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In this paper Phillips’s theorem is extended to a C*-algebra
setting and, by virtue of this extension, several results on
interpolation are generalized and improved.

1. Introduction. Let N be the set of positive integers with the
discrete topology and let m(N) denote the bounded complex functions
on N. We may identify m(N) with C(8N), where QN denotes the
Stone-Cech compactification of N. A well known and useful result
due to Phillips is the following.

THEOREM. Let {f,} be a sequence in the dual of C(BN) that con-
verges weak* to zero. Then

lim 3, |£,(5,)] = 0

Mm—oo p=m

uniformly in n, where o, 1s the characteristic function of the set {p}.

In §3 we extend this result to a C*-algebra setting and we give
several applications of this result. For example, we extend and im-
prove several results on interpolation due to Bade [3] and Akemann
[2]. A commutative version of our result was proved by Conway [7].

2. Preliminaries. Let A be a C*-algebra. By a double centra-
lizer on A, we mean a pair (R, S) of functions from A to A such that
aR(®) = S(a)b for a, b in A, and we denote the set of all double cen-
tralizers on A by M(4). If (R, S)e M(A), then R and S are continu-
ous linear operators on A and ||R|| = ||S||. So M(A) under the usual
operations of addition, multiplication, and involution is a C*-algebra,
where {|(R, S)|| = ||R||. If we define the map p: A— M(A) by the
formula g(a) = (L,, R,), where L,(b) = ab and R,(b) = ba for all be A,
then g, is an isometric *-isomorphism from A into M(A) and p(4) is
a closed two-sided ideal of M(A). Hence throughout this paper we
will view A as a closed two-sided ideal of M(A). For a more detailed
account of the theory of double centralizers on a C*-algebra, we refer
the reader to [4] and [13].

Let B be a C*-algebra and let A be a closed two-sided ideal of B.
We define the strict topology g, for B to be that locally convex topology
generated by the seminorms (Ay)... and (0.)..., where X\, (x) = |laz]||
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and 0,(x) = ||@a|, and we let B;, denote B under the strict topology
generated by A. When A and B are understood (specifically, when B=
M(A)) we let g denote the strict topology for B generated by A. The
topological algebra M(A); is complete and the unit ball of A4 is g dense
in the unit ball of M(A).

We will now state a result due to Busby that is very useful in
computing the double centralizer algebra of a C*-algebra.

THEOREM 2.1. Let B be a C*-algebra, let A be a closed two-sided
ideal of B, and let A° = {zxc B|sA = 0}. Let the map p: B— M(A)
be defined by p(x) = (L., R,), where L,(a) = xa and R,(a) = ax for each
a in A. Then the following statements are true:

(1) The map ttis a *-homomorphism of B into M(A); consequently,
v is an isometry if and only if A’ = 0.

(2) If A" =0 and every R,~Cauchy net in the unit ball of A con-
verges in the B, topology to some element of the unit ball of B, then
U is an isometric *-isomorphism of B onto M(A).

Proof. For a proof, see [4, Proposition 3.7, p. 83].

COROLLARY 2.2. If B is a W*-algebra and A’ = 0, then p isan
isometric *-isomorphism of B onto M(A).

Proof. Let {a,} be a g,-Cauchy net in the unit ball of A. Since
the unit ball of B is compact in the weak operator topology, we can
assume that {a,} converges in the weak operator topology to some
element # in the unit ball of B. Since {a,} is B,-Cauchy, it is straight-
forward by [4, Th. 3.9(i), p. 84] to show that {a.} converges to x in
the B,-topology. The conclusion now follows from Theorem 2.1.

If B is a W*-algebra, then it is straightforward to show that A°
is a two-sided ideal of B that is closed in the weak operator topology.
Hence A° has an identity ¢ that commutes with each element of B.
If follows that the quotient algebra B/A° is isometrically *-isomorphic
to the W*-algebra (1 — ¢)B(1 — q¢). Now define the map ¢/: B/A’—
M(A) by the formula p/(z + A°) = p(x) for each z in B. Since ker p=
A°, we see that ¢ is well defined. Due to the fact that {x € B/A’|x(4/A% =
0} = {0}, we get

COROLLARY 2.3. If Bisa W*-algebra, then M(A) is a W*-algebra
and the map f is an tsometric *-isomorphism of BJ/A° onto M(A); that
1s, M(A) = M(A/A°).

