exists. Fix an arbitrary positive
integer N. Since

_ 1 _ink) —1 _ ink) 1
a N< ) < ) <a+N

for all sufficiently large %k, we obtain by (10)

lim sum -DM () = D(a——l/N<f<u-H/N)(f)

koo

In view of (11), we conclude that

hm D(a—l/N<f<a+1/N)(f) = D(f:a)(f) =0

Nooo

and therefore

(21) %im Dy (Uny) = 0.

On letting & — o in (20) with » = n(k), we infer that (21) implies (15).
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3. Dirichlet mappings.
11. In this section we will prove the following geometric charac-

terization of Dirichlet mappings:

THEOREM. A homeomorphism T of a Riemannian manifold M,
onto another M, is a Dirichlet mapping if and only if T is a quasi-
conformal mapping of M, onto M, for dim M, = dim M, = 2 and «a
quasi-isometry of M, onto M, for dim M, = dim M, = 8.

The proof will be given in 12—16. The theorem in the 2-dimensional
case is well-known for plane regions M;. In the higher dimensional
case it was proved in Nakai [7] for regions M; in the m-dimensional
Euclidean space (m = 3). We will show how to modify the proofs
for the present situation.

12, In view of (2), we can find a countable covering {B;} of M,
consisting of parametric regions B; homeomorphic to a sphere with the
following properties: 7TB; (1= 1,2, ---) are parametric regions on
M, and

(22) max (kBis kTBi) =T (t=1,2,--)

where 7 is a constant in (1, ) and k,, and k,, are the constants in
(1) for B; and TB;. We denote by Di(®) the Euclidean Dirichlet
integral of a function @ on a parametric region B, i.e.

D) = [+ | B2 @] dat - aam.

Bi=

13. In nos. 13 and 14, we assume that dim M, = dim M, = m = 2.
First we assume that T is a quasiconformal mapping of M, onto M,,
i.e. T satisfies () for some K = 1. Choose an arbitrary B, = B in

12. Then by (22)

max | T(x + h) — T(®)|

23) lim sup ri=r <z
~o  min | T(x + k) — T(x)

|h|=7r

for every xe B, with || = [(z!, ---, a™)| = 3., |«*|*. Therefore T is
a 7°K-quasiconformal mapping of B onto TB with respect to the

Euclidean metrie.
It is well-known (see e.g. Kiinzi [2], Gehring [1]) that (28) implies
that o T is ACL on TB along with # on B and

(24) T K7 Dy(P) < Drp(p o T7Y) < TKDy(®) .

Again by (22), (24) gives
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(25) T KT Dp(P) = Dip(® o T7) = T KDy(9)

where we have used the inequalities k3 < (¢;;) < kp and k3™ < g < k2.
Since (25) is wvalid for every B = B,, we conclude that fe R(M) is
equivalent to fo T—'e R(M,).

14. Conversely assume that T is a Dirichlet mapping of M, onto
M,. We have seen that (15) is valid for some K. Again fix an
arbitrary B = B;,. Then (15) implies (24) for @ € R(M,) with compact
support in B. In particular, we deduce that

(26) 72Kk mod A < mod TA < 7°K mod A

for every ring (annulus) A contained in B. Here mod A means the
harmonic modulus of A given by

mod A = 2n ,
D, (wy)

where w, is the harmonic function on A4 with boundary values 0 at
the exterior boundary of A and 1 at the interior boundary of A.

It is again well-known (see e.g. Kiinzi [2], Gehring [1]) that a
homeomorphism 7T of B onto TB with the property (26) is a 7°K-
quasiconformal mapping of B onto 7B, i.e. (23) is valid. Since B = B;
is arbitrary, we conclude that (5) holds with K replaced by =K.
Thus the theorem for dim M, = dim M, = 2 is proved.

15. Innos. 15 and 16, we assume that dim M, = dim M, = m = 3.
First suppose T is a quasi-isometry of M, onto M, i.e. (4) is valid
for some K. Fix a B= B;. By (22), we obtain

(27) T K o, — 2, S | T, — Tyl £ K |2, — 2]

for every «, and x, in B. It is clear that o T—'is ACL on TB along
with @ on B. By the classical Rademacher [10]—Stepanoff [15]
theorem (see also Tsuji [16], Saks [13]), we can compute D, (@ T
as follows:

@) DufpoT) = |- | 322 )| 10w do - do

where y = y(x) = T(x) and J,(x) = det (0y’/0x"). Observe that

a¢<)

(29 22T ()| =

éi
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almost everywhere (cf. Nakai [7]). In view of (27), we see that

ox’ |*

(30) mrt K= < S 2| = ek
i,7=1 y

almost everywhere and also

(31) (TK)™ = [ Jy(x)| = (cK)™

almost everywhere. Here we have repeatedly used the measurability
of T and T, which is a consequence of the Rademacher-Stepanoff
theorem cited above. From (28)-(31), it follows that

mTHTK) ™" Dy(P) = Dpp(P o T7) = m*(TK)"**Dy(P)

for every B = B;. Therefore (15) is valid with K replaced by m*(zK)™*2.
We conclude that fe R(M,) is equivalent to fo T e R(M,).

