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0. Introduction. It is shown in this paper that the equational
class generated by the family of all projective planes can be charac-
terized by a finite set of lattice identities. The methods developed here
may provide a framework to attack similar problems and a useful
medium for studying modular lattices in general.

By a variety, or equational class, of lattices we mean the class
of all lattices satisfying a given set of lattice identities. A lattice
variety is finitely based if it can be defined by a finite set of identities.
Let A be the lattice of all lattice varieties. A systematic study of
the lattice 4 dates back seven or eight years ago. Most recent results
in this field, including ours here, are stimulated by an important
discovery of Bjarni Jomsson in [7], Corollary 3.2. (See Baker [1], [2],
Gritzer [4], Hong [5], Jonsson [7], [8], McKenzie [9], [10], Wille [11].)
Our study here continues the works of Gritzer in [4] and of Jonsson
in [8], where the latter completed an unfinished result of the former
and in particular proved that the variety generated by all projective
lines is finitely based.

The rest of the paper is divided into four sections. In §1 we
state our main theorem and its applications but postpone the proofs
until §4. In §2 we discuss the main methods employed here: the
method of strong covering, and the notions of normality and strong
normality of sequences of transposes. In case the family of all varie-
ties that strongly covers a given variety is finite, then the variety
is finitely based. The notions of normality and strong normality, due
to Gratzer and Jonsson respectively, are developed rather completely
in Theorem 3.1. We hope that this theorem will have some applica-
tions elsewhere. Section 4 gives details of the proof of the main
lemma stated in Section 1.

In the sequel, almost every theorem and lemma has its dual, even
though we rarely make explicit mention of this fact. Also, the nota-
tion L denotes a fixed modular lattice.

We wish to express our sincere gratitude to Professor Bjarni
Jonsson for his helpful suggestions in the ideas as well as the pre-
sentation of this paper. We also wish to thank the referee for his
detailed suggestions.

1. The main theorem and its applications. For any family K
of lattices, let S(K), H(K), P,(K) denote respectively the families of
sublattices, of homomorphic images and of ultraproducts of members
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of K. The important discovery of Jonsson, mentioned in the introduec-
tion, asserts that every subdirectly irreducible member of the variety
generated by a family K of lattices belongs to HSP,(K). Let A, A,,
Ay M, where k is a positive integer, denote the lattices in Fig. 1.

My M3

FIGURE 1

We first state the main lemma, the proof of which is postponed
until §4.

1.1. MAIN LEMMA. Let L be a subdirectly irreducible modular
lattice and
Al, Azy A3y MM e HS(L) ’

where n s a positive integer. Then dim (L) < n.

The main application of this lemma is to prove the principal
result of the paper by the use of the notion of strong covering.
Consider a variety 27~ and let C(2#") be the family of all varieties
that cover %°. A family of varieties { %7;|ie I} is said to strongly
cover 7~ if every %77, i1¢ I, covers %7  and any variety that properly
contains 27~ contains a variety % for some ¢el. Then for each
te I there is a lattice identity 6; that holds in %# but not in .
It is easy to see that modulo the lattice axioms, 27~ is the variety
defined by {4;|ic I}. Thus if I is finite, then 27~ is finitely based.
(It is still an open question whether C(7#") always strongly covers
27~ for any variety 97°.) Now combining the Main Lemma, the above
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mentioned result of Jonsson and the characterization of all modular
lattices of dimension < 3 in [6], one can easily prove the following
theorem and its corollaries.

1.2, MAIN THEOREM. Let _#Z: be the variety gemerated by the
family of all projective planes. The five varieties generated by _#2
and each member of the family

{A.A,, As, My, N},

where Ny is the five-element nonmodular lattice, form a strong cover
for _7Z2:.

COROLLARY 1. The variety _#.¢ is finitely-based.

COROLLARY 2. Let 97~ be the variety generated by any finite
projective plane. Then C(3#7) is finite, can be effectively found and
strongly covers 97°. Consequently, 5%  is finitely based.

REMARK. With some details added, one can show that the con-
clusions of Corollary 2 still hold when 97~ is the variety generated
by PUQ, Z:UPURQ, or _#2UPUQ, where _#2 is the variety
generated by all projective lines, and

P is a finite family of finite modular lattices of dimension less than
or equal to 3,

Q is a finite family of finite modular lattices of the form M, ,a,...,s,1-

For the definition of M;,, n,...,,,; and the details of the proof, the
reader is referred to the author’s thesis [5].

Concluding this section, we state some conjectures for which we
hope the methods here may be helpful.

Congecture 1. The variety generated by a finite modular lattice
is strongly covered by a finite number of varieties.

Conjecture 2. For each positive integer ¢, the variety _#. gen-
erated by the family of all modular lattices of dimension < i is strongly
covered by a finite number of varieties.

2. Methods.

A. Diamond, transpositions and translations.

1. Diamond. By a diamond we mean a five-termed sequence
[ = 2, 9, z = v] of elements of L. whose terms are all equal (in which
case the diamond is said to be degenerate) or else form a non-distri-
butive lattice M, in Fig. 1. The intervals [x, u], [y, u], [?, u] are called



578 DANG X. HONG

the first, second and third upper edges, and [v, 2], [v, ¥], [v, #] the first,
second and third lower edges. For any two members ¢, ¢’ of {x,y, z},
the intervals [t, ] and [v, t'] are said to be adjacent if t = t'; other-
wise they are said to be opposite. In case there is no ambiguity we
can identify a diamond with the sublattice whose elements are its
terms; the order of the vertices is then irrelevant.

2. Transpositions. Translations. It is well known that an
interval [a, b] is said to transpose down onto an interval [c, d], or [e,
d] up onto [a, 8], if a +d = b and ad = ¢. We write then

[(1, b] \A [C, d]y or [C, d] /' [a” b] .

