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Let R be a ring (with 1) of zero singular right ideal and
let Q be its maximal right quotient ring; let 7~ be the class
of all (unitary) right R-modules of zero singular submodule.
An element M of 7" is said to be an injective cogenerator for
A" if M is an injective module and every element of ./ can be
embedded in a direct product of copies of M; M is said to be
a minimal injective cogenerator for .4~ if M is the only direct
summand of M, which is an injective cogenerator for .7,
This paper deals with the question of existence and unique-
ness of a minimal injective cogenerator for .7 (and in .#").
If a minimal injective cogenerator for .4~ exists, then it is
(a) isomorphic to a minimal faithful direct summand of Q, (b)
isomorphic to a direct summand of every injective cogenerator
for .4~ (and in .#") and (¢) unique (up to isomorphism).
Whether Q is (or is not) a prime ring, affects the structure,
though not the existence, of a minimal injective cogenerator
for .#”; a minimal injective cogenerator for .47, if it exists,
is (up to isomorphism) a faithful minimal right ideal of Q iff
@ is a prime ring and so in this case @ is a minimal injective
cogenerator for .7~ iff @ is a division ring. On the other
hand, if R is finite dimensional (Goldie) then a minimal injec-
tive cogenerator for ./~ exists; it is Q iff Q is (ring) isomor-
phic to a finite product of division rings.

We begin with a list of conventions, assumptions and well known
facts:

(a) By a ring R it is meant an associative ring R with 1, whose
singular right ideal [2] is zero. R, is used when R is considered as
a right R-module.

(b) Q denotes the maximal right quotient ring [2] of a ring R
and so @Q is a Von Neumann regular ring, i.e. a ring every principal
right ideal of which is a direct summand, and also the injective hull
of R, [2].

Now for the rest of the list, let R be a given ring.

(¢) By a module M it is meant a unitary right R-module M; Z(M)
denotes the singular submodule of M [2] and a module of zero singular
submodule is called (for short) nonsingular. .4~ denotes the class of
all nonsingular R-modules.

(d) For each module M, E(M) denotes the injective hull [2] of M.
If M and N are modules such that M & N we write M &’ N to denote
the fact that M is essential in N (¥ is an essential extension of M
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[2]).

(e) A module C is said to be M-torsionless, for a given module
M, if C can be embedded in a direct product of copies of M, or, equiva-
lently, if N ker f = (0) where f ranges over Hom,(C, M).

(f) A module M is said to be a cogenerator for a class . of
modules, if every module in .& is M-torsionless, and an injective
cogenerator if, also, M is injective.

(g) Whenever a cogenerator M for 4~ is considered it is assumed
that M is also in .#~. As a corollary to Gentile’s [3, p. 427, Prop.
1] we have:

PropPOSITION 0.1. @ s an injective cogenerator for .4 .

(h) Perhaps the most crucially, certainly the most often used
result is the following consequence of [6, p. 119, Remark] and [7, p.
226, Lemma 2.3]:

LEMMA 0.2. If A is an injective module and C is a nonsingular
module, then any homomorphism f: A— C splits (i.e. ker f is a direct
summand of A).

The following will also be of frequent use:

LemMmaA 0.8. If I is a right ideal of R, then E(I) = eQ for some
wdempotent in Q.

(i) For a nonempty subset S of a module M, r. annyS = {r e R/sr=
0, for all se S} and thus a module M is faithful if . ann,M = (0);
a module M is said to be minimal faithful if M is faithful and no
proper (= M) direct summand of M is (faithful).

1. Minimal injective cogenerators for .#". Let R be a ring.
We start with a generalization of a theorem of Armendariz [1, p. 568,
Theorem 3].

THEOREM 1.1. For a nonsingular module M, the following state-
ments are equivalent:

(a) M s a cogenerator for 4 .

(b) M contains a faithful submodule D such that D contains the
mjective hull of every one of its finitely generated submodules.