ExaMpLE. Let H be a Hilbert space, let B(H) be the bounded
linear operators on H, and let B,(H) be the compact linear operators
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on H. It is well known that B,(H) is a closed two-sided ideal of B(H).
Since B(H) is a W*-algebra and {z € B(H)|xB,(H) = 0} = {0}, we have
that B(H) is the double centralizer algebra of B,(H).

ExaMPLE. Let B be a finite dimensional C*-algebra, let S be a
locally compact paracompact Hausdorff space, and let @(S) denote the
Stone-Cech compactification of S. Let C(B(S), B) denote the space of
all B-valued continuous functions on AB(S) and let CS, B) = {z¢
C(B(S), B)|x(t) = 0, te B(S) — S}. It is clear that under the usual
pointwise operations and sup-norm that C(3(S), B) is a C*-algebra and
C«(S, B) is a closed two-sided ideal of C(B(S), B). Now it is straight-
forward to show that a g-Cauchy net in the unit ball of Cy(S, B) con-
verges to a B-valued continuous function on S that is uniformly
bounded. Since a bounded B-valued continuous function on S can be
uniquely extended to B-valued continuous functions on G(S), Theorem
2.1 gives us that C(B(S), B) is the double centralizer algebra of

C«(S, B).

PROPOSITION 2.4. Let B be a C*-algebra and A a closed two-sided
ideal of B. Then Bj,, the dual of B;,, can be identified under the
natural mapping as a closed subspace of B*.

Proof. The proof will follow from a variation of the argument
given for [13, Corollary 2.8, p. 635].

PRrOPOSITION 2.5. Let B be a C*-algebra and let A be a closed
two-sided ideal of B. If f is a bounded linear fumnctional on B, then
there exists a unique decomposition f = f° -+ f* such that f°e B}, and
fte A+, Consequently, B* = B;, @ A*.

Proof. For a proof, see [14, Corollary 2.7].

REMARK. For each f e B* we will always let f° and f*' denote
those unique linear functionals in B}, and A" respectively that satisfy

£=r+ 1

DEFINITION. Let A be a C*-algebra. A subset K of M(A)} is
said to be tight if K is uniformly bounded and if for some, or for
each, approximate identity {¢;} for A we have

[ —e)f(l—e)||—0

uniformly on K. Here (1 — e)f(1 — e))(x) = f((1 — e))a(l — ¢;)) for
each ze M(A).
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THEOREM 2.6. Let A be a C*-algebra. Then a subset K of M(A)}
is B-equicontinuous if and only if K is tight.

Proof. For a proof, see [13, Theorem 2.6, p. 636].

3. A general Phillips theorem for C*-algebras. In this section
we will study sequential convergence in the dual of a double centralizer
algebra. In particular, we prove a general Phillips theorem for C*-
algebras and we give some applications of it.

DEFINITION. An approximate identity {e;|\ € 4} for the C*-algebra
A is said to be well behaved if and only if the following properties
are satisfied.

(1) e, = 0 for each ne 4.

(2) If x, >\, then e, = ¢,.

(8) If n, A, -+« is a strictly increasing sequence in 4 and A€ 4,
then there exists a positive integer N such that for all #n, m > N we
have e;(e;, — €;,) = 0.

REMARK. If S is a locally compact paracompact Hausdorff space,
then S can be expressed as the union of a collection {S,|aec I} of
pairwise disjoint open and closed o-compact subsets of S. Since each
C*-algebra Cy(S,) has a countable approximate identity and C,(S) =
(., C(S.)e, it follows by Proposition 3.1 and Proposition 3.2 that Cy(S)
has a well behaved approximate identity. Now let H be a Hilbert
space and {p.}, ., be a maximal family of orthogonal projections on H.
It is straightforward to show that {p.}.,, is a series approximate
identity for B,(H), the space of all compact operators on H, conse-
quently, by Proposition 3.1, B,(H) has a well behaved approximate
identity. Finally, suppose A is a C*-algebra such that M(A4) is iso-
metrically isomorphic to A**, the bidual of 4. By some recent results
of BE. McCharen or by [15, Theorem 5.1, p. 533] A is dual, conse-
quently, A = (S B,(H.)), where {H,} is a family of Hilbert spaces (see
[11]). Hence by Proposition 3.2 A has a well behaved approximate
identity.