We know that the mappings ¢: r — rd for every r in [a, b] and «:
s— 8 + a for every s in [¢, d] are isomorphisms of [a, b] onto [¢, d] and
[c, d] onto [a, b] respectively. They are called the transposition between
these two intervals. We now come to the definitions of transpositions
and translations between two diamonds, say D; = [u; = @, ¥;, 2; = v:],
1 =1,2. We say that

(i) D, transposes down onto D, or D, transposes up onto D,, in
symbols

D, ™~ D, or D, {’ D,
(1) 1

if [v, w,] transposes down onto [v,, u,] and in this transposition the
vertices z,, ¥, 2, are mapped into the corresponding vertices x,, ¥,, 2..
(ii) D, translates down onto D, or D, translates up onto D,, if
a lower edge of D, transposes down onto an upper edge of D, If
specifically [v, z,] transposes down onto [z, u,], then we write

-Dl<\A -DZ .
2)

Also, if D, translates up onto D, by [z, %,] transposing up onto
[v,, ], then we write

D1/>’ D,.
(2

Note that D, /' D, does not imply D2\>‘D1 .
(2) 2.
The following lemma will be frequently used subsequently.

3. Transposition Lemma. Suppose [a, b] and [c, d] are two in-

tervals in L.
(i) ¥ D=[u=wxy,2=0v] is a diamond such that

(1) [z’u]/[cad]\[asb] and ¢ +v=c,

then we have a diamond [bu = bz, by, bz = bv], in symbols bD, satisfying
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the condition D\ ,bD and [bz, bu] " [a, b].
§]
(i) If [v, u] is an interval such that

(2) [v,u] ~7lc,d] ~[a,blanda +v=c,
then [v, u] \ [bv, bu] " [a, b].

Proof. Suppose (1) holds. Clearly b + v = d, hence [v, d] trans-
poses down onto [bv, b]. Under this transposition, bD, [bz, bu] and
[a, b] are respectively the images of D, [z, u] and [¢, d]. Therefore bD
is a diamond, D transposes down onto zD, and [bz, bu] transposes up
onto [a, b].

The proof of (ii) is equally trivial.

REMARK. Observe that the part (i) of the lemma also holds when
[z, #] is replaced by any upper edge of D. In later applications, we
will use this observation without mentioning it.

4. String of diamonds. Given a sequence of %k diamonds, D, D,,
Dy «-+, D, ---, D, such that for 1 < 7 < k, D, translates up onto D,
and down onto D,_, by two opposite edges, the sublattice formed by
these diamonds is called a string of k diamonds, denoted in each

occurrence by M,:.. Thus, M, is also a string of k& diamonds.

B. Projectivities and projective distance. Two intervals [a, b]
and [c¢, d] are said to be connected by the sequence of transposes [a, b,
k=012 «+-,n,if [a, b] = [a, b] and [a,, b,] = [¢, d], and for k£ = 0,
1,2--- n — 1, the kth term transposes alternately up and down onto
the next. Two intervals are said to be projective in n steps if they
are connected by an n -+ l-termed sequence of transposes. For any
two intervals [a, ] and [c, d], let P([a, b], [¢, d]) be the smallest non-
negative integer with the property that there exist nontrivial subin-
tervals [@, b] and [c, d] of [a, b] and [c, d] respectively, which are
projective to each other in n steps. If no such integer exists, then
let P(la, b], [¢, d]) = . We call P{[a, b, [¢, d]) the projective distance
between [a, b] and [¢, d]. Thus if P({a, 8], [¢, d]) < <o, then [a, b] and
le, d] must be nontrivial intervals. In the four-element lattice generated
by two elements, e.g. {a, b, a + b, ab}, it is easy to see that P(a, b +
al, [ba, b)) = 1, but P([a, b + a], [ba, a]) = .

REMARK. The notion of projective distance is the main medium
used by Professor Jonsson in [8] to extend the result of Professor
Gratzer in [4]. (The term “projective distance” was not used in [8]
but was suggested to the author by Jonsson.)
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C. Homotheties. Given a diamond D = [u = 2, ¥, 2 = v] and an
element w of one of its edges, e.g. [?, u], these six elements generate
a finite lattice whose isomorphism type is completely determined.
(For example, the sublattice generated by D, = [u, > #, ¥, 2, > v)]
and w, 2, < w < u,, is the lattice on the right in Fig. 5.) In any case
we have two diamonds

[ =« + yw, y + 2w, w = 2w + yw]
and
[ew + yw = 2w, yw, z@w + yw) = v],

which we denote by (D), and (D), respectively. Observing that w is
a term of (D), even in the case it is an element of a lower edge,
we have

(1) (D)w = (D)z+yw = (——Dij and @w = (ﬁ)xﬂlw .

More generally, consider a subinterval [w, w'] of an edge of D, say
[z, u]. The sublattice ((D),), is defined and can be checked to be the
diamond

[z + yw' = 2w’ + yw, yw' + 2w, wEw' + yw') = sw + yw] .

We call it the image of D under the homothety defined by [w, w'],
and denoted by (D), Clearly if [w, w'] is nontrivial, so is (D)0
and if w' = u then (D)., is just (D),. If z <w < w <u, then
the sublattice generated by D and {w, w'} can be checked to be the
lattice given in Fig. 2. However we will not need this fact, and we
will therefore establish only some interesting relations between D and
(D)(w, »7 Which will be used later. For convenience, we denote (D),
by [v' = o', ¥y, 2’ = v'] and

FI1GURE 2
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[s, 8’1 = [& + yw, x + yw'], [¢, '] = [y + 2w, y + aw']
[p, p'] = [aw, zw'], [g, ¢'] = [yw, yw'],
[, ] = [2(x + yw), 2(x + yw')]

Then one can easily check that: The interval [p, '] is the image of
[w, w'] under the transposition of [z, #] onto [v, 2] and

[w, w'] > [#, w] > [V, 2] > [p, 2],
sw =tw =8t =u
(D)[MW’J = (D)[s,s'] .

Using these preceding relations, one can extend in an obvious manner
the definition of (D), ,; to the one of (M;,;)[w,w,], where [w, w'] is a
subinterval of an edge of a diamond in a string of diamonds M;c.
Then (M), . is also a string of diamonds.

D. Ker(x, 2, v;). Given three elements =z, x,, x, in L, the sub-
lattice generated by them is a homomorphic image of the free modular
lattice of three generators FM(3) (see Birkhoff [3]). It contains as a
sublattice the diamond [u = =, ¥, # = v] where

w =11 (@ + ;) v =D X
1] el
r = (2, + m3)(wl + waxs), ¥y = (2, + x5 (@, + x.5),
2= (%, + x)(@; + 2.2,) .