Proof. (a) implies (b). By hypothesis Hom(Q, M) # 0 and so, by
Lemma 0.2, M contains nonzero injective submodules. Let D be the
sum of all injective submodules of M; if N, .-, N, are injective sub-
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modules of M (finitely many) then N, + --- + N, is also injective as
it is a homomorphic image of the injective module N, X +++ X N, (Lemma
0.2 again). It follows that D contains the injective hull of each of
its finitely generated submodules. Now observe that Hom,(Q, M) =
Homg(Q, D) and thus @ is D-torsionless. It follows that D is faithful;
in fact we have shown that D is a cogenerator for _#~ as @ is (Pro-
position 0.1).

(b) implies (a). If a is a nonzero element of @, then for some
re R,ar is a nonzero element of R. Since D ar = 0, there exists
de D such that dar # 0, and thus a module map f:arR— daR such
that f(ar) = 0. Since E(Im f) & D, the map f has an extension
f:Q@— D, and f'(a) # 0. Thus @ is D-torsionless and hence M-tor-
sionless; by Proposition 0.1 M is a cogenerator for .+ .

The following quite obvious corollaries to the above theorem are
singled out for later usage.

COROLLARY 1.1.1. A right ideal A of Q is a cogenerator for A4~
if and only if A is a faithful R — (or Q—) module.

COROLLARY 1.1.2. An injective nonsingular module M is a co-
generator for 4" if and only if M 1is faithful.

The rest of this section is devoted to results about the existence
and uniqueness of a minimal injective cogenerator for _#~, this con-
cept defined in the obvious manner as follows:

DEFINITION 1.2. A nonsingular module M is said to be a minimal
injective cogenerator for .+~ if (a) M is an injective cogenerator for
4" and (b) no direct summand of M different from M is a cogenerator
for 4.

We have as a corollary to Theorem 1.1:

PROPOSITION 1.3. An injective nonsingular module M is a minimal
tnjective cogerator for A4~ if and only if M is a minimal faithful
module.

The quotient field K of a commutative integral domain R is iso-
morphic to a submodule of every nonzero torsion-free injective B-module
M. A similar result about a nonzero nonsingular injective module M
and @ does not in general hold, even when M is assumed faithful.
However some theory relating @ and the nonzero injective elements of
A" is possible and essentially a consequence of the following result
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(Theorem Z) contained in a theorem of J. Zelmamowitz [8, Theorem 2]:°

THEOREM Z. If M is a nonsingular module then there exists a
collection of right ideals of R, {I,: xe A}, such that M is an essential
extension of a submodule isomorphic to @I, (external direct sum).

In view of Lemma 0.3 we have immediately:

COROLLARY Z.1. A nonsingular injective module M is (up to iso-
morphism) the injective hull of a direct sum Pe,Q, where {e,: aec A}
8 a set of (not necessarily orthogonal) idempotents of Q.

We now take a closer look at the direct summands ¢Q(e* = ¢) of
@ on the way to establishing results on the existence and uniqueness
of a minimal injective cogenerator for .4 .

LeMMA 1.4. If e and f are idempotents of Q@ other than 0 or 1,
thern Hom (fQ, eQ) = (0) if and only if eQ and fQ have no isomorphic
nonzero direct summands.

Proof. Clear. (Use Lemma 0.2 for the if part; use the injectivity
of ¢Q, or fQ, for the only if part).

ReEMARK. If eQ and f@Q have no isomorphic nonzero direct sum-
mands, then ¢QfQ =0 and fQeQ = 0 because Homg(fQ, eQ) = eQf
(as groups) and the fact that the condition on the direct summands
is a symmetric one.

DEFINITION 1.5. We say that the modules M and N share a
nonzero direct summand if M and N have isomorphic nonzero direct
summands.