PROPOSITION 3.1. Let A be a C*-algebra and suppose one of the
following conditions holds:

(1) A has a countable approximate identity;

(2) A has a series approximate identity (see [2, p. 52T]).
Then A has a well behaved approximate identity.

Proof. It is straightforward to verify that A has a well behaved
approximate identity when (2) holds. Therefore assume A has a



A GENERAL PHILLIPS THEOREM FOR C*-ALGEBRAS 481

countable approximate identity {c,}. We can also assume ¢, = 0, since
crc, is an approximate identity for A. Let b = >3..¢,/2". Thenbdis
a strictly positive element of A in the sense of [1, p. 749]. Hence
A contains a countable increasing abelian approximate identity {d,}
{1, Theorem 1, p. 749]. Let A, denote the maximal commutative
subalgebra of A that contains {d,}. Then we can view 4, as Cy(_#),
the complex-valued continuous functions that vanish at o« on the
maximal ideal space _# of 4,. Since A, has a countable approximate
identity {d,}, it follows by [5, Theorem 4.1, p. 160] that _# is o-
compact. It is straightforward to show that A, has a well behaved
countable approximate identity {e,}. We now wish to show that {e,}
is an approximate identity for A. Let a€ A and & > 0. Choose a
positive integer m so that |ja — d.a|| < €/2 and then choose a positive
integer N so that ||(d. — e.d.)|| < &/2]|a]] for integers n= N. It
follows that |ja — e all < ||(1 — e )@ — )}l + ||([@n — e.dn)al] < € for
n = N. Hence {¢,} is a well behaved approximate identity for 4 and
the proof is complete.

PROPOSITION 3.2. Let {A;|d€ 4} be a family of C*-algebras. If
each A, has a well behaved approximate identity, then the sub-direct
sum (35e145), has a well behaved approximate identity (see [12, p. 106]
for definition of (3;c.445)0)-

Proof. For each d€ 4 let {e;;|n€ 4;} be a well behaved approxi-
mate identity for A4,, and let & denote the family of all finite sub-
sets of 4. Let X denote the set of all functions ¢ whose domain
D,e & and has the property that ¢(d) € 4, for each 6 D,. We define
the binary relation = in ¥ by the following formula: ¢, = o, if and
only if D, = D, and 0,0) = 6,(0) for each d0e D,. It is straight-
forward to verify that 2 under = is a directed set. Now for each
oe X define d, in (3};.,45), by the following formula d,(0) = ¢;,, for
each 6€ D, and d,(0) = 0 otherwise. It is straightward to verify that
{d,loe X} is a well behaved approximate identity for (5};c,4:)..

The next result extends Phillips’ theorem to a C*-algebra setting.
A commutative version of this result was proved by Conway [7,
Theorem 2.2, p. 55].

THEOREM 3.3. Suppose A is a C*-algebra with o well behaved
approximate identity. If {f.} is a sequence in M(A)* that converges
weak* to zero, then {f} is tight and converges weak* to zero.

Proof. It is clear that {f,} is uniformly bounded, so without loss
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of generality we can assume {f,} is uniformly bounded by 1. Since
Wl Z (Il All = If21 All = [If2]l, we have that {f3} is also uniformly
bounded by 1. Let {¢;|A e 4} be a well behaved approximate identity
for A and suppose {f3} is not tight. Then there exists an ¢ > 0 such
that {Ne 4:sup, ||(1 — ¢)f2(1 — ¢;)|| = 4¢} is cofinal in 4 and since a
cofinal subnet of a well behaved approximate identity is also one, we
may assume

(3.1) sup [[(1 — e)fa(l — e) || = 4e

for all e 4. We may then define inductively sequences n,<n,<--- and
A<\, < -+ such that |[(1—e;)f2,(1—e;,)||=4¢ and ||¢; ., f2.6:,.,— 1<
¢ by using the following: (8.1); lim, ||[(1 — €)g(1 — ¢))|| = 0, g € M(A)};
lim; ||e,9e; — g]] = 0, g€ M(A)f. It then follows that

1A = e)es,, faen, (1 —e)ll = ll(e,,, — e )faler,,, — el
= 3e.

