THE UNIFORMIZING FUNCTION FOR A CLASS OF RIEMANN SURFACES

JOE ECKLEY KIRK, JR.
THE UNIFORMIZING FUNCTION FOR A CLASS OF RIEEMANN SURFACES

J. E. KIRK, JR.

This paper considers a class of simply connected Riemann surfaces which are shown to be of parabolic type. Infinite product representations are obtained for both the uniformizing function and its derivative.

The class of surfaces. For each integer \(n \geq 1 \) let \([a_{2n-1}, b_{2n-1}]\) and \([a_{2n}, a_{2n}]\) denote closed intervals of the real line satisfying \(0 < a_{2n-1} < b_{2n-1} < b_{2n} < a_{2n} \). Let \(S_n \) denote a copy of the \(w \)-sphere. Slit \(S_1 \) along \([a_1, b_1] \), slit \(S_2 \) along both \([a_{2n+1}, b_{2n+1}] \) and \([a_{2n}, a_{2n}] \), and slit \(S_{2n+1} \) along \([a_{2n+1}, b_{2n+1}] \) and \([a_{2n}, a_{2n}] \). A surface \(F \) belonging to the class is constructed by joining \(S_{2n-1} \) to \(S_{2n} \) along \([a_{2n-1}, b_{2n}] \) and \(S_{2n} \) to \(S_{2n+1} \) along \([a_{2n}, a_{2n}] \) with the intervals forming first order branch lines.

The uniformizing function. \(F \) is a simply connected, open Riemann surface and is thus either parabolic or hyperbolic. There is a unique analytic one-to-one mapping \(f(z) \) which maps \(\{z : |z| < r \leq \infty \} \) onto \(F \) and satisfies \(f(0) = 0 \in S_1 \) and \(f'(0) = 1 \). An argument similar to that in [2, p. 1137] shows that \(f(z) \) is real if \(z \) is real. For notation let \(f(\delta_k) = 0 \in S_1, f(\gamma_k) = \infty \in S_1, f(\alpha_k) = \alpha_k \) and \(f(\beta_k) = \beta_k \). The image of \(S_1 \) under \(f^{-1}(z) \) is a region containing the origin and bounded by a Jordan curve \(C \), which is symmetric about the real axis. For \(n > 1 \) the image of \(S_n \) is an annular region about the origin bounded by two Jordan curves, \(C_{n-1} \) and \(C_n \), each symmetric about the real axis. For \(n \geq 1 \), \(C_n \) intersects the real axis at \(\alpha_n \) and \(\beta_n \) only. Furthermore,

\[
\beta_n < \beta_n < \gamma_n < 0 < \alpha_{2n-1} < \delta_{2n} < \gamma_{2n} < \alpha_{2n} < \gamma_{3n+1} < \theta_{2n+1} < \alpha_{2n+1}.
\]

The closed surfaces and rational functions. Let \(F_n \) denote the surface formed from the first \(2n \) sheets of \(F \) with the cut along \([b_{2n}, a_{2n}] \) on \(S_{2n} \) deleted. \(F_n \) is an elliptic surface so there is a unique rational function \(R_n(z) \) mapping the \(w \)-sphere one-to-one and onto \(F_n \) which satisfies \(R_n(0) = 0 \in S_1, R_n(\infty) = \infty \in S_{2n} \) and \(R_n'(0) = 1 \). For notation let \(R_n(\delta_{k.n}) = 0 \in S_1, R_n(\gamma_{k,n}) = \infty \in S_k, R_n(\alpha_{k,n}) = \alpha_k \) and \(R_n(\beta_{k,n}) = \beta_k \). Also, throughout the following the notation \(1 - z/\alpha_k = \alpha_k^*, 1 - z/\beta_k = \beta_k^* \) is used. Then

\[
R_n(z) = [z/\gamma_{1,n}] \prod_{k=1}^{2n-1} [\delta_{k,n}/\gamma_{k,n}] \delta_{2n,n}^*
\]
and
\[R'_n(z) = \prod_{k=1}^{2n-1} \left(\frac{\alpha_{k,n}^* \beta_{k,n}^*}{(\gamma_{k,n}^*)^3} \right) \]

since \(R_n(z) \) and \(R'_n(z) \) must contain exactly these factors. The zeros and poles of \(R_n(z) \) and the points corresponding to the branch points of \(F_n \) are real and their ordering is similar to that for \(f(z) \).

