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Let % be a locally convex separated unitary algebra over
the complex field. If T and 5 are fixed elements of SI and S
is invertible, it is possible to define on % the linear operator

M(Y) = M{T, S)(Y) = TYS-1

for all Ye%. The purpose of this paper is to construct a
functional calculus with analytic functions for the operator
M(T, S), by means of T and S, in order to obtain "multipli-
cative variants" of some results of M. Rosenblum. In the last
section these results are applied to normal operators and
matrices.

In what follows U will be a locally convex algebra i.e., an algebra
which is a locally convex space and where the multiplication is sepa-
rately continuous. The topology on 21 is defined by a family of semi-
norms {pa}aej and the space is assumed to be quasi-complete, i.e., every
Cauchy net is convergent. It is also supposed that the mappings Y—>
YZ (resp. Z—+ YZ) are uniformly continuous when Z (resp. Y) belongs
to a bounded set.

Denoting 5(31) the algebra of all continuous linear operators on
Si, the topology on I?(2t) is defined by the family of seminorms

for each L e 5(21), SB being the family of all bounded sets of 21.
When T, S e 21 and S is invertible, it is shown that the spectrum

σ(M) of the operator

M{Y) = TYS-1

is contained in the set σ(T). tf^S"1) (Proposition 2.4) hence, taking a
complex-valued function /, analytic in a neighbourhood of the set
σ(T)>σ(S~ι), we can construct the operator f(M) in each point of St,
as well by means of the functional calculus of T, S and they are
equal (Theorem 2.9). Since the logarithm of an element of 21 does
not always exist, this case is more general than Rosenblum's results
(see [3] and Proposition 3.1).

All the statements of this paper can be applied to linear operators
on Banach spaces or on locally convex ones, with supplementary
properties.

489



490 F.-H. VASILESCU

1* Preliminaries* It is useful to recall some of the concepts and
results contained in [1] and [4].

On a locally convex algebra it is possible to define the spectrum
σ(T) and the resolvent p(T) of an element Te% (these sets are con-
sidered in the complex compactified plane C^ = C{J{°°}) [4].

We recall that C^sXe ρ(T) if there is a neighbourhood Vχ of X
such that:

1° (μl - T)~ι e 2t for any μ e Vλ Π C (here I is the identity of SI).
2° the set {(μl - Γ)"1; μe VλΠC} is bounded in SI.

In the following we shall write for μl simply μ.
For each TeWi let us denote by %(T) the set of all analytic func-

tions in a neighbourhood of σ(T) = §p(T). Then, if Γ is a contour
(throughout we mean by "contour" a finite system of curves, admis-
sible for the integral calculus) "surrounding" σ(T), contained in the
domain of definition of fe^(T), we put, by definition

— ( /(λ)(χ _ T)~ιdX if σ(T) ί> oo

f(T)= 2πi)r

f(oo) + -Lf /(λ)(λ - TΓ'dX if σ(T) B -
2m Jr

where the integral exists since the space is quasi-complete [1], [4].
For such functions we have the "spectral mapping theorem", namely

σ(f(T)) = f(σ(T))[4] .

Let us remark that if L e i?(§I), / e g(L) and Γ is a contour in the
domain of / "surrounding" σ(L), then we may define the expression
f(L)(Y), by using the natural extension of the formula given above
for the elements of SI. Since §t is quasi-complete, the integrals do
also exist.

2* A functional calculus of the operator M* For two sets
A, B in the complex compactified plane with the property that if one
contains the point °o then the other does not contain zero, we denote
by A B the set {Xμ Xe A, μeB}. Also, if AφO, we denote by A~ι

the set {1/λ; λ e A}. In the following we need the next geometrical
result:

LEMMA 2.1. Let K and F be two closed sets in C*, 0 $ Kί °o# //
XoίK'F and Vo is a closed neighbourhood of λ0 disjoint from K F,
then there is an open set GQZ)K such that V0P\GQ F — 0 . Moreover,
if Γo is a contour in Go which surrounds K and separates it from
zero, then Γλ = λ/Vι is a contour such that the set F is "outside" it,
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for each λ 6 F 0 , 0 ^ λ ^ oo.

Proof. If we put

Gn = \μeC;άkt(μ,K) <±
I n

on account of the compactness of F,K and VQ in CΌo, there is an index
n0 such that V0C)GnQ-F = 0 . We take Go= Gno. We can actually
suppose that G0$0. Now, let Γo be a contour in Go surrounding K
and separating it from zero. Then for λ e 7 0 , O ^ λ ^ oo we have
Γλ = XΓo'aVo Go1 and V0 GϊιΓiF= 0 .