This diamond is denoted by ker(x, x,, ;). Since a homomorphic image
of a transpose is also a transpose, we have the following observations:

(i) For the two element x, x,, ker (x, x,, ;) has the properties
that its upper edge [x, ] transposes up onto a subinterval I, = [z, +
Xksy X, + (2w, + x)] of [w@, + x,], its lower edge [v, 2] (adjacent to
[z, u]) transposes down onto a subinterval I, = [z, + @, ©,(®, + 25)]
of [x.x,, x], its lower edge [v, y] (opposite to [x, u]) transposes down
onto a subinterval I, = [z, + 2.2, 2,(x, + )] of [, 2,], the intervals
I, and I, are the images of each other under the transposition between
[©, @, + «,] and [z, ©,].

(ii) If ker (z, @, x,) is degenerate, then the sublattice generated
by x,, @, %, is distributive.

3. A diamond-normal form of projectivities. In this section
we develop rather completely the notions of normality and strong nor-
mality of sequences of transposes. We first state the main theorem of
the section the terminology employed here will be gradually defined.

THEOREM 3.1. Suppose [a, b] and [e, d] are two nontrivial intervals
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wm a modular lattice L, and assume that
P(la, b], [e,d]) = n

where 2 < m < co. Then some nontrivial subintervals [@, b] of [a, b]
and [€, d] of [e, d] can be connected by a strongly normal n + 1-termed
sequence of tramsposes such that the associated sequence of diamonds,
D, D, D, ---,D,_, has the property that for k =1,2, +-+ n — 2 the
pairs Dy, Dy, alternately satisfy the conditions

Dk (/)7 -D;:M or Dk {7 Dk+1 ’
1 2

and
D, > D}, or D, } Dyyy

Furthermore [@, b] and [¢, d] can be chosen so that for k=2,3,4, -,

n — 2, D, = D}.,, whenever D, transposes onto D}., and it can not

happen that either D,_, /" Dy and D, \,Di,, or D,_,\,D¥ and D, /" Di,,.
(1) (1) (1) (1)

REMARKS. (i) The author originally proved the theorem in a
much less general form. Professor B. Jonsson suggested that he
consider the theorem in this form.

(i) Theorem 3.1 minus the last sentence is actually Theorem 1.1
in [5]. Its proof will be a combination of the proofs of Theorem 1.1
and Lemma 2.1 in [5].

3.2. Normal and strongly normal sequence of transposes.
A sequence of transposes [a;, b], 0 < k < n, is said to be normal
if for every 0 < k < n,

(1) either [ax_;, bios] 7 @k, bl ™ [@s1 Dasd] @0d b = by + by
(2) or [y b > [@sy D] 7 [y, biri] and @ = sy

If in addition, for each such %, b,_,b,., < a, in the first case and a,_, +

@, = b, in the second case, then the sequence is said to be strongly
normal.

In a strongly normal sequence [a;, b)), 0 <7 < n, the sublattice
generated by the six endpoints of three successive intervals, say by
a;, byt =k— 1,k k+ 1, is in fact generated by three of these end-
points and is therefore finite. Moreover it is a homomorphic image of
the lattice in Fig. 8 in the first case, and of its dual in the second
case. Thus, it contains the diamond

[6p = biy + Qrisy Qiy Bpey + Diyy = Apey + W]
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o, =b,

p=bp it e U1 tb =2,

Pe-1c >bk+1

’I’t——l
e +1

Oy 1y 1,

FIGURE 3

in the first case, and

[04—1bpt1 = Wpmibirsy by D @rry = i

in the second case. We denote this diamond by

Dy, = [ur = @y Yy 26 = Vi) «

Observe that in the first case

[ar, bl = Wi, wel, [@resy bs] 7 (02, @, [Qrtsy Dirr] 7 [V2, 2]

and in the second case

[, 0] = [Viy Yily [y D] > [0y Uidy [@rrsy Diadd > [20 %l -

The sequence D,, D,, D;, -+, D,_, is called the associated sequence of
diamonds of the given strongly normal sequence of transposes. Note
that if an interval [a,, b,] is nontrivial then all associated diamonds
are nondegenerate.

In [4, Proposition 3], Gratzer showed that any two projective
intervals can be connected by a normal sequence. In [8, Lemma 2]
Jonsson proved a stronger version of this result, which in present
terminology can be stated as follows:

LemMMA 3.3. (B. Jonsson). Suppose [a, b] and [c, d] are nontrivial
intervals in o modular lattice L, and assume that P([a, b], [c, d]) = n
where 2 < n < <o, then the following statements hold:

(i) Any normal n + 1-termed sequence of transposes that connects
[a, b] and e, d] is also strongly mormal.
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(ii) There are montrivial subintervals [a, b] of [a, b] and |G, d]
of [e, d] that can be comnected by a strongly mormal n + l-termed
sequence of tramsposes.

The reader is referred to [8] for the proof.
LEMMA 84. If D=[uzw,y,22v]and D' =[w =o', y, 2 =]
are diamonds in L with
w=w, e =2, ysy,z2<72,

then D' = (D), = (D), = (D),

Proof. By symmetry we need only show that D’ = (D),.. By 2.C
D), =uze+yz,y+ a2, 2= a2 +yz].
We have
w2 + y2 = @2 + Y2 = @x'? + y)2 = @' + y)2 = @2y + y)2’

=@y +9 =@+ Yz =u =,
c+yr =+ +yr =cv+v=c+aY =+y) =ur’ =2,

and similarly vy + 22’ = y’. This completes the proof.