We then, for each k, choose b, = b} in ball A such that |f, ((e;,,, —
e)bi(es,,, — €)= e. Define a, = (e, ,, — €,,)bules,,, — ¢€,,) and let
9t = fuy- Then we have:

(i) lgwlar)| =& (i) aja, =0 for j =+ k; (ii) for each \ e 4,
there exists a positive integer N such that a,e; = 0 for £ = N.

Now let a@ = {a,}r., be an element of I=. By virtue of (ii) and
(iii) the sequence of partial sums {37_.a.a,} is uniformly bounded by
llall- and is g-Cauchy. Since M(A), is complete [4, Proposition 3.6,
p. 83], {3ir, axa;} has a g-limit >, a,e, that is also bounded by
lla|l-. Next, define the bounded linear map T:i*— M(A) by the
formula

T(a) = glakak

for each a¢ € l=. Let T* denote the adjoint of T. Since T is continuous,
T* is a weak* continuous mapping of M(A4)* into (I*)*. From our
hypothesis on {f,} it follows that {T*(g.)} converges to 0 weak*.
Hence, by Phillips theorem [8, p. 32],

lim 2 | T79.0,)| = lim pY} lgi(@r) | —0
uniformly in %, where §, is the Kronecker delta function. Therefore
there exists a positive integer m such that |g.(@.)| < S lg.(@) ] <e.
This contradicts (i), so {f3} is tight.

Note that {f3} is now equicontinuous on M(A), and converges
pointwise on a dense subset and hence (by a well known result) con-
verges weak*. The proof is now complete.
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By virtue of Proposition 3.1 and the previous remark, the following
Iresult is an improvement of [13, Theorem II, p. 634].

COROLLARY 3.4. Suppose A has a well behaved approrimate
identity. If K is a relatively weak* countably compact subset of M(A)7,
them K is tight. Comsequently, M(A); is a strong Mackey space (hence,
in particular, is a Mackey space).

Proof. The proof that K is tight is similar to the one given for
Theorem 38.3. Since M(A), is a strong Mackey space if and only if
each weak* compact subset of M(A)f is g-equicontinuous, it follows
from Theorem 2.6 that M(A), is a strong Mackey space.

REMARK. In [6, p. 481] Conway showed that if S is the ordinals
less than the first uncountable ordinal and A = C,(S), then M(A), is
not even a Mackey space. Therefore it follows that C,(S) does not
have a well behaved approximate identity.

The next result extends {5, Theorem 5.1, p. 161].

COROLLARY 3.5. If A has a well behaved approximate identity,
then (MA)F is weakly sequentially complete.

Proof. 1If {f,} is a weak* Cauchy sequence in M(A)}, then there
exists a unique linear functional f in M(A)* with f, — f weak*. It
follows that f, — f— 0 weak*. Thus, by Theorem 3.3, (f, — f)°—0
weak*. But by virtue of Proposition 2.5 (f,— /) =fi— "= f, — f°
This implies that f, — f° weak*. Hence f = f° and the proof is com-
plete.

The next result generalizes and improves results due to Bade [3,
Theorem 1.1, p. 149] and Akemann [2, Theorem 2.3, p. 527] (see our
Corollaries 3.9 and 3.8).

THEOREM 3.6. Suppose A is a C*-algebra with a well behaved
approvimate identity {e;|ne 4}, If X is a Banach space and T: X —
M(A) is a bounded limear map with T(X) + A = M(A), then there
exists a ne A such that (1 — e)M(A)L — ¢)) = (1 — ¢) T(X)(1 — ¢).

Proof. For each ne 4 let E, denote the uniform closure of the
linear space {e;a + ae;, — e;ae;|ac M(A)} and let T;: X — M(A)/E, be the
bounded linear map defined by T, (x) = T'(x) + E,. We will now show that
there exists a A in 4 so that T, maps X onto M(A)/E,. Suppose no
such A exists. Let M e4. By virtue of [10, 487-8] and the fact
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that (M(A)/E;* is isometrically isomorphic to E;}, we can choose f,
in E}t so that ||f,|| = 1 and || T*(f))|| < 1, where T* denotes the adjoint
of T. Having defined A, N, «++, N, and f,, f, ---, f, We can choose, by
virtue of [13, Corollary 2.2, p. 635], A\,,, > \, so that