LEMMA 2.2. Lei Γ be a system of curves in the complex plane,
admissible for the integral calculus, V0aCoo a closed set and F: Vo x
Γ —»31, G: Γ —>2t £wo continuous functions. Then for any λ6 FoίlC

define on 21 £&e linear continuous operator

= \ F(\ξ)YG(ξ)dξ,
Γ

\
JΓ

for each FeSI.

Proof. By our assumption on the algebra Sϊ, it is easy to see
that the product of two continuous functions is also a continuous
function (since if U is a neighbourhood of zero in 2ί and B is a bounded
set then there are two neighbourhoods of zero Uι and U2 such that
Uβa U and BU2cU). Since the mapping ξ-+F(X, ξ)YG(ξ) is con-
tinuous on Γ for each λe 70lΊC and the algebra is quasi-complete,
then the integral

exists as an element of SI.
Obviously, it defines a linear operator on % denoted by Rλ(Y). To

see that R is a continuous operator on SI, let us denote by Bx the set
{F(\, ζ);Xe Vo, ζ e Γ) and by B2 the set {G(ζ); ξeΓ} which are bounded
in St. If U = {Te%;pa(T) < ε} then, by our hypothesis, there is a
neighbourhood Uo of zero in SI such that BιU0Bici(2π/\Γ\)Uj where
\Γ\ is the length of Γ. Thus we have

^ ^ - ( \F(X, ξ)YG(ξ)\a\dζ\ <ε

whenever Ye Uo, hence Rλ is continuous.

PROPOSITION 2.3. Let T, SeSl be such that S^eSt. If Xoίσ(T).
and VQ is a closed neighbourhood of Xo such that VQf)(?(T).

= 0, then there is an open set Go Z) ̂ (S"1), Goί 0 such that Vo.
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Moreover, if Γo is a contour in Go which surrounds ^(S"1) and
separates it from zero, then we have

(λ - M(T,S))-ι(Y) = - U (λ - ξT)~ιY(ξ - S^dξ

for each ΓeSI and λe F o n C

Proof. By the spectral mapping theorem, σ(S~1) — o{S)~x does not
contain zero and it is a compact set in C, therefore we may apply
Lemma 2.1, by putting F = σ{T) and K = ^(S*1). Let Go and Γo be
as in this lemma Then V0*Γ^1 c V0 G^1 does not intersect the set F —
σ(T), therefore Xξ-'epiT) for all XeVof)C and ξeΓ0, and σ(T) is
"outside" Λ = λ/V1 (0 ̂  λ Φ oo)# By Lemma 2.2, the integral

2τr^Jr

exists, therefore we have for any λe 70 ( O ^ λ ^

(λ - M(T, S))(-L( ( ^ -

(^TYYiξsr!
rQ\ξ J ξ

-M

since

1 f dξ = 0

-L( Y(ζ - S'T'dξ - Γ
27ΠJr

by the well-known functional calculus for an element of 2t with the
spectrum compact in C and

[ ( τ] [ (>7 - T)~ιdΎ] = 0

since σ(T) is "outside"
Analogously
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- s " )" 1 ? = γ•
f

therefore

(λ - M(T, S)Γ(Y) = 5M ( T - rVVif - S- ιr ι? .

If λ = 0 then 0$σ(Ί), hence ίΓ^eSt and

(-M(T, S))~ι(Y) = -T-ΎS = -K[ -T~Ύ(ξ - S"1)-1—
2TUIJΓ ξ

and this finishes the proof.

PROPOSITION 2.4. Ŵέ/*- ίAβ same conditions as in the previous
proposition, we have

σ{M{T,S))aσ{T)-σ{S-1) .

Proof. We can suppose σCI^'σiS"1) Φ Co. By the preceding pro-
position, if Xogσ(T)>σ(S~~ι) and Vo is a closed neighbourhood of λ0, F0Π
σ(T). σ{S~ι) = 0 , then for any λ e F0Π C the operator (λ - Af(Γ, S))""1

exists and, by Lemma 2.2, it is a continuous operator. We have only
to prove that the set

{(λ-ikf(T, S)yi;xeV0ΠC}

is a bounded one in l?(2t)
For, let { ^ W the family of semi-norms on 31 and {paS}aej,Be9

the family of semi-norms on B(Wί) (see the introduction). Define Bt =
{(λ - £Γ)-\ λ € Fon C, ί 6 Γo} and 5 2 - {(ξ - S"1)""1; ί e Γo} which are
bounded in St. Indeed, Fo / T ' c ^ T ) and it is a compact set in C,
therefore by reasoning with a finite covering, we obtain the bounded-
ness of the family Bx. A similar argument is valid for B2. If B e SB
is arbitrary, then BJBB2 is also a bounded set, therefore we have

patB((\ - M(T, S))-1) = suppβ((λ - M(T, S ) r ( F ) )

^ 1 sup f Pβ((λ - ξTΓΎ(i - S-1)-
2π yeB J Γ 0

where we kept the notations of the preceding proposition. Conse-
quently Xoeρ(M(T, S)).