COROLLARY 3.5. Suppose

(1) (-1 Deei] > [@r, O] 7 [@rssy D]

18 a strongly mormal 3-termed sequence of tramsposes with D as its
associated diamond. Suppose the points ¢; in [a;, b;], 1=k—1,k, k+1,
are the images of each other under the given transpositions. Then the
following statements hold:

(i) The sequence

(2) [Cr—1y br—i] SN [CiiChiry bk + CrmiCrri] 7 [Chasy biti]

is a strongly mormal sequence and its associated diomond is (ﬁ)ck.
(ii) If [@heiy Cit] ond [@fiy, Ciyi] are intervals in L such that

[y Crm] > [0y, Cim] > ag, e] 7 [ty €] 7 [Grsy Crral
and such that the sequence
(3) [a)—sy Ctil ~ [aw, el 7 [@isy, Cisi

is strongly nmormal, then the associated diamond of (3) is (D),,-

Proof. It is easy to check that (2) is still strongly normal. The
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associated diamonds of (1) and (2) are

D = [bp—bis1 = Qpmibissy by by = i

D" = [by_bisi = Cribissy br + ComiChrsy OriCirr = CimiCrpil

and they clearly satisfy the conditions of Lemma 3.4. Therefore
D= (D)bk—-l“k+1 = CD—)% ’
by (1) in 2.C and the fact that b,(b,_.ci+)) = 0iCrss = Cro

The proof of (ii) is even more trivial.

DEFINITION 3.6. For any diamond D = [u = z, ¥, 2 = v] we denote
the diamond [u = z, x, ¥ = v] by D*.

The following lemma is crucial for the proof of Theorem 3.1.

LemMA 3.7. Suppose [a,, b] 7 [a,, b))\ [as 0] 7 [as b5 is a strongly
normal sequence of tramsposes in L with P([a, b, [as b,]) = 3, and
consider the associated diamonds

D, = [u, > x, Yy, 2. > 0] [b, > b + ay ay, a5 + b >0, + a5
D, = [u, > 2,452, > vy [b1b3 > a,bs, by, bia; > ay] .

Then either D,\, Dy or else one of the following statements holds:
(1)
(i) There exists ¢, with a, < ¢, < b, such that if ¢;, L<1< 8, s
its image n [a;, b;] under the given tramspositions then

[eo D]l 7 [y, d.] ™ [ees, 165 + b] 7 [, by

1s a strongly mormal sequence of tramnsposes, its associated diamonds
being (D)., and (D,)., with (D)., }(—D;)CZ.

(ii) There exists ¢, with a < ¢, = b such that if ¢;, 1 =1 <3, s
its image in [a;, b;] under the given transpositions then

[ao, col 7 e, + €, (6 + c)a] ™ [as, ] 7 [as, ¢

is a strongly normal sequence of transposes, its associated diamonds
being (D,)., and (D)., with (D)c‘é‘ (Dy)e,

Proof. Observing that
(1) v+ ¥=2,uy, = and 2, S v, + U = Uy, UV < V) = &5
we consider three cases.

Case 1. v, + u, = %, and v,u, = v, Thus we have

(2) [1)2, u2] / [”19 ul] .
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Since v, + ¥, = 7, and w,y, = %,, the transposition (2) maps u,, ©,, ¥, v,
into u,, ¥,, 2, v, respectively, and hence we have the diamond [u, >
2y + vy, Yy, 2 > 0] with

(3) [, > 2, + v, ¥y, 2, > )] m\) [y > 2oy @y Y > V3] ©

If 2, + v, =2, then D, transposes down onto D, i.e., DQ(},D;“.
Suppose on the contrary that z, + v, = 2,. We claim that this leads
to a contradiction to the hypothesis P([a,, b)], [as, b5]) = 3. Our reason-
ing is motivated by Fig. 4. Let 2] = 2, + v, First we observe that
x; and z,, having the same relative complement ¥, in [v, ], are
therefore incomparable to each other. It follows that [xx], 2] and
[, 2, + «]] are nontrivial subintervals of [v, x,] and [#], u,] respectively,
and

(4) [, ] 7 [2], 2, + @] .

Since u,b, = u, and [z}, u,] \| [2., %] " [as, bs], the dual of the Transposi-
tion Lemma applies, and we have

(5) [l wi] 7 [l + @, @1 + B ™ s, b -

It follows from (4) and (5) that the nontrivial subinterval [bu:, b,] of
[a., b)] transposes up onto a subinterval of [x] + a, 2] + b;], Wwhich

FIGURE 4
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transposes down onto a subinterval of [a;, b;]. Thus P([a,, b)), [a: b)) <
2, and we have a contradiction. Therefore D1>D;“ in this case.

Case 2. v, + u, < u,. Our reasoning is motivated by Fig. 5. Let
w=v+u and ¢, =y, +aw, and for 1 =0,2, 3, let ¢; be the
member of [a;, b;] corresponding to ¢, under the given transpositions.
The sequence of transposes

(6) feoy ] 7 [y b.] ™ leics, b, + eicl] 7 [es, by

is clearly normal, and since [¢,, b;] is nontrivial

FIGURE 5

(7) 3 g P([cm bo]a [037 b3]) g P([(lo, bO]y [(13, bS]) = 3 *

It follows from Lemma 3.3 that (6) is strongly normal. By Corollary
3.5 and its dual, the two associated diamonds are

(D)., = (DY) = [, >, + yw, ¢, w > w0 + Yw]
Dy, = [, > s + %, b, + 05, €3 + 2, > 0i65]

Following the ideas of Jonsson in [8, Lemma 3], we infer that
[rw + yw, w] S [e: + @ us]

In fact, from the observation that u, < w < (%, + %)y, + %,) and 2, <
9, we have
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@w + yw) + u, = (@, + u)w + @ + w)w = w,
(xw + yw)u, = uw(x,w + y) = u(vw + y,)
= (% + %) (Bw + ¥.)
=2 + Y@w + ¥) =2, + be, =@ + ¢, .

Thus (i) holds in this case.

Case 3. v, < v,u,. Applying the dual of Case 1 with a reversal
in the order of the intervals [a;, b;], we see that (ii) holds in this case.

The three preceding cases cover all possibilities. The proof is
therefore complete.

LemMMA 3.8. Suppose D, = [u; = 2, ¥, 2; = v5],t =1,2 are two
diamonds in L, and assume that one of the following conditions
holds

(1)
(2) D, _—7D,.
(2)

Let ¢, be a member of [v, y,)] and ¢, its image in [y, U] under the
transposition of [v, y.] onto [y, u,). Then we have

(1) D)oy /(D) if (1) holds
(i) (D), /" (Do), if (2) holds.

Proof. Assume that (2) holds. It is clear that the first lower
edge of (D,),, transposes down onto [w.¢., 2], hence onto [u,c,, u,]. There-
fore

(Dl)ulcz { (Dz)cz .