Lemma 1.6. If {f.ac A} is a set of idempotents in Q such that
N = E(@’ Q) is an injective cogenerator for 4", then for each nonzero
idempotent ¢ in Q, eQ shares a nonzero direct summand with some

f5Q-

Proof. Let f:eQ— N be a homomorphism such that f(e) = 0.
Since N is an essential extension of Pf.Q, there exists re R such
that 0= fle)rePf.Q and so for some BgecA n;f(e)r =0 where
ot Pf.Q — fQ is the canonical projection. It follows now by Lemma
0.2 that 7,f(er Q) is a nonzero direct summand shared by ¢Q and f,Q.

COROLLARY. If im @ there exist nonzero idempotents e, and e,
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such that e,Qe,Q = 0 then there also exist nonzero idempotents f, and
f2 such that fQ,1 =1, 2, is (isomorphic to) a submodule of N and
fQf.Q = 0 (N is an injective cogenerator for .#7).

DEFINITION 1.7. (a) If ¢ and f are idempotents in @, the sum-
mands eQ and fQ of @ are said to be orthogonal if eQf @ = (0).

(b) A nonzero right ideal B of @ is said to be only orthogonally
decomposable if whenever B= X @ Y, for right ideals X and Y of
@, then XY = (0).

It is easy to see that Q need not have any orthogonal summands
different from (0) and Q; in fact we have:

LemMa 1.8. Q is a prime ring if and only of Q has no orthogonal
summands other than (0) and Q.

Proof. A prime ring is one in which, for example, the product
of nonzero principal right ideals is nonzero. Every principal right
ideal of @ is a direct summand of Q.

REMARK. If @ is not a prime ring and N is an injective cogen-
erator for .4, then N contains (isomorphic copies of) orthogonal
nonzero summands of @ (Lemma 1.6).

Now we consider an existence theorem.

THEOREM 1.9. The following statements are equivalent:

(a) There exists a minimal injective cogenerator M for 4"

(b) There exists a maximal set {e,Q: a € A} of pairwise orthogonal
summands of @ such that each e,Q is only orthogonally decomposable.

(¢) There exists a minimal foithful right ideal fQ for some idem-
potent f in Q.

In particular if M is a minimal injective cogenerator for 4", then
M= fQ for some minimal faithful right ideal direct summand fQ of Q.

Proof. (a) implies (b). Let {e,Q: aec A} be a set of summands of
@ such that M = E(Pe.Q) (given by Corollary Z.1). We show at once
that the summands {¢,Q} are pairwise orthogonal and each only or-
thogonally decomposable. To this end suppose ¢,Q and e;Q(a # B)
share a direct summand and so there exist module decompositions
e = A PA" and ¢,Q = B'@P B’ with A’ = B’ and both 4’ and B’
nonzero. These (decompositions) induce a module decomposition M =
AP B PC; now since A’ = B’ and M is a cogenerator for .7, it
follows by the definition of cogenerator that, for example, B'p C is
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also a cogenerator for _#", contrary to the minimality of M. It follows
that ¢,Q and ¢;,Q are orthogonal whenever « # 8 and, by the same
argument, that each ¢,Q is only orthogonally decomposable. Finally,
the set {¢,Q: a e A} is a maximal set of pairwise orthogonal summands
of Q@ by Lemma 1.6.

(b) implies (c). Let fQ = E(D e.Q), where {¢,Q: a € A} is as given
in (b) (and so in particular the direct sum & ¢.Q is internal). To show
that fQ is faithful, assume that, on the contrary, there exists a
nonzero idempotent e in @ such that fQe = (0); it follows that e,QeQ =
(0) for each a¢c A and so {e,Q: e A} U {eQ} is a set of pairwise or-
thogonal summands of @, properly containing {e,Q: a € A}, contrary to
the latter’s maximality. To show that f@Q is minimal faithful, sup-
pose that fQ = B@ C where B is faithful and so, by Corollary 1.1.2,
an injective cogenerator for .#". It needs to be shown that C = (0).
If C is not zero, that there exists a nonzero idempotent ¢ in @ such
that eQ < C and since P ¢,Q S’ fQ it may be assumed that eQ C Pe.Q.
Furthermore as eQ shares a direct summand with some e¢,Q
(Lemma 1.6.) and as the ¢,@’'s are orthogonal, it may be assumed that
eQ C e,Q, for some ge A. Now since B is an injective cogenerator
for .+, it follows from Lemma 1.6 (and Corollary Z.1) that e@Q shares
a direct summand with some summand e¢'Q of B, for some nonzero
idempotent ¢’ in @, and it may be assumed that ¢'Q is isomorphic to
a summand of eQ. As in the case of ¢Q, it may be assumed that ¢'Q
is contained in one of the summands ¢,Q and as they are orthogonal
it must be that ¢Q Ce;Q. Now since ¢/Q C B and eQ c C, it follows
from BN C = (0), that ¢Q N eQ = (0) and thus ¢QeQ = (0), as ¢,Q is
only orthogonally decomposable; however ¢'QeQ == (0) (Lemma 1.4) and
thus the assumption C =+ (0) has led to a contradiction.

(c) tmplies (a). Proposition 1.3,

REMARKS. (1) It should be clear from the preceding considerations,
that if @ is a prime ring then a minimal injective cogenerator for
" exists if and only if @ has nonzero socle. The case in which @
(or R) is prime (including this remark) will be considered in detail in
the next section.

(2) Any injective cogenerator M for .+~ contains a submodule
isomorphic to a faithful right ideal fQ, for some nonzero idempotent
f of Q. In fact if {f,Q:je J} is a maximal set of pairwise orthogonal
summands of @ contained in M (such exist by the Corollary to Lemma
1.6 in case @ is not prime) then f@ can be chosen to be E(DP f,Q).
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The following is a uniqueness theorem.

THEOREM 1.10. If M 4s a minimal injective cogenerator for 4",
then

(a) M is unigue up to isomorphism, and

(b) M is isomorphic to a submodule of every injective cogenerator
N for 4.

Proof. In view of Theorem 1.9 and Remark (2) following it, for
a proof of both (a) and (b) of this theorem, it is sufficient to show
that if ¢ and f are idempotents in @ such that eQ is minimal faithful
and fQ is faithful, then eQ is isomorphic to a direct summand of fQ.
We show this next:

If an ideal A of @ is such that ¢QfQA = (0) then fQA = (0) and
so A = (0) as both ¢Q and fQ are faithful. It follows that ¢Qf@Q = eQ,
as eQfQ is a faithful direct summand of eQ. Thus there exist ele-
ments p and ¢ in @ such that e = epfq and so the homomorphism
h: fQ-— eQ given by h(fx) = epfz is an epimorphism. It follows from
Lemma 0.2 that eQ is isomorphic to a direct summand of fQ.

We do not know whether, in general, the property of being iso-
morphic to a submodule of every injective cogenerator for _#~, char-
acterizes the minimal injective cogenerator, among the injective cogen-
erators for /.

A simple example to put the results of this section in some con-
crete form is the case when R is a commutative ring. It is easy to
show that then Q, also, is a commutative ring and @ is only orthog-
onally decomposable. @ is the unique minimal injective cogenerator
for _7~.

2. Nomnsingular uniform modules; rings of finite Goldie di-
mension; prime rings. The assumption that R is an associative ring
with 1, of zero singular right ideal and that @ is its maximal right
quotient ring, continues in force.

A module M is said to be finite dimensional (in the sense of Goldie)
[4, p. 202] if it contains no infinite direct sum of nonzero submodules
and we call R a finite dimensional ring if R, is a finite dimensional
module. A module U is said to be uniform if U= 0 and U is an
essential extension of every one of its nonzero submodules. A uniform
right ideal of R is, then, a uniform submodule of E,.

For each module M, Soc (M) denotes the socle of M.

In this section we are primarily interested in nonsingular uniform
modules, as when they exist “in abundance” (e.g. when the sum of
uniform right ideals of R is essential in Rj), then they determine the
minimal injective cogenerator for .+~ in a simple way; in fact (they
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determine it) quite in the manner in which the (nonisomorphie) simple
modules and their injective hulls determine the minimal injective
cogenerator of the category of all modules. Thus we proceed in the
following with a sequence of facts about nonsingular uniform modules
(when they exist), some of them, probably, well known.

LEmMmA 2.1. A homomorphism f:U— A where U and A are
nonsingular modules and U is uniform is either the zero map or a
monomorphism.

Proof. Ulker f is a nonsingular module, since A4 is and so if
ker f = (0) then it must be that ker f = U, since Ujker f is, then, its
own singular submodule as well.

DEFINITION 2.2. A uniform module U is said to be equivalent to
a uniform module V, and then we write U ~ V, if E(U) = E(V) or,
equivalently, if there exists monomorphism A4 — V for some nonzero
submodule A4 of U.

It is clear that this relation is an equivalence relation on uniform
modules.

LEMMA 2.8. The following statement about a uniform module U
are true:

(@) Z(U) = U or Z(U) = (0)

(b) If Z(U) = (0), then E(U) is isomorphic (as an R-module) to
a minimal right ideal of Q.

() Z(U) = (0) if and only if U is equivalent to a uniform right
ideal of R.

Proof. (a) follows from the fact that Z(U/Z(U)) = (0) [5, p. 270,
Proposition 2.3] and at the same time, Z(U/Z(U)) = U/Z(U), if
Z(U) = (0).

(b) If Z(U) = (0) then there exists embedding (of R-modules)
U— @ (Proposition 0.1 and Lemma 2.1). We may thus assume that
U is a uniform R-submodule of @ and further assume that U = qR
for some 0 == q€ @, since qR ~ U for every 0= qge U. Thus E(U) =
F@R) = q@Q = eQ for some idempotent ¢ in Q. Now eQ is a uniform
R-submodule of Q,, as U is, and so eQ is a uniform ideal of Q. Since
@ is Von Neumann regular, it follows that ¢Q is a minimal right ideal
of Q.

(¢) Since injective hulls of nonsingular modules are nonsingular
modules, Z(U) = (0) if U is equivalent to a uniform right ideal of R.
On the other hand, using the notation of part (b) above if Z(U) = (0),
we have I =¢QN R, a uniform right ideal of R such that E(I) =
eQ = E(U).



MINIMAL INJECTIVE COGENERATORS FOR THE CLASS 535

REMARK. Nonsingular uniform modules need not exist: a ring R
such that Soc (@) = (0) exists (see Example following the Corollary
to Proposition 2.11).

DEFINITION 2.4 (Terminology). For each module M, % (M) denotes
the (module) sum of all uniform submodules of M. If M has no
uniform submodules, then we write: Z (M) = (0).

Any finite dimensional ring R satisfies Z(R;) &' R: [4, p. 202,
Theorem 1.1]. If, on the other hand, R is an infinite direct product
of fields, then Z/(R;) &’ R; but R is not finite dimensional.

ProrositioN 2.5. For a ring R the following statements are
equivalent:

(@) Z(Br) &' R,

(b) ZZz (M) &' M for every nonzero nonsingular module M

(c) Soc(Qo) &' Qe-

Proof. (a) tvmplies (b). It is sufficient to show that Z (M) = (0)
in case M is a nonzero, nonsingular cyelic module. If M is such, then
there exists epimorphism f: RE,— M; now it cannot happen that
S(URR)) = (0) as Z(M) = (0), and this would imply f(R) = (0), though
M= 0. Thus f(U) =+ 0 for some uniform right ideal of R and it
follows from Lemma 2.1 that U = f(U)c M.

(b) implies (c). Condition (b) in particular implies that /' (R;) &’ R,
and so (c) follows from part (b) of Lemma 2.3.

(c) implies (a). For each minimal right ideal 4 of @, AN R is a
uniform right ideal of R and so if Soc (Q,) = TA; where {4;} are the
minimal right ideal of @, then X(A4; N R) & %’ (R). On the other hand
SANR S (TA)NRZ R,

REMARK. Finite dimensional rings R have been characterized by
F. L. Sandomierski [6, p. 115, Theorem 1.6} as those for which

Soc (Q) = Q-

THEOREM 2.6. Let R be a ring such that Z/(Rz) &' R, and let
{e.Q: e A} be a complete set of nom-isomorphic minimal right ideals
of Q, where {e,: a € A} is an appropriate set of primitive, orthogonal
idempotents of Q. The ideal eQ = E(P e,Q) is, then, a minimal in-
jective cogenerator for A",

Proof. We apply Theorem 1.9 (b). The summands {e.Q} are pair-
wise orthogonal because they are (pairwise) non-isomorphic minimal
right ideals of @ and each e,Q is, clearly, only orthogonally decom-
posable. It remains to show that the set {¢,Q: ae A} is a maximal
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set of pairwise orthogonal summands of Q; now if ¢Q is a nonzero
summand of @, then Soc (eQ) = (0), by Proposition 2.5 (¢), and so eQ
contains a nonzero summand isomorphic to some e¢,Q, as {e.Q: ac A4}
is a complete set of non-isomorphic minimal right ideals of Q. Thus
e.QeQ = (0), for some a e A.

In view of Theorem 1.10(b) and Lemma 2.3 (b), the following
corollary to Theorem 2.6 is immediate.

COROLLARY. If R is a ring such that Z/(Ry) &' R, and M is a
nonsingular module, then M is a cogenerator for A4~ if, and only if
M contains a copy of the injective hull of every uniform nonsingular
module.

THEOREM 2.7. If R s finite dimensional, then the following
statements are equivalent:

(a) Q is a minimal injective cogenerator for 4.

(b) Q (as a ring) is tsomorphic to a finite direct product 4,p--PH4,
of division rings 4,.

Proof. (a) implies (b). @ is artinian semi-simple in this case [6,
p. 115, Theorem 1.6] and so there exist primitive orthogonal idem-
potents e, «--, e, such that Q@ = e Q@ --- Pe,Q. Condition (a) now
implies that the minimal ideals ¢;Q are (pairwise) non-isomorphic. It
follows now from the structure theory of artinian semi-simple rings
that each ¢,Q is a division ring and the sum ¢ Q@@ --- P e,Q is a ring
direct sum.

(b) implies (a). Each 4, is a minimal @Q-ideal and they (the ideals
4;) are non-isomorphic. Now use Theorem 2.6,

Now we turn our attention to the case when R is a prime ring.

LEMMA 2.8. For a ring R the following statements are equivalent:
(a) R is a prime ring.
(b) Every nonzero, nonsingular module M is a faithful module.

Proof. (a) implies (b). Over a prime ring R a two-sided ideal
of R is either an essential submodule of R, or it is zero (e.g. [1, p. 570,
Lemma 3]). Since Z(M) = 0, it follows that ~.ann (M) = (0).

(b) implies (a). A nonzero right ideal A of R is a nonzero, non-
singular module and so 7.ann,A = (0).

ProPOSITION 2.9. Let R be a prime ring and let M be a nonzero,
nonsingular injective module. The following statements about M are,
then, equivalent:

(a) M is a minimal injective cogenerator for 4 .
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(b) A nonzero homomorphism f: M- C, where C is nonsingular,
8 a monomorphism.
(c) M is a uniform module.

Proof. (a) implies (b). It follows from Lemma 0.2 that M — Im f
splits and so ker f is a direct summand of M. Now if ker f = 0
then ker f is faithful (Lemma 2.8) contrary to minimality of M (Pro-
position 1.3}, Thus it must hold that ker f = 0.

(b) implies (c). If M is not uniform then, since M is injective,
it is possible to find nonzero submodules A and B of M such that
M =A@ B. Such a decomposition, however, gives rise to a homo-
morphism, e.g. the projection M — B, of the kind which is forbidden
by condition (b).

(c) implies (a). M is faithful, by Lemma 2.8, and so M is an
injective cogenerator by Corollary 1.1.2. Condition (¢) implies that M
has no direct summands other than (0) and M and so (a) follows.

THEOREM 2.10. If R is a prime ring, then a minimal injective
cogenerator for 4 exists if and only if Z (Rz) # (0). Furthermore
if Z (Rg) + (0) then Z (Rz) &' Ry and there is only one (up to iso-
morphism) nonsingular simple Q-module.

Proof. If Z/(Rz) + (0) then there exists a uniform right ideal
U of R and thus also a nonsingular injective uniform R-module,
namely E(U)c Q. It follows from Proposition 2.9 that E(U) is a
minimal injective cogenerator for .#”". On the other hand if M is a
minimal injective cogenerator for _#~ then M is uniform (Proposition
2.9) and so ' (R;) + (0) (Lemma 2.3 (c)). Now for the second part
of the theorem, assume Z/(R;) = (0). It follows (Lemma 2.3 (b)) that
@ has a minimal right ideal fQ, where f is some (primitive) idempotent
of @; now if eQ is any nonzero summand of @ then fQeQ = (0), as @
is prime, and so Soc (eQ) = (0) (by Lemma 1.4, for example). It fol-
lows that Soc (Q,) &' Q, and so % (R;) &’ R;. Finally if S is any
nonsingular simple @-module, then S = ¢g@ for some primitive idem-
potent g of @ (by Lemma 0.2) and, as before, f@Q = gQ.

COROLLARY. If R is a prime ring then @ is @ minimal injective
cogenerator for A4 if and only if @ is a division ring.

Proof. If @ is a minimal injective cogenerator for .7~ then @ is
a uniform R-module (Proposition 2.9) and thus @, is a minimal right
Q@-ideal. A ring with 1 = 0 and no right ideals other than zero and
itself is, of course, a division ring.
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Now we obtain an example of a prime ring R such that Z/(R) = (0).

By a simple ring R we mean a ring in which (0) and R are the
only two-gided ideals.

ProrosiTioN 2.11. If R has no divisors of zero # 0 then Q s a
simple ring.

Proof. Let A be a nonzero two-sided ideal of @ and thus consider
acRNA a+0(RNA=+(0) as R, &’ Q). Since R has no divisors
of zero ++ 0 we have r.annza = (0) and, hence, r.ann,e = (0). Now
Qa = Qe for some idempotent ¢ in @ and so a{l —e) = 0. Thus
1 —ecr.anng = (0) and so ¢ = 1; we have Qa = @, for some ac A,
and so @ = A.

COROLLARY. If R has mo divisors of zero # 0 then a nonsingular
uniform module exists if and only if Q is a division ring.

Proof. 1If Z(R) + (0) then Soc (@) == (0) and as Soc (@) is a two-
sided ideal, it follows that Soc (@) = @ or that @ is simple semi-simple
artinian. Now every element of R — {0} is invertible in @ and so
every element ¢ of @ has the form ad™ for appropriate elements «
and d of R (i.e. @ is also the classical quotient ring [2] of R). It
follows that if ¢ % 0 then ¢! = da™* exists and @ is a division ring.

AN EXAMPLE. Since a finite dimensional ring R {of zero singular
right ideal) has an artinian semi-simple maximal quotient ring @ |6,
p. 115, Theorem 1.6] it follows from the proof of the above corollary
that a ring R which has no divisors of zero =0 can be one of only
two Goldie dimensions (as a right R-module): either of dimension one
(i.e. either R, is a uniform module) or of infinite dimension (i.e.
ZZ{(R) = (0)). A ring R of the latter kind is the ring R = K|z, ¥]
where K is a field and =z, y are non-commuting indeterminates (but
ax = xa and ay = ya for all e K). Since zRNyR = (0), R, is not
uniform and so Z/(R;) = (0).

I wish to thank Professor E. Enochs for patiently listening to me
explaining the ideas in this paper and offering corrective and construc-
tive suggestions.
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