16. We come to the final part of our proof. Assume that T is
a Dirichlet mapping of M, onto M,. Since (15) is valid for some K,
we see by (22) that

(32) KFIDB(@) = DTB(¢O Tﬂ) = KIDB(g))

for every B = B; in 12 and every @ ¢ R(M,) with compact support in
B, where K, = 7K. The proof in Nakai [7] can be applied to deduce
from (32) that

(33) Kz_llxl_xzjélTaﬁ_ Tx21§K2‘x1—le

for every «, and z, in B with |, — %,| sufficiently small. Here K,
depends only on K, but not on B. Again by (22), we obtain (4) with
K = 7K, for every p and ¢ in M, such that po,(p, q) is sufficiently
small. By the definition (3) of o, and p,, the requirement on the
smallness of o.(p, q) can obviously be removed.

4, Sobolev (1, 2)-spaces.

17. Let W M) be the class of functions f on a Riemannian
manifold M such that the of/fox‘ (i =1, ---, m = dim M) exist almost
everywhere on M and

G flle= |- | (10 + S 002 @2 @)
<V g(@) dat - da™ < oo .

The class W% M) is called the Sobolev (1, 2)-space (cf. e.g. Yosida
[17]). For simplicity, we write W(M) = W= M).
Let T be a homeomorphism of a Riemannian manifold M, onto
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another M,. For a function ® on M,, we define the function T*® on
M, by

(35) T*p = @o T,

THEOREM. For a homeomorphism T of M, onto M, with dim M, =
dim M, = 8, the following conditions are equivalent:

(a) T 1s a Dirichlet mapping of M, onto M,;

(b) T is a quasi-isometry of M, onto M,;

(¢) THW(M,)) = W(I,).

The equivalence of (a) and (b) was established in §3. We only
have to show that (¢) is equivalent to (a) or (b). The proof is given
in 18-19.

18. By the regularization method (cf. 8), we see that W (M) N C*(M)
is dense in W(M) with respect to the norm ||| - ||| and also W(M)N C'(M)
is dense in W(M)NC(M) with respect to the norm |/-|/. From the
latter assertion, we deduce

(36) R(M) = WM)NC(M)NL~(M) .

Here as usual C stands for continuous and L=(M) is the set of
essentially bounded functions on M. Of course C(M)N L=(M) is nothing
but the class of bounded continuous functions on M. Therefore for
every homeomorphism T of M, onto M,

(37) T*(C(M) N L=(M,) = C(My) N L~(M) .

From (36) and (87), we see that (c) implies T*(R(M,) = R(M,),
i.e. T is a Dirichlet mapping.

19. Take an arbitrary B = B; in 12. Let y = y(x) be the re-
presentation of T considered as a mapping of B onto TB. We saw
in 15 that there exists a constant K independent of B such that
K < J(x) < K almost everwhere on B. TUsing the ||| -|||-denseness
of W(M,)NCY(M,) in W(M,), we can deduce a relation similar to (29)
for an arbitrary fe W(M,). We could have chosen the above constant
K so large that K < X7, |02//oy'|* < K. Then

KDy(f) < Drs(T*f) < K*Dy(f)
and also

K| 1f@)rde - dom < S(T*f)(y)lzdy . dy

IA

)
Koo |f@)do -
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By (22), we obtain
e K £l < I T*F s < 7K £l -

From this we see that T*W(M,) = W(M,).

5. Royden compactifications.

20. Let p* be an algebraic homomorphism of R(M) onto the
field of real numbers such that p*(1) = 1. Denote by M* the set of
all such p*. We denote by R(M)* the dual Banach space of R(M)
endowed with the weak star topology. Take an arbitrary f< R(M)
and an arbitrary number A\ > ||f|l.. Observe that V' + fe R(M).
For every p*e M*, we have

AEDHS) = V) = (VNE ) = @ (N EF))=0.
Hence |p*(f)| < » and a fortiori |p*(f)| < [|flle < ||fll. Therefore

M* is a bounded weakly star closed subspace of R(M)*. This shows
that M* is weakly star compact. Each point pe M can be viewed as
a point in M* by considering p(f) = f(p) for fe R(M). It is clear
that the original topology of M is identical with the relative weak
star topology in M c M*.

For fe R(M), set f(p*) = »*(f). Then feC(M), the space of
bounded continuous functions. We can thus consider R(M) < C(M*).
Since the Stone-Weierstrass property is satisfied by R(M), we conclude
that R(M) is dense in C(M*) with respect to the supremum norm.
Therefore M is a dense subspace of M*. Since M is locally compact,
M* — M cannot accumulate at any point in M, i.e. M is open in M*.
We summarize:

The compact Hausdorfl space M* contains M as an open dense
subspace; each function in RB(M) can be uniquely extended to M* so
as to be in C(M*); R(M) separates points in M*, t.e. for every pf
and pF¥ wm M* with p} =+ p¥, there exists an fe R(M) such that
Ap¥) #= f(p¥). Any compact Hausdorff space with these properties 1s
wdentical with M*.

We call M* the Royden compactification of M.