Since ¢, = ¢y, = cuy,, we infer from the formula (1) in 2.C that
(D)., = (D)., and therefore (D), /" (D,),,.
(@)

Suppose (1) holds. We similarly have (—1_)_1—)6l = (D\)u,e,» Furthermore
the transposition of [v, w,] onto [v,, u,] maps u.c, into ¢, hence (D,),,,
onto (D;),. Thus
(D—l)cl = (Di)ulcz {7 (D;)cz

and therefore (i) holds.

REMARK. In Lemma 3.8 if we replace the hypothesis D, /" D} by
[ (1)
D, = D7, then clearly we have the conclusion that (D,). = (D;).,.
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3.9. Proof of Theorem 3.1. We prove the theorem by induction
on n. For m = 8, the theorem holds by Lemma 3.7 and its dual.
So assume that 3 < n = P([a, b}, [¢, d]) < oo, and the theorem holds
with » replaced by n — 1. Then there are nontrivial subintervals [a*,
b*] of [a, b] and [c¢*, d*] of [e, d] that are projective to each other in
n steps. By duality we may assume that [a*, b*] transposes up onto
an interval [a’, b'] that can be projective to [¢*, d*] in n — 1 steps.
By the inductive hypothesis, we may assume furthermore that [a’, ¥’']
and [¢*, d*] are connected by a strongly normal sequence of transposes

(1) [0/, 0] ™ o, b 7 [ag, bi] - -+ [a, b.] = [¢*, d7]

such that the associated sequence of diamonds, denoted by D; = [u; >
iy Ysy % > V], 2= 1 < n — 1, satisfies the conclusion of the theorem.
Let [a,, b)] = [a*, b*] and [a, b] = [a'(* + b,), b* + b)] We easily see
that the sequence

(2) [CL*, b*] = [aO: bo] / [aly bz] ~ [az, b2] / s [am bn] = [C*) d*]

is normal, and therefore strongly normal by Lemma 3.3. If D, is the
associated diamond of [a,, b " [a, b]\ [, b.], then the diamonds
associated with () are D, D,, D,, ---, D,_,. As regards the second
diamond D,, this follows from Corollary 3.5 (ii), and for the other it
is obvious.

We now apply Lemma 8.7 to the first four intervals in (2).

If D, \D* we claim that D, /'Dg, and the conclusions of the

theorem therefore hold in this case Otherwise D, /' Df and hence
(3) [2, w] ™S [Y2 U] { [2s, uy] -
Then following the idea of Jonsson in [8, Lemma 4] we infer that

(4)  lan bl 7 [v, 2] 7 [z, u] 7 [2 + @5 u, + 2]
[25, ] > [, 2] T [, B

In fact, the first two and the last two transpositions are clearly true.
.Since u,u; = u,, we can apply the dual of the Transposition Lemma to the
sequence (3) to infer that the third and the fourth transpositions hold.
Thus (4) holds and consequently [a,, b] and [a,, b,] can be connected
in two steps which clearly contradicts the hypothesis that P([a, 5],
[e, d]) = =n.

So we can assume that either (i) or (ii) of Lemma 3.7 applies,
and we can choose ¢, ¢ [a,, b,] accordingly. Let ¢, ¢, -++,c¢, be the
image of ¢, under the given transpositions. Assume first that 3.7 (i)
applies. From the sequence
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(5) [eoy B 7 e, B] ey, 0] 7 + -+ [ay, b.].
We obtain a normal sequence of transposes
(6) [et, o] 7 [ef, B] > [e, b)) 7 « -+ [an, )]

by letting [c;, 0.] = [€r—iChrr, Or + Criti—] for k even with 0 < k < n,
and [c}, b;] = [cr, 0] in other cases. The sequence (6) is strongly
normal by Lemma 3.3. Let D = [u, > =/, ¥, 2. >vi, k=1,2,3, ««-,
n — 1 be the sequence of diamonds associated with (6). By Corollary
3.5 and its dual,

if k& is odd, and
D, = (_BZ)C,c

in other cases.
Thus, the associated sequence of diamonds of (6), D, D;, +++, D,_,, is
the following sequence

(7) (Dl)cly (D_zjczy tt Yy (Dzk—-l)czk._p (D—2k)czk9 °*

Since we assume that 3.7(i) holds, we have furthermore

FIGURE 6
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(8) (D)., > (D)., i.e., D; > D;.

Therefore if D, /' D,, then in view of (8), Lemma 3.8 and its dual,
we conclude thg,)‘c the sequence (7) associated with (6) satisfies the
conclusions of the theorem. It remains only to consider the case
D, /' Df. Again by Lemma 3.8 we have D, 7 D;*. Our reasoning is
motéli)vated by Fig. 6. Since u/u; = u} (from th(g definition of associated
diamonds), we apply the dual of the Transposition Lemma to the
diamond D] and the sequence [v], 2]\, [#, u;] /" [#}, 4] and we have
a diamond z; -~ D] with the lower edge [z; + v], #; + 2{] transposing
down onto [z, u;]. Using the strong normality of (6), one can check
that the sequence

(9) e, 0] 7 [ + i,y 25 + wi] > [, w5] 7 e, B8] ™ [el, bi]
is strongly normal. The associated diamonds of (9) are z; + D}, (D;)*,
D;. Observe that D,\  D,, since D, ~ Df. Hence D;\, D;. Thus if

we replace the secondmand the third ﬁclzerms in (6) by thg)corresponding
terms in (9) we obtain a strongly normal sequence that connects the
nontrivial subintervals [c;, b5] and [c,, b,] with the associated sequence
of diamonds

Z; + Dl’, (D;)*, D;, D::; Sty D?’%~1 ’

which clearly satisfies the conclusion of the theorem.
The proof for the case when 3.7(ii) applies can be done in a
similar way. This completes the proof of Theorem 3.1.

4. Proof of the Main Lemma. The proof of the Main Lemma
is based upon a series of lemmas.

LEMMA 4.1. Let a strongly normal four-termed sequence of trans-
poses

[aO! bo] / [aly bl] \A [a27 b2] / [asy bﬂ]

be given in L, with [a, b)] nontrivial and b, < a,. If D, and D, are

the associated diamonds, then it cannot happen that D, "\, D,, and the
(2)

condition D\, D} implies that D, = Dj.