COROLLARY 1. If M = M(T, T) is an inner automorphism of the
algebra St then
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σ(M)aσ(T) σ(T-1) .

PROPOSITION 2.5. Let T, Sbein% with S"1 e a, and M = M(T, S).
If XQ£σ(M) σ(S) and Vo is a closed neighbourhood of λ0 such that
Vo Π σ(M) σ(S) = φ, then there is an open set G0Z)σ(S), G0$0 such
that V,-G^(Zp{M).

Moreover, if Γo is a contour in Go which surrounds σ(S) and
separates it from zero, we have

(λ - T ) ( - U (λ - ξM)~ι(Y)(ξ - S)~ιdξ) = Y
\2πιjro

for all Ye21 and λe VoΠC.

Proof. We apply Lemma 2.1 with F = σ{M) and K = ίτ(S).
Therefore, if Γo is a contour as in the quoted lemma, then the integral

exists as an element of SI for each λe Vof]C.
From the relation

λ(λ - ίAΓJ-^Γ) - ξT(\ - fAf)-1^1 = Y

we obtain

Γ(λ - |

therefore we can write, for λ e Vo Π C, λ Φ 0,

(λ - 2vM
2πι

ξι)r0ξ 2πι)roξ

since
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and

2πι )rQξ 2πι hr~ι

because σ(M) is "outside" λ/V1.

If λ = 0, a direct argument proves the validity of the given
formula.

PROPOSITION 2.6. With the same conditions as in the previous
proposition, if σ(T) 3 &> then σ(M) 3 °°.

Proof. Let us suppose that σ(M) ί oo. Then there is a closed
neighbourhood of °o, let us say VΌo, where we have

for all ξe Γo where the series is uniformly convergent in SI.

Hence we have

A-ί (x _ ξM)-i(Y)(ξ - SΓ'dξ

= i f ±ι
J

— V

thus the last series is uniformly convergent in a neighbourhood of oo
and defines, for Y = /, the inverse λ — T.

Moreover, the set {(λ — T)"1; λ e F«>} is bounded in §1 since the set

{J-[ (λ - ξMΓWiζ - SrW; λG
ί2πι jr0

is bounded in §1 (see the proof of Proposition 2.4), thus oo ep(T).

PROPOSITION 2.7. Let T, S e SI 5β sue/* ίΛαί S"1 e SI αwd M = M(T, S).
Suppose M invertible on 21. If XQgσ(T)-σ(M)~~ι and Vo is a closed
neighbourhood of λ0 such that V^Γ\σ{T)-σ(M)~ι = 0 ίΛen there is an
open set GQZ)σ(M)~\ G0$0 such that Vo-Goι c ρ(T). Moreover, if Γo
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is a contour in Go which surrounds σ(M)~\ we have

( - U (λ - ξTr(ξM- lΓ(Γ)f )(λ - S) =

for all Fe§I and Xe VQf)C.

Proof. If 1/ξ e ρ(M) then from the relation

we obtain

(M - γ)"V)S - ξ(τ(M - j

As in the proof of Proposition 2.5, we may apply Lemma 2.1 with
F = σ(T) and K — σ{M)~ι and if Γo surrounds σ(M)"1, we have for λ
in a neighbourhood Vo of λ0, 0 Φ X Φ oo,

\2πi)ro\ ξ ) ξ.J 2πi)ro\ ξJ <f

since

_l_ί ίj± - ΓV'4) = -—] ^(V - TΓ'dη = 0

(because σ(T) is "outside" XΓo1) and

r

= y

as Γ^1 surrounds σ(M).
If OίσίΓj o ίikf)""1 then Γ^eSί and the formula is immediate.

LEMMA 2.8. Let F and K be two closed sets, 0&K& °o and Gz)
K.F an open set. Then there is an open set Go $ 0, Go^> K such that
G^G0'F. Moreover, if Γ c G is a contour surrounding K-F then
we can take a contour Γo in Go surrounding K and separating it from
zero such that ξ F is "inside" Γ for all ξe Γo.

Proof. The set CG is compact in CU, therefore we can apply
Lemma 2.1 for any λoeGG and, taking a finite covering of CG, we
obtain the set Go. If Γ is a contour surrounding K F, we can choose
Go such that Go. F is "inside" Γ, hence there is a contour Γo in Go
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which surrounds K and separates it from zero such that ΓQ F is "in-
side" Γ.