21. The Royden compactification is a convenient tool in the study
of global potential theory on manifolds based on the Dirichlet principle.
It is especially powerful in the classification problem (see Nakai [6]).
However, here we are only interested in the topological structure of
M*. First we show (cf. Nakai [3]):

PROPOSITION. A point p* in M* is in M if and only if {p*} s
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a G;-set, i.e. the first countability axiom is satisfied at p*.

If p*e M, then clearly p* is a G,-set. Suppose p* is a G,-set.
Contrary to the assertion, assume p*e M* — M. Then there would
exist a sequence {p,};° < M converging to p*. Take parametric balls
(B, ®,) (m=1,2,..-) with the following properties: p,€ B, and
w(p,) = 0; B,NB, = @ (n+n);

(!

8

) B.) — U B, = ("}

in each B,

T7(0:5) = (9:5) = 7(055)
almost everywhere. Let {a,}” be a sequence such that 0 <a, < 2™
and

n

_ {{xn I a;/(m—z) < Ixni < (2an)1/m—2} (m _2__ 3)
T | e, < @] < @} (m = 2)
is contained in B,. Denote by A’ the closed ball bounded by the

inner boundary of A,. Take the function f on M characterized by
the following three formulas:

Fl(M-0@ua)=o, rl(Ga)=1,

and for z in 4, (n=1,2, +-+),

~ e 29
—a, logm (m=2).

n

f@) =

Clearly f is bounded, continuous, and ACL on M and
Du(f) = 3, D (f) S T2 3 D, (f) -

On the other hand, we see by a simple calculation that
'+ m/2)y"'z™*(m ~ 2)a, (m = 3)

Du(5) = {2n'an (m=2).

In view of the choice of a,, we conclude that D,(f) < c.

Therefore fe R(M) and a fortiori f is continuous on M*. In
particular f must be continuous at p*. Take a point ¢, in the outer
boundary of A, for each n=1,2, ---. Then since f(g,) =0 and
lim,.. ¢, = p*, we would have f(p*) = 0. On the other hand, since
fp)=1(n=12,+-+) and lim,_. p, = p*, we must have f(p*) = 1.



ROYDEN ALGEBRAS AND QUASI-ISOMETRIES OF RIEMANNIAN 413

This is a contradiction, and the proof of the Proposition is herewith
complete.

22. Let M, and M, be Riemannian manifolds. An important
Fconsequence of the preceding proposition is the following.

PropOSITION. Any homeomorphism T* of M* onto M,* maps M,
onto M,, 1.e. T*(M,) = M,. The mapping T = T*|M, is a homeomor-
phism of M, onto M,.

In fact, let pe M,. Since p is G, in M,, T*p is also G, in M}
and a fortiori T*pe M,. Thus T*(M,) c M,. By the symmetry,
T*(M,) D M,.

A homeomorphism T of M, onto M, which can be continued to a
homeomorphism of M* onto M)* is said to be a Royden map. The
above theorem shows that the Royden maps exhaust the homeomor-
phisms of M>* onto M,*. For potential-theoretic properties and a
characterization of Royden maps, we refer to Nakai [6].

23. We are ready to prove the following

THEOREM. Any algebraic isomorphism o of the Royden algebra
R(M,)) onto R(M,) induces and 1is induced by a Dirichlet mapping T
of M, onto M,.

Let T be a Dirichlet mapping of M, onto M,. Then the mapping
o defined by f— f° = fo T is clearly an algebraic isomorphism of
R(M,) onto R(M,).

Conversely, let ¢ be an algebraic isomorphism of R(M,) onto R(M,).
For a fixed p*e M*, define a functional T*(p*) on R(M,) by

(T*(P*NS) = f(p*)

for fe R(M,), where ¢ = ¢*. Clearly T*(p*) is an algebraic homo-
morphism from R(M,) onto the field of real numbers with (T*(p*))(1) = 1.
Therefore T*(p*)e M,* and

(38) S(T*(p*)) = f(p*)

for every fe R(M,).

As a consequence of (38), we deduce that T* is a homeomorphism
of M* onto M;*. By Proposition 22, T*| M, = T is a homeomorphism
of M, onto M, and (38) takes on the form fo T = f* for every fe R(M,).
Therefore f = fo T for every fe R(M,). The proof is thus complete.

24. We are now in a position to prove our main result, Theorems
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4 and 5 (cf. §1). Let T be a quasiconformal mapping of M, onto
M, for m =2, and a quasi-isometry of M, onto M, for m = 3. By
Theorem 11 in §3, T is a Dirichlet mapping of M, onto M,. There-
fore T induces an algebraic isomorphism f— f* = fo T of R(M,) onto
R(M,).

Conversely, suppose an algebraic isomorphism ¢ of R(M,) onto
R(M,) is given. By the above theorem 23, ¢ is induced by a Dirichlet
mapping T of M, onto M,, i.c. f° = foT'. Again by Theorem 11 in
§3, T is a quasiconformal mapping of M, onto M, for m = 2, and a
quasi-isometry of M, onto M, for m = 3.

The proofs of Theorems 4 and 5 are herewith complete.
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