(1)

Proof. The associated diamonds D,, D, are

D, = [ul>xlyy1!zl>vll = [b1>bo+a27a1aao+bz>ao+az] ’
D, = [uy > @y Yo, 22 > 03] = [bids > a,bs, by, bias > ay] «
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Suppose first D, \, D¥. In this case, using the hypothesis that
(1)
b, < a, we have

u1=x1+21:(bo+a2)+(ao+b2)§b3,

therefore u, = u,b, = u,, and this readily implies that D, = D}, since
D, \, Dy.
(1
Next assume D, \, D,. We claim that this leads to a contradiction

(2)
and hence completes tfle proof. In this case, also using the hypothesis
that b, < a, we have

u2§u12b0+21:b0+v1+22
:b0+(alo+a2)+z2:bo+22§a/3,

therefore u, = .0, = 2, which clearly contradicts the hypothesis that
[a, ] is nontrivial. The lemma is proved.

LEMMA 4.2. Suppose
A, A, A; ¢ HS(L)

and suppose [a, b] and [e, d] are nontrivial intervals in L such that

P(la, b], [e,d]) = n < co. Then n =5. Furthermore of b =<c¢, then

there exist montrivial subintervals [&@, b] and [, d] of [a, b] and [c, d]

respectively, such that one of the four following conditions holds:
(i) m =3, and there is a diamond [u > x,y, z > v] with

[@, b] " [v, o] and [z, u] " [, d] .

(ii) n =4, and there exist two diamonds D) = [u}> !, ¥}, 2. > v],
1 =1, 2, such that D; /' D, and
(2)

[@ bl " [v}, ], [v, 2] > [, d] and & + o] = v} .

(il) n = 4, and there exist two diamonds D) = [u} > x}, v}, 2} > vi],
1 =1, 2, such that D; /" D, and
(2)

(@, b1 > [, wll, [, wil " [€, d] and bu; = u] .

(iv) m =5, and there exist two diamonds D} = [u; > x}, yi, z; > v,
1 =1, 2, such that D}\, D; and

(2)

[ay 5] / [viy xI,] ’ [z;y ué] / [C_, J] .

Proof. We may assume that » > 2, and by Theorem we may

therefore assume that some nontrivial subintervals [a, b] of [a, b] and
[¢, d] of [c, d] can be connected by a strongly normal »n + 1-termed
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'
)

FIGURE 7

sequence of transposes such that the associated sequence of diamonds
satisfies the conclusion of that theorem. We prove the first part of
the theorem by showing that the assumption n = 6 leads to a contra-
diction. By duality we may assume that

[@, 5] = [a,, bo] 7 [au b] ~ [as, b.] / [as, bs] ™ [a” b4]
7 asy bs] ™ [as 0] = [, J]

is the given sequence of transposes. The diamonds associated with
this sequence are

D, = [u, > », ¥y, 2, > 0] = [b, > by + @y, @y, @y + b >, + a5

D, = [us > @y, Yy 22 > v3] = [0,0; > a,bs, by, b2z > ay
Dy = [uy > x5, Yy 23 > 5] = [ba > b, + ay, a5 0y + b, > 0, + al
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D, = [u, > 2, Yy 2. > v,] = [b:bs > asby, by, bya; > A
= [us > @5, Y5y 25 > V5] = [05 > b, + g, @5, 4 + b >, + @] ©
Consider any three successive diamonds, say D,, D,, and D,. If
D, \D2 and D, /'Da, then we have a contradiction. In fact, since
ulua = U, therefore in this case the set

B =D,U D,U DU {v, + vy, v, + Us, V3 + Uy, Uy + Us}

is easily seen to be a sublattice of L with 4, as a homomorphic image,
in contradiction to the hypothesis that A,¢ HS(L). Therefore one of
the two following conditions must hold

(1) DL\D:yDZ/DE))Ds:DfandD4(/yD5
(1) (2) 2)

(2) D, ~. D, D,= D}, D, ~, D,and D, = D} .
(2) (2)

If (1) holds, then D, U D, U D, is a sublattice of L which has 4, as
a homomorphic image, contradicting the hypothesis of the theorem.
If (2) holds, we arrive at a contradiction in a similar manner by
considering the sublattice D, U D, U D,. Thus the assumption n = 6
always leads to a contradiction.

Now assume that b < ¢. Then b < ¢. Therefore the case n < 2
is clearly excluded, and we must have n = 3, 4, or 5.

Suppose % = 3. Then [@, b] and [, d] are connected by a strongly
normal four-termed sequence of transposes,

(3) [d) E] = [do’ 50] / [dly 51] \ [@23 52] / [a/a’ b3] = [C—a d_] ’
with the associated diamonds D, D, satisfying either Dl(\, D} or
1)
D, N\, D,. (The dual form of (3) is excluded by the condition b < ¢.)
(2}

The sequence (3) clearly satisfies the hypothesis of Lemma 4.1, therefore
D, = D}. Thus (i) holds in this case by taking D, as the required D.

Suppose % = 4. Then [a, b] and [¢, d] are connected by a strongly
normal five-termed sequence of transposes of one of the two following
forms

(4) @, 8] = [ay 0] /" [ay b Ny [as, bl 7 [as, Bl \[as, b = [F, d]
(5) @ 8] = [ay 0] \S[a b 7 [as, bl \las, bl /" [a, b = [C, d]

with the associated diamonds satisfying the conclusion of Theorem
3.1. By duality we need only consider the case when (4) holds. Then
the associated diamonds satisfy one of the two following conditions:

(6) D, >~ D and D, " Dy,
(1) (2}

(7) Dl\DzanlezD;-
(2)
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Since b, < ¢ £ a,, Lemma 4.1 can be applied to the first three trans-

positions in (4) to infer that D, cannot translate down onto D,, thus
ruling out (7) and showing that (6) must hold. A second application
of Lemma 4.1 yields D, = Df. Thus [&, b] " [v, 2] = [vs, 2]. Since
€ + v, = a, + a, = v, it is clear that the conclusion (ii) of the theorem
holds in this case by taking D, = D, and D, = D,.