THEOREM 2.9. Let Γ, S e St be such that S"1 e Si. // σ(T) σ(S^) Φ
Ceo and f is an analytic function, defined in an open set containing
σ(T) -(/(S"1), then there is a contour Γo surrounding σiS"1) and sepa-
rating it from zero such that f(ξT) is defined for each ζ e Γo and

f(M(T, S))(Y) - -Lf f(ξT)Y(ξ - S-Y'dξ ,
2τπJr0

for all FeSί (where the left side is defined as in the Introduction).

Proof. We apply Lemma 2.5 with F = σ(T) and K = (/(S"1). Let
Γ and JΓ0 be as in this lemma. Suppose that σ{M) B ©O . Then, by
Proposition 2.4, we must have σ(T)Boo. Hence, by Proposition 2.3,
we can write

f(M(T,S)(Y)) = /(oo)Γ+ l/2τri^/(λ)(λ - M(T, S))~1(Y)dX

- f(oo)Y+ l/2πi\ /(λ)(-L( (λ -

By interchanging the order of integration, we obtain

2πι Jr

- /(oo))Γ(f - S~Tιdξ

- J-[ f(ξT)Y(ξ - S-T'dξ - /(oo)γ
2πι)r0

since, by Lemma 2.5, σ(fT) = fσ(T) is "inside" Γ for all ξ e Γo

In this manner we obtain

f(M(T,

If (7(1) 3 oo we have σ(M) $ oo and a similar calculus leads to the same
formula. No other case is possible because of Proposition 2.6, and this
finishes our proof.

3. Some applications of the functional calculus* First of all,
we shall show that, in a certain sense, the commutator of two elements
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[3] can be found again as a function of the operator M.

PROPOSITION 3,1. Let T, S be in 21, with compact spectra in C
and with S" ιe3t. If none of the sets σ(T), σ(S) and σ(T)-σ(S~ι) sepa-
rates the complex plane, we have the relation

(logM(T, S))(Y) = (log T)Y- Γ(logS) ,

for all Γe SI.

Proof. By our assumption, log T, log S and log M(T, S) exist and,
from Theorem 2.9, it follows that

(log M(T, s))(r) = - M
2τπ

- r(iog s-1) + (log τ ) r = (log Γ) r - r(iog s>.

Let now E( ) and 2̂ ( ) two self ad joint spectral measures on a
Hubert space, defined on Borel sets of the complex plane. Then the
mappings

= YF(σ2)

are two commuting spectral measures, Y being an arbitrary linear
bounded operator; therefore the mapping

(® x g)(σx x σ2)(Y) = E(σdYF(σj

induces a spectral measure on the space of the operators and it is
possible to integrate with respect to it (see [2] for details).

PROPOSITION 3.2. Suppose that SI is the algebra of all linear
operators on a Hilbert space and Γ, Se StίS"1 e 31) two normal operators.
If E, F are the spectral measures of T and S respectively, then for
any function f, analytic in a neighbourhood of σiTϊ σiS"1), we have

f(M(T,

for all r e 81.

Proof. Using the same notations as in Theorem 2.9, we have

f(M(T, S))(Y) = - U f(ξT)Y(ξ - S~Tιdξ
2πι)r0
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= -M f(ξT)γ(\(ξ - PΓYVF
2πιir0 \J

λ)(ξ ~ μ-Vιdξ)YdFμ

/

= \\f(Xμ-')dE,YdFr .

PROPOSITION 3.3. Assume that the Hilbert space in the previous
proposition is finite dimensional and that

Γ = Σ Mk S = Σ i"*̂ *
j = l fc=l

(where {Ej} and {Fk} are now finite orthogonal resolutions of the iden-
tity). If f is an analytic function in an open set containing the set
{λlf , λp} {μγ\ , μ^1} then we have

f(M(T,
j = l k = l

for all Γe5ί.

The proof follows easily from the preceding proposition.

PROPOSITION 3.4. Suppose that SI, T and S are as in Proposition
3.3. Then a necessary and sufficient condition that the equation TY —
ZS have a solution Ye% is that Xr = 0 implies ErZ = 0.

Proof. Let Y be a solution of the equation TY = ZS, hence

rre-1 = Σ Σ ^3μϊιEόYFk = 3 .

From this relation we obtain easily

F, = XrμτΈrYFs = ErZFs ,

thus XrEs YF, = μsErZFs.
If Xr — 0, since μs Φ 0 for all s, we have ErZF3 = 0, henee

Σs # ^ ί \ = # r Z = 0.
Conversely, if λr = 0 implies ErZ = 0, let us consider the matrix
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We have

<7 Q ft
"^H -N 777 V-« " ^ h^l ]

Σ£?IZΣ
1=1 ί=l

consequently F is a solution of the equation.
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