Lemma 1. \(F \) is parabolic.

Proof. Let \(D_n \) be the plane with \((-\infty, \beta_{2n-1, n}] \) on the real axis deleted. Let \(\Delta_n \) be the domain in the plane which is the interior of the curve \(C_{2n} \) excluding the segments \([\beta_{2n}, \beta_{2n-1}] \) and \([\gamma_{2n}, \alpha_{2n}] \). Then \(\psi_n(z) = f^{-1}[R_n(z)] \) maps \(D_n \) onto \(\Delta_n \). An argument similar to that in [2, p. 1138] shows that \(F \) cannot be hyperbolic so that \(F \) is parabolic. Thus \(f(z) \) maps the plane onto \(F \). Furthermore, the sequence \(\{D_n\} \) converges to its kernel which is the plane.

Lemma 2. \(R_n(z) \to f(z) \) subuniformly (uniformly on compact subsets) in the plane as \(n \to \infty \). Furthermore, \(\delta_{k,n} \to \delta_k, \gamma_{k,n} \to \gamma_k, \alpha_{k,n} \to \alpha_k \) and \(\beta_{k,n} \to \beta_k \) as \(n \to \infty \).

Proof. Since the sequences of domains \(\{D_n\} \) and \(\{\Delta_n\} \) converge to their kernels which in both cases is the plane then the sequence \(\{f^{-1}[R_n(z)]\} \) converges subuniformly in the plane [3, p. 18] to the identity. Hence \(R_n(z) \to f(z) \) subuniformly in the plane. It follows from Hurwitz's theorem that \(\delta_{k,n} \to \delta_k, \gamma_{k,n} \to \gamma_k, \alpha_{k,n} \to \alpha_k \) and \(\beta_{k,n} \to \beta_k \) as \(n \to \infty \).

Lemma 3. The infinite product
\[\Pi(z) = (z/\gamma_n^*) \prod_{k=2}^{\infty} (\delta_k^*/\gamma_k^*) \]

converges subuniformly in the plane.

Proof. Since \(\delta_k \to \infty \) and \(\gamma_k \to \infty \) as \(k \to \infty \) then if \(R > 0 \) there is an integer \(n_0 = n_0(R) > 1 \) such that for \(k \geq n_0 - 1 \) both \(\delta_k > R \) and \(\gamma_k > R \). Thus, \(\log [\delta_k^*/\gamma_k^*] \) is defined for \(|z| \leq R \). Since for \(k \geq 1, \ 0 < \delta_{2k} < \gamma_{2k} < \gamma_{2k+1} < \delta_{2k+1} \), then for \(n \geq 0, p \geq 0 \) and \(|z| \leq R \),
\[
\left| \sum_{k=n_0+n}^{n_0+n+p} \log(\delta_k^*/\gamma_k^*) \right| = \left| \sum_{m=1}^{\infty} \left(z^m/m \right) \sum_{k=n_0+n}^{n_0+n+p} (1/\gamma_k^* - 1/\delta_k^*) \right| \\
\leq \sum_{m=1}^{\infty} (R/\delta_{n_0+n-1}^*)^m = R/(\delta_{n_0+n-1} - R).
\]
Because $R/(\delta_{n_k+n-1} - R) \to 0$ as $n \to \infty$ then the uniform Cauchy criterion is satisfied in $|z| \leq R$ by the infinite series $\sum_{k=n_0}^{\infty} \log [\delta_k^s/\gamma_k^s]$. This is sufficient for $\Pi(z)$ to converge subuniformly in the plane.

