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ON L(S)-TUPLES AND /-PAIRS OF MATRICES

THEODORE S. MOTZKIN

In this paper we study L(S)-tuples of matrices, a class of
k-tuples that includes as special cases the L-pairs studied by
Motzkin and Taussky, and the l-pairs defined by Taussky for
complex elements and diagonable first matrix. Some light on
these concepts and a few relevant results are produced by
linking them to properties of algebraic hypersurfaces and
especially curves with respect to an exterior point.

1. Characteristic hypersurfaces. Let I (the unit matrix),
A, A, (k=2) be n by n matrices (n = 2) with elements in a
field F of characteristic f and algebraic closure F. Let o, +++,0;
be the homogeneous coordinates of a variable point (o, s) in projec-
tive k-dimensional space over F.

DEFINITION 1. The characteristic determinant and hypersurface
of the k-tuple 4,, ---, A, are defined by D = D(o,, s) = |0, — 0,4, —
« — 0,4, and D = 0.

The point s = 0, called origin, is not on D = 0. Two k-tuples
related by similarity have the same characteristic determinant and
hypersurface. For two linearly independent /k-tuples defining the
same linear family, the characteristic hypersurfaces are projectively
related.

2. Generality of characteristic hypersurfaces. (1) For f=0,
every curve of degree n not through the origin is characteristic
curve of at least one (almost always of, but for an orthogonal simi-
larity, only one) pair of symmetric matrices with elements in F. For
no k£ =3 and n = 2 does the corresponding assertion hold.

“Almost always,” as in the sequel, means that all exceptions, if
any, fulfill some nonidentical polynomial relation between their defining
constants.

The first part of (1) follows from a result of Grace [4] (Dixon [5],
credited with the proof by Room [6, pp. 126-127], admits that one
case escapes him). The second part follows from a simple count of

constants, viz. <” Z k) — 1 for hypersurfaces vs.n + k(n ; 1) for not

orthogonally similar k-tuples.

(2) For f=0, every quadric and cubic surface not through the
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origin is characteristic surface of at least one (almost always of, up
to a similarity, only one) triple of matrices with elements in F. For
no values t=3,7n=4 and no k = 4,n = 2 does the corresponding
assertion hold.

For statements equivalent to the first part cf. [6, p. XXI] Lasker
[7, p. 439] and Wakeford [8, p. 409]. For the second part the count
of constants rests on their number for nonsimilar k-tuples, which is
1+ (k- 1n* for k= 2.

3. L(S)-tuples. DEFINITION 2. For a k-tuple A,---, A, and
prescribed s = (o, -+, 5,), the roots of sA =04, + --+ + 0,4, are
defined as the points (o, 7,, +++, g,) for which D = 0.

Let S be a set of points s = (¢, -+, 0,) in projective (k—1)-space
S, over F. The space S, will be thought of as the hyperplane at
infinity o, = 0 of k-space. If s* is the straight line connecting the
point (0,s) and the origin (1,0) then the roots of sA, counted with
the proper multiplicities as points of intersection of D = 0 and s*,
form a set D, of n points.

DErFINITION 3. The k-tuple (4, ---, 4,) is said to be L(S) (or an
L(S)-k-tuple or L(S)-tuple, or to have property L(S), or to split
linearly over S) if there exist A\, +++, Ay, in F, such that, identically
ing,D=1l+-.---1, for all (6,+-+,0,) in S, with [, =g, — N,0, —
cer = Nl 0y by = 05— MpOr — 00— N0

This expresses a property of the characteristic hypersurface with
respect to the origin: the roots D,, for s in S, lie on % hyperplanes
l,=0,++¢,1, =0 that do not pass through the origin, and v-fold
roots lie on v of these hyperplanes.