(3.2) 163,31, = F211 < = -

Now as before choose f,;, in E; , so that

(3.3) [[far:l =1 and [[T*(f,1) ]l < L .
n+1

We will now show that the sequence {f,} converges weak* to 0.
Let ae M(A) and let ¢ > 0. By our hypothesis there exists an x € X
and a c€ A such that a=T(x) +¢c. Now choose ) € 4 so that |[[c—exc]|| <
¢/8. Next choose a positive integer N such that for each integer
n= N we have (e;, ., —e;))e: = 0, [[@]|/n <¢/3, and [[e|l/n <e/3. It fol-
lows from (3.2), (3.3), and the fact f, € E; that for each integer n> N

Ifa(@) | = [fu(T(@)) | + |faee) | + [fale — €0) |
SNT*fullllzll + lle — el + [(1 — €, )fa(1 — &,)e0)]|
e84 ¢34 |2 — e, fre,. el
+ I(eznﬂ - ez,,).fr‘f(ezn+1 - ez,)(@z@)l
< €.

Hence f, — 0 weak*.

Since f,— 0 weak*, we have by Theorem 3.3 that {f5} is tight
and converges weak* to zero. Moreover, we will show that ||f:|| — 0.
Let ¢ > 0. Choose Aed so that |[|(1 — e)fi(1 — e)|| < ¢/2 for each
positive integer n. Next choose a positive integer N so that for each
integer n = N, e)(e;,., — €;,) = 0 and 3/n < ¢/2. Since f,€ E}, it is
straightforward to verify that /i = (1 — ¢;,)fi(1 — ¢;). It follows that
for n = N

A= 1A — e)fal — e) | + llefn + fre — efzenll -

Replacing f? in the second term by e, , fie:,  ,—0n 9u=—So+te€1,, S rl1, ;s
we get

N2 < &f2 + lleses, . Srea, . + €, fres, . 0 — €€, Sres,
+ 3lIf2 — eln+1ff°eln+1”
<€E2+0+¢/2
<¢
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for n = N. Hence ||f]| — 0.

Since the map (x, ¢) — T(x) + ¢ is a bounded linear map from x P A
onto M(A) by hypothesis, the open mapping theorem gives a constant
k such that if ae M(A) and |la|| < 1, then there exists an ze€ X and
ce A with ||z|| + |l¢e|]] £ k and T(x) + ¢ = a. Then we have

@] = [F(T@) | + [fale) |
= 1T fullll=ll + (120 el

< k(== + I1£21]) -

This implies that |[f.[| = k(1/n + [|f2]). It follows that [[f.||—0,
which contradicts the fact that ||f,|| = 1. Hence there exists a \, in
A so that T, maps X onto M(A)/E,,.

Finally choose N >\, Let aec M(4). Since T, maps X onto
M(A)/E,, there exists an x<€ X and be¢ E; such that T(x) = a 4 b.
Due to the fact that (1 —¢;)b(1 —¢;) = 0, we have (1 —¢)T(@)(1—¢;) =
(1 —e)a(l —e;). Hence (1 — ) T(X)(1 — ¢)) = (1 — e;)M(A)(1 — ¢;) and
our proof is complete. The idea of this proof comes from [2, Theorem
2.3, p. 527].

The next result is a generalization of Phillips theorem that ¢, is
not complemented in =, It also shows (i) (using Conway’s result
that Cy(S) is complemented in C(S) implies S is pseudo-compact) that
A = C,(S) is never complemented in C(S) when S is paracompact and
noncompact, (ii) the compacts are uncomplemented in B(H) unless
H is finite dimensional.

COROLLARY 3.7. Let A be a C*-algebra with well behaved approxi-
mate identity. If A 1is without an identity, them A is mot comple-
mented in M(A).

Proof. Suppose A is complemented in M(A); that is, suppose there
exists, a closed subspace X of M(A) such that X A = M(A4). Then
by Theorem 3.6 there exists a ne 4 such that (1 — )X —¢) =
1 — ep) M(A)(1 — e;). Since e, is not an identity for A, there exists an
a€ A such that (1 — ¢))a(l — ¢;) = 0. It follows that there exists an
2 in X such that (1 — ¢))z(1 — ¢;) = (1 — ¢)a(l — ¢;), or equivalently,
x =1 — e)a(l — e) + e;ve; — e;x — xe;e But this implies that x = 0,
since € AN X. This contradicts the fact that (1 — ¢))a(l — ¢;) = 0.
Hence A is not complemented in M(A) and the proof is complete.