Lemma 4. $\Pi(z) = f(z)$.

Proof. Because $\gamma_k \to \gamma_k$ and $\delta_k \to \delta_k$ as $n \to \infty$ there exists $R > 0$ and $N > 0$ such that if $n > N$ and $|z| \leq R$ the quotient $R_n(z)/\Pi(z)$ is nonzero and analytic with value 1 at $z = 0$. Thus, using the principal value of the logarithm,

$$\log [R_n(z)/\Pi(z)] = \log (\gamma_n^s/\gamma_n^t) + \sum_{m=1}^{\infty} c_m \sigma^m$$

where for $2 < p \leq 2n - 1$,

$$c_m = c_m(n) = \frac{1}{m} \left[\frac{1}{\gamma_{n+1, n}^m} + \sum_{k=2}^{n-1} (1/\gamma_k^m - 1/\delta_k^m - 1/\gamma_{k,n}^m + 1/\delta_{k,n}^m) \right] + \frac{\infty}{\sum_{k=p}^{\infty} (1/\gamma_k^m - 1/\delta_k^m) - \sum_{k=p}^{n-1} (1/\gamma_{k,n}^m - 1/\delta_{k,n}^m) \right].$$

Because

$$\left| \sum_{k=p}^{\infty} (1/\gamma_k^m - 1/\delta_k^m) \right| < 1/\delta_{p-1}^m$$

and

$$\left| \sum_{k=p}^{\infty} (1/\gamma_{k,n}^m - 1/\delta_{k,n}^m) \right| < 1/\delta_{p-1,n}^m$$

then $|c_m(n)| \leq |1/\delta_{n+1,n}^m| + \left| \sum_{k=2}^{n-1} (1/\gamma_k^m - 1/\delta_k^m - 1/\gamma_{k,n}^m + 1/\delta_{k,n}^m) \right| + 1/\delta_{p-1}^m + 1/\delta_{p-1,n}^m$.

This bound for $c_m(n)$ has limit $2/\delta_{p-1}^m$ as $n \to \infty$ and $2/\delta_{p-1}^m \to 0$ as $p \to \infty$. Hence $c_m(n) \to 0$ as $n \to \infty$. The convergence of $(\log [R_n(z)/\Pi(z)])$ is subuniform in the plane and $\gamma_{1,n} \to \gamma_1$ as $n \to \infty$. Thus, as $n \to \infty$,

$$\lim \log [R_n(z)/\Pi(z)] = \log [f(z)/\Pi(z)] = 0$$

so that $f(z) = \Pi(z)$.

Lemma 5. The sequences $A_n = \sum_{k=1}^{2n-1} 1/\alpha_k$, $B_n = \sum_{k=1}^{2n-1} 1/\beta_k$, and $C_n = \sum_{k=1}^{2n-1} 1/\gamma_k$ are bounded.

Proof. There is some $R > 0$ such that $R'_n(z) \neq 0$ if $|z| \leq R$ and thus,

$$\log R'_n(z) = \sum_{m=1}^{\infty} (z^m/m) \sum_{k=1}^{2n-1} (2/\gamma_k^m - 1/\alpha_{k,n}^m - 1/\beta_{k,n}^m).$$

Let $\nu = \nu_n$ denote the coefficient of z in this series expansion. For $n \geq 1$ and $k > 1$, $0 < \gamma_{k,n} < \alpha_{k,n}$ and for $k \geq 1$, $\beta_{k,n} < 0$ so that, $2/\gamma_{1,n} -$
\[\frac{1}{\alpha_{1,n}} - \nu_n = B_n + \sum_{k=2}^{n-1} \left(\frac{1}{\alpha_{k,n}} - \frac{1}{\gamma_{k,n}} \right) - \sum_{k=2}^{n-1} \frac{1}{\gamma_{k,n}} < B_n < 0. \]

As \(n \to \infty \), \(\log R_n(z) \to \log f'(z) \) subuniformly in the plane and thus,

\[-\infty < \lim (2/\gamma_{1,n} - 1/\alpha_{1,n} - \nu_n) \leq \lim \inf B_n \leq 0. \]

Hence the sequence \(\{B_n\} \) is bounded. The remaining two sequences are bounded below and the inequalities \(C_n < \nu_n + 1/\alpha_{1,n} - 1/\gamma_{1,n} \) and \(A_n < C_n + 1/\alpha_{1,n} - 1/\gamma_{1,n} \) show they are bounded above.

Lemma 6. The series \(\sum_{k=1}^{\infty} \frac{1}{\beta_k}, \sum_{k=1}^{\infty} \frac{1}{\gamma_k}, \sum_{k=1}^{\infty} \frac{1}{\alpha_k} \) and \(\sum_{k=2}^{\infty} \frac{1}{\delta_k} \) are convergent.

Proof. Each of these series is monotone. Using Lemma 2 and the notation and results of Lemma 5 it follows for \(p \geq 1 \) that as \(n \to \infty \),

\[-\infty < \lim \inf B_n \leq \lim \sum_{k=1}^{n} \frac{1}{\beta_{k,n}} = \sum_{k=1}^{p} 1/B_k < 0. \]

Thus the first series converges. \(\sum_{k=1}^{p} \frac{1}{\gamma_k} \) converges since it is monotone increasing and for \(p \geq 1 \) and \(n \to \infty \),

\[\sum_{k=1}^{p} \frac{1}{\gamma_k} = \lim \sum_{k=1}^{p} \frac{1}{\gamma_{k,n}} \leq \lim \sup C_n < \infty. \]

The remaining two series have positive terms and are dominated by convergent series since for \(k > 1 \), \(0 < 1/\delta_{k+1} < 1/\alpha_k < 1/\gamma_k \). Thus, they also converge.

Lemma 7. The infinite product

\[Q(z) = \prod_{k=1}^{\infty} \left[\alpha_k^x \beta_k^x / (\gamma_k^x)^2 \right] \]

converges subuniformly in the plane.

Proof. This follows from Lemma 6.

As a further consequence of Lemma 6 both \(Q(z) \) and \(II(z) \) may also be expressed as a quotient of products.

Lemma 8. \(f'(z) = Q(z) \exp(\delta z) \) with \(\delta \) real.

Proof. For some \(R > 0 \) both \(Q(z) \) and \(R_n'(z) \) are analytic and non-zero in \(|z| < R \). Hence, for \(|z| < R \),

\[\log [R_n'(z)/Q(z)] = \sum_{m=1}^{\infty} \left(\frac{z^m}{m!} \right) \left[\sum_{k=1}^{\infty} \frac{1}{\alpha_k} \right. \]

\[- \sum_{k=1}^{2m-1} \frac{1}{\alpha_{k,n}} + \sum_{k=1}^{\infty} \frac{1}{\beta_k} - \sum_{k=1}^{2m-1} \frac{1}{\beta_{k,n}} - \sum_{k=1}^{\infty} \frac{2}{\gamma_k} \]

\[+ \sum_{k=1}^{2m-1} \frac{2}{\gamma_{k,n}}. \]
From Lemmas 5 and 6 there exists $M > 0$ such that for $n \geq 1$
\[
\sum_{k=1}^{2n-1} 1/\alpha_{k,n} < M \text{ and } \sum_{k=1}^{\infty} 1/\alpha_k < M.
\]

Also, for $k \geq 1$ and $n \geq 1$, $\alpha_k < \alpha_{k+1}$ and $\alpha_{k,n} < \alpha_{k+1,n}$ so that
\[
k/\alpha_k < \sum_{p=1}^{\infty} 1/\alpha_p < M
\]
and
\[
k/\alpha_{k,n} < \sum_{p=1}^{2n-1} 1/\alpha_{p,n} < M.
\]