Finally suppose » = 5. Then [a@, b] and [¢, d] are connected by
a strongly normal six-termed sequence

(8) Ia, 5] = [aq, b 7 [a,, 0.1\ [as b, as, b\ [as, b "[as, b] = [C, C-l—] ’

with the associated diamonds satisfying the condition
(9) Dl\D;ypz/Dast:D;k
(1) 2)

or dually,
(10) [dy 5] = [aOy bo] \[an bl]/'[aZa bZ]\n[a’o" 63]/[(141 b&] \l[aﬁ’ b5] = [53 ('—{]

with the associated diamonds satisfying the condition
(11) D, " D¥, D, >, D,, D, = Df .
(1) (2)
(The alternative to (9),
D1>D2y Dz = D:;ky D3<\2)AD4

FIGURE &
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and the corresponding alternative to (11) can be ruled out by the same
argument that showed that (1) leads to a contradiction.) Actually (10)
and (11) cannot hold, for then b, < b < ¢ < @,, so that Lemma 4.1 can
be applied to the three middle transpositions in (10), showing that the
middle formula in (11) fails. Thus we may assume that (8) and (9)
hold. Our reasoning is motivated by Fig. 8. Since u,u; = u,, we apply
the dual of the Transposition Lemma to D, and the sequence [v;, 2] \
[2,, ws] /" [#,, w)] to obtain a diamond %, + D,. Define the diamond D, =
[w; > 2, v, 25 > v)] so that (D)* = , + D,. TUsing the hypothesis that
a; = b, u, and hence a, = b, - 4, = u,, one can easily check that

(12) $3§Z;§Q5, Uy = Uy = by

Since [x,, w,) 7 [25, #i] and [a, b;], it follows from (12) that [z, u)] ~
[as, b]. The conclusion (iv) of the theorem clearly holds if we take
the above D, and D) as the required D] and D), respectively.

This completes the proof of the Lemma.

LEmMA 4.3. Assume that A, & HS(L) and D ={u >z, vy, 2 > 7]
is a diamond in L with [z, u] transposing down onto an interval [a, b].
Then either

(i) a+v=2x or else

(ii) there exists an element »" with x < o' <<u and an element b’
with b < b < u such that the nondegenerate diamond (D), has x' + b
as its greatest element and bz’ as its smallest element.

Proof. Suppose (i) fails to hold, or equivalently a + v < z. We
claim that (ii) holds. In fact, if @ + v = » then (ii) trivially holds by
taking ' = 2 and & = b + v. We can therefore assume that

(1) v<a+v<u.

Let ¥ = b + v, and consider the diamonds (D),., and (D)..,. By (1),
they are nondegenerate. Suppose u, is the greatest element of (D),.,.
It follows from the definitions of (D).., and (D),., that [a + », u,] is
one upper edge of (D),,, (Fig. 9), and furthermore

(2) [a+vyu1]/[xyul+x]'

Let t = ¥(u, + ). Then by the transposition of [z, #] onto [a, b],
we have

(3) [a—l—v,t]/’[x,ul—}-x].

Consider the three elements x, u#,, and ¢. If the diamond ker (z, u,, %)
is nondegenerate, then one of its upper edges transposes up onto
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u=b+w
@

FIGURE 9

a nontrivial subinterval of [u,, %, + #] and the adjacent edge down
onto a nontrivial subinterval of [a¢ + v, w,] (by an observation in 2.D).
Thus ker (x, u, t) translates up and down onto two nondegenerate
diamonds by two adjacent edges (by 2.C). It therefore follows that
A,e HS(L), contradicting our hypothesis. Thus the sublattice gen-
erated by {, u, t} must be distributive. By (2) and (3), u, and ¢ have
the same relative complement @; hence #, = ¢t. Then the elements ¥’
and & = u, + & clearly satisfy the requirements in (ii), The lemma
is therefore proved.
We now come to the proof of the Main Lemma.

4.4. Proof of the Main Lemma. We first prove the following
statement (4):

(4) Let L be any modular subdirectly irreducible lattice with A, 4.,
A;¢ HS(L). If L contains a sublattice M, (n = 1) whose greatest
element is less than an element d in L, then L contains a sub-
lattice M5,,, with its greatest element less than or equal to the
element d.

Suppose the given M7, is formed by n diamonds D; = [u; > x;, ¥;, 2; >v,]

1=1,2, -+, n, with

(1) [ wi] 7 [viry 2i0] =10 -1)
(2) u, < d .

It is well known that since L is a subdirectly irreducible modular
lattice there are some nontrivial subintervals [@, b] of [x,, u.] and [, d]
of [u,, d] that are projective to each other. Therefore by Lemma 4.2
we can choose them so that one of the four conclusions (i) — (iv) of that
lemma holds. If (i) holds, then there exists a nondegenerate diamond
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such that one of its lower edges transposes down onto [@, b] and the ad-
jacent upper edge up onto [¢, d]. We can therefore take the sublattice
formed by that diamond and (Mj)szz as the required MJ,,. If (ii)
or (iv) holds, then [a@, b] translates up onto the first stage of a sub-
lattice of the form M} and this sublattice forms with (D,)z 5 a
sublattice having A, as a homomorphic image. We have a contradie-
tion. Therefore it remains to consider the case when (iii) holds.
Then we have two diamonds D) = [u] > i}, v}, 2l > v{], 7« = 1, 2, such
that D, (/)‘ D} and
2

(3) [@, b] > [, @), [¢, d] > [l wi]
(4) bu, = u. .

By substituting (M,});:3 for M5, we can assume that
(5) [@, b1 > [0 ] -

Then by substituting [(u, + )@, w, + «]] for [@, b], we can furthermore
assume that

(6) w4+ u, =b.

We are in the situation as illustrated in Fig. 10.