COROLLARY 3.8. Let B be a W*-algebra and let A be a closed
two-stded tdeal of B with a well behaved approximate identity {e,|n e A}.
If X is a Banach space and T: X — B is a bounded linear map such
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that T(X) + A = B, then there exists a N wn A such that
(1—e)T(X)1 —e) =(1—¢e)B(l—¢e).

Proof. lLet A’ = {xe B|xA = 0}. Since A° is a two-sided ideal of
B that is closed in the weak operator topology, A° has an identity ¢
that commutes with each element of B. Let X, = {x e X|qT(x) = 0}.
Then define the bounded linear map T, X,— B/A° by the formula
Tf(x) = T(x) + A® for each & in X,, We now wish to show that
T(X,) + AJA° = B/A’. Let ae B. It is clear that a + A’ = a — qa + A"
By hypothesis, there exists an x€ X and a ¢€ A such that T(x) + ¢ =
(1 — ¢)a. This means ¢T(x) = g1 — ¢)a — gc = 0, so € X,. Hence
T(X,) + A/A’ = B/A°’. By Corollary 2.3 M(A) = B/A’. Therefore, by
Theorem 3.6, there exists A in 4 such that

(3.4) (1 — e)B(l — e)/A’ = (1 — e) T(X)(1 — )/ A° .

We will now show that (1 —e)B(l — ¢) = (L — ¢)) T(X)(1 — ¢)).
Let ae B. Then by virtue of (8.4) there exists an z¢€ X, and cec A°
such that (1 —e)a(l —e) = 1 — &)T(®)L — ¢;)) + ¢. This implies
A—-e)l—qal —e) =1 — e)T(x)(1L — ¢;). Hence

(3.5) (1—-e)l-q9Bl—e)=~1-e)T(X)1—e).

Now let be B. By hypothesis there exists a y € X such that ¢T(y) =
gb. Set a = b — T(y). By (3.5) there exists an z¢ X, such that

L—e)T@)(1 —e) =1 —e)1 —@all —e) .
It follows that

(1 —e)b(l —e) = (1 —e)((1— )b+ gb)(1l — ¢)
=1 —e)((1 - )b+ qgTW)1 — e)
=1-e)(1—b—- A —-T(y) + T — &)
=1 -e)(1— )b — T ~ e)
+ 1A —-e)Tw(A — ¢e)
=1 —-eT()1 —e) + (1 —e)TH(L — e)
=1 —-e)T(x+ y)(1 ~e) .
Hence (1 — ¢)B(l —¢;) = 1 — e)T(X)(1 — ¢;) and our proof is com-
lete.
’ Let B be a C*-algebra, let 2 be a compact Hausdorff space, and let
C(2, B) denote the space of all B-valued continuous functions on 2.
Let @ be a closed subset of 2. A linear subspace X of C(@2, B) is

said to interpolate C(Q, B) if X|Q = C(Q, B). More briefly, we call @
an interpolation set for X. In [3] Bade investigated a class of theorems
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which state for appropriate B, 2, @, and X that if X interpolates
C(Q, B), then X interpolates C(V, B) for some closed neighborhood V'
of Q. In paticular, Bade showed (see [3, Theorem 1.1, Theorem 2.1,
pp. 149, 157]) that this happens whenever the following hold: B is
the complex numbers; 2 = B(S), where S is a locally compact, o-com-
pact or discrete, Hausdorff space; @ = 8S — S; X is a closed linear sub-
space of C(2, B). We will now give a natural specialization of Theorem
3.6 that extends Bade’s results to a noncommutative setting.

COROLLARY 3.9. Let B be a finite dimensional C*-algebra and let
S be a locally compact paracompact Hausdorff space. Let X be a closed
linear subspace of C(B(S), B) such that X|B(S) — S = C(B(S) — S, B).
Then there exists a closed mneighborhood V of B(S) — S in B(S) such
that X|V = C(V, B).

Proof. It is straightforward to show that C,(S, B) has a well
behaved approximate identity {e;|: € 4} such that each ¢; has compact
support. Since the double centralizer algebra of C,(S, B) is C(8(S), B),
the conclusion follows from Theorem 3.6.
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