Thus, for $p \geq 1$, $|\sum_{k=p}^{\infty} 1/\alpha_k^n - \sum_{k=p}^{2n-1} 1/\alpha_{k,n}^m|$
\[
< \sum_{k=p}^{\infty} (M/k)^m + \sum_{k=p}^{2n-1} (M/k)^m = 2M^m \sum_{k=p}^{\infty} (1/k)^m.
\]

This last expression has limit zero as $p \to \infty$ provided $m \geq 2$. Thus, for $m \geq 2$, it follows that as $n \to \infty$,
\[
\lim \left[\sum_{k=1}^{n} 1/\alpha_k^n - \sum_{k=1}^{2n-1} 1/\alpha_{k,n}^m\right] = \lim \left[\sum_{k=1}^{n} 1/\alpha_k^n - \sum_{k=1}^{2n-1} 1/\alpha_{k,n}^m\right] = 0.
\]

Similar arguments show that as $n \to \infty$ and provided $m \geq 2$,
\[
\lim \left[\sum_{k=1}^{n} 1/\beta_k^m - \sum_{k=1}^{2n-1} 1/\beta_{k,n}^m\right] = \lim \left[\sum_{k=1}^{n} 1/\gamma_k^m - \sum_{k=1}^{2n-1} 1/\gamma_{k,n}^m\right] = 0.
\]

Hence, if δ denotes the limit as $n \to \infty$ of the coefficient of z in the expansion of $\log [R'_n(z)/Q(z)]$ then as $n \to \infty$, $\delta z = \lim \log [R'_n(z)/\Pi(z)] = \log [f'(z)/Q(z)]$ so that $f'(z) = Q(z) \exp (\delta z)$.

Lemma 9. $\delta = 0$.

Proof. Since $Q(z)$ is composed of canonical products of genus zero then for $\varepsilon > 0$ there exists $R > 0$ such that if $|z| > R$ and $0 < \rho < |\arg z| < \pi - \rho$ then $|Q(z)| \leq \exp (\varepsilon |z|)$ and $1/|Q(z)| \leq \exp (\varepsilon |z|)$. Thus,
\[
\exp (\delta \Re (z) - \varepsilon |z|) \leq |f'(z)| \leq \exp (\delta \Re (z) + \varepsilon |z|).
\]

Let V_1 and V_2 denote open sectors in the first and second quadrants, respectively, with vertex at the origin and sides contained in the open quadrant. If $\delta < 0$ and $z \in V_1$ then $\Re (z) > 0$ and there exists $\phi_1 > 0$ such that for $|z| > R$, $|f'(z)| \geq \exp (\phi_1 |z|)$. Let r_n denote the distance from the origin to the portion of the curve C_n in V_1 and let z_n and ζ_n denote the intersection of C_n with the sides of V_1 where $0 < \theta =
arg $\zeta_n - arg z_n$. For n sufficiently large,
\[
\begin{align*}
b_{2n+1} - a_{2n+1} &> f(\zeta_{2n+1}) - f(z_{2n+1}) \\
&= \int_{z_{2n+1}}^{\zeta_{2n+1}} |f'(z)| \, dz \geq \theta r_{2n} \exp(\phi \tau_{2n})
\end{align*}
\]
where the integral is along C_{2n+1}. If $n \to \infty$ then $\theta r_{2n} \exp(\phi \tau_{2n}) \to \infty$
and since $a_{2n+1} > 0$ then $b_{2n+1} \to \infty$.

However, if $z \in V_2$ then $\Re(z) < 0$ and there exists $\phi_2 > 0$ such that for $|z| > R$, $|f'(z)| \leq \exp(-\phi_2 |z|)$. It follows that $f(z)$ is bounded in V_2. If $z \in V_2$ and $z \in C_{2n}$ then $0 < b_{2n} < f(z)$ so that $\{b_{2n}\}$ is bounded. This is a contradiction since $b_{2n+1} < b_{2n}$. Thus $\delta \leq 0$. A similar argument shows $\delta \geq 0$ so that $\delta = 0$.

Theorem. A Riemann surface belonging to the class described is parabolic and a uniformizing function $f(z)$ for a member of the class has the representation
\[
f(z) = (z/\gamma_k^*) \prod_{k=2}^{m} (\delta_k^* / \gamma_k^*) .
\]
The derivative has the representation
\[
f'(z) = \prod_{k=1}^{m} [\alpha_k^* \beta_k^* / (\gamma_k^*)^2] .
\]
For $k \geq 1$,
\[
\begin{align*}
\beta_{k+1} < \beta_k < \gamma_1 < 0 < \alpha_{2k-1} < \delta_{2k} < \gamma_{2k} < \alpha_{2k} < \gamma_{2k+1} < \delta_{2k+1} < \alpha_{2k+1} .
\end{align*}
\]
Furthermore, $\sum_{k=1}^{\infty} 1/\alpha_k$, $\sum_{k=1}^{\infty} 1/\beta_k$, $\sum_{k=1}^{\infty} 1/\gamma_k$ and $\sum_{k=2}^{\infty} 1/\delta_k$ converge.

The author wishes to express his appreciation to Professor H. B. Curtis, Jr. for his suggestions.

References

Received November 30, 1970.

The University of Wyoming
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index. to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
Wazir Husan Abdi, A quasi-Kummer function .. 521
Vasily Cateforis, Minimal injective cogenerators for the class of modules of
zero singular submodule ... 527
W. Wistar (William) Comfort and Anthony Wood Hager, Cardinality of
k-complete Boolean algebras .. 541
Richard Brian Darst and Gene Allen DeBoth, Norm convergence of
martingales of Radon-Nikodym derivatives given a σ-lattice 547
M. Edelstein and Anthony Charles Thompson, Some results on nearest
points and support properties of convex sets in c₀ 553
Richard Goodrick, Two bridge knots are alternating knots 561
Jean-Pierre Gossez and Enrique José Lami Dozo, Some geometric properties
related to the fixed point theory for nonexpansive mappings 565
Dang Xuan Hong, Covering relations among lattice varieties 575
Carl Groos Jockusch, Jr. and Robert Irving Soare, Degrees of members of Π₁⁰
classes ... 605
Leroy Milton Kelly and R. Rottenberg, Simple points in pseudoline
arrangements ... 617
Joe Eckley Kirk, Jr., The uniformizing function for a class of Riemann
surfaces ... 623
Glenn Richard Luecke, Operators satisfying condition (G₁) locally 629
T. S. Motzkin, On L(S)-tuples and l-pairs of matrices 639
Charles Estep Murley, The classification of certain classes of torsion free
Abelian groups .. 647
Louis D. Nel, Lattices of lower semi-continuous functions and associated
topological spaces .. 667
David Emroy Penney, II, Establishing isomorphism between tame prime
knots in E³ .. 675
Daniel Rider, Functions which operate on λL_p(T), 1 < p < 2 681
Thomas Stephen Shores, Injective modules over duo rings 695
Stephen Simons, A convergence theorem with boundary 703
Stephen Simons, Maximinimax, minimax, and antiminimax theorems and a
result of R. C. James ... 709
Stephen Simons, On Ptak’s combinatorial lemma 719
Stuart A. Steinberg, Finitely-valued f-modules 723
Pui-kei Wong, Integral inequalities of Wirtinger-type and fourth-order
elleptic differential inequalities ... 739
Yen-Yi Wu, Completions of Boolean algebras with partially additive
operators .. 753
Phillip Lee Zenor, On spaces with regular G₅-diagonals 759