Since many diamonds will be involved, therefore for the sake of
simplicity we tacitly assume that the vertices of a diamond written
D; will be in symbols [u; > xi, ¥}, 2i > vi]. Suppose there exists an
element ¢ such that either the sublattice generated by {t, u,, @} or the
one generated by {t, 4], @} is not distributive. Then either ker (¢, u,, @)
or ker (¢, u;, @) is nondegenerate. If ker (¢, u,, @) is nondegenerate, then
it translates up onto a subinterval « of [@, b] and down onto a subin-
terval g of [z, #,], and since @ must be nontrivial we can take the
sublattice formed by this diamond and (M};), as the required M} ...
So assume that ker (¢, u], @& = Dj; is non-degenerate with u; as its grea-
test element. Then it translates up onto a subinterval [m, m'] of [a, b]
and down onto a subinterval [s, si] of [#], w]]. Furthermore [s, si] is
the image of [m, m’] under the transposition [@, 8] onto [z, u/]. Then
using mainly the fact that bu, = u/, one can check that D) generates
with (D; U D;),,,..;; & sublattice which has A, as a homomorphic image
(see Fig. 11 for motivation), contradicting the hypothesis that A,¢
HS(L).

We can therefore assume that the four lattices generated by {y.,
uy, a}, {z., i, @}, {41, 4., @}, {z, u,, @} respectively are distributive. We
infer that

(7) ay, + au; = a(y, + w,) and @z, + aw, = a(z, + u) ,
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Figure 11

(8) ay, + aw, = Ay, + u,) and @z + Tu, = @2 + Un)
By adding the two equalities in (7), we obtain

(9) v, + 2 =@y, + u) + T2, + w) = Y, + %1 + TR, + w))

= A(Yn + W) + 82, + ) = @Y, + 2, + u)
=G, + u) =& .
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The last equality is due to (6). Similarly, by adding side by side the
two equalities in (8) we obtain

(10 v+ 2, =a.

By (8), (6) and (9), the Transposition Lemma applies to D,, yielding
a diamond D} = u.D, with

(1) [&/, %] s [, w] and D, >, D

Furthermore, by (10) we have
(12) v + @5 = v + U, = u(v] + x,) = u@ =] .

By (11) and (12) the Transposition Lemma applies to D], yielding a
diamond D} with D; = u{D; and

13) [ee7, wr] = [, ue] and D; }; D;.

If v} 4+ v; = =}, then the Transposition Lemma applies to D;, yielding
a sublattice D; = z/Ds; with [v;, 2;]] as one of its upper edges. Then
the sublattice formed by Dj, D;, D; has A, as a homomorphic image,
contradicting the hypothesis that A, ¢ HS(L). Therefore the eonclusion
(ii) of Lemma 4.3 applied to the diamond D; and the interval [v}, 27]
must hold. We have therefore an element ¢ and an element x; with

(14) s<as<usand z; < e < U5,

such that if D; = (Dg),;, then
(15) e + 2, = Uy = U and exy = vy (Fig. 12) .

The diamond D; and the element e are thus elements of the interval
[ve, ug]. By the transposition of [v, ug] onto [v,, u,], ®; and e are
mapped respectively into 2, = v, + x; and f =9, + e, so that z, <
w, < u), and if D}, = (D,).;,, then

(16) D; (/’ Dy,
1)
17 le, us] = e, ws] 7 Lf, uio] = S, ]
(18) f + @l = uj, and fal, = v .
We have used here (15) and the fact that (D;),; = D;. Let
(19) g =e+ 2;,and D), = (D)), (uf, = uy) ,

then [e, ug] transposes up onto [v), z,;]. With (17) and

(20) Wk, = wy(Ot,) = Wik, = u ,
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FIGURE 12

’

the dual of Transposition Lemma applies to D), yielding a diamond
D}, = f + D;, so that [f, u,] transposes up onto [v}, #],] and

(21) up,=f +us <u, +u, <d <d.

We now consider the configuration formed by f, D}, D), and U D..
If the sublattice generated by {f, xi, 2.} is distributive, then 2z, and
f are equal, since by (18) they have the same relative complement
al, in this lattice. Thus we have

(22) (200, wio] 7 [vis @] -

Furthermore, [vy, 2;,] transposes down onto a subinterval of [v,, z,],
hence onto a subinterval of [x,_, x,_,] if % = 2. Therefore [v], 2]
translates down onto a nontrivial homothetic image of D,_, if n = 2.
Using (22), we have either a contradiction to the hypothesis that
A, ¢ HS(L) (if n = 2) or else the conclusion of (4) holds (when n = 1).
So we can assume that the sublattice generated by {f, i, 25} is non-
distributive. Then ker (f, «i, 2),) is nondegenerate diamond which
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translates up onto a subinterval of [f, «,] and down onto a subinterval
of [v}, 2] by two opposite edges. Therefore, ker (f, =, 2!, translates
up onto a subinterval v of [v}, z!,] and down onto a subinterval § of
[®,-1, #.—,] by two opposite edges, and the two intervals v and § are
nontrivial. Using the fact that u], < d in (21), we can therefore take
the sublattice formed by ker (f, i, 21,), (D5,), and (U?=' D;); as the
required Mj.+:.. This completes the proof of the statement (4).

We will complete the proof of the lemma by showing that if the
lattice L given in the lemma is infinite dimensional, then L contains
a sublattice M}: for every positive integer %, and if L is of dimension
k + 1(= 2), then L contains a sublattice M;:. Observe that in either
case there exists a nondegenerate diamond D = [u > %, %, 2> ] in L.

Case (i). L is infinite dimensional. Then for every %, there exists
a sequence d, < d, < +++ < d,_, in L with either u < d, or d,_, <,
or x<d, <dy++r <dp_,<u. In the first two cases we can apply
the statement (4) (or its dual) & — 1 successive times with d replaced
successively by d,, dy, «++, dp, (0r d;—y, disy, +++, d,) in order to construct
the required Mi. In the last case, by replacing D by (_)55,11 we go
back to the first.

Case (ii). L is finite dimensional. Then we can assume that the
edges of D are prime quotients and the term v of D is a minimal
element of all smallest elements of nondegenerate diamonds in L. By
the dual of the statement (4), v must be the smallest element of L.
Then since dim (L) = k 4+ 1, we can choose a sequence d, < d, < ++- <
di_, with d, > u,. As in Case (i), we now apply the statement (J)
k — 1 successive times with d replaced successively by d, d,, --+, d;—,
in order to construct a sublattice M;i which is the required sublattice
Mk since dim (L) = k£ + 1.

This completes the proof of the lemma.

Added in proof. Using different techniques, K. Baker independ-
ently announced without proof that the variety M is finitely based
in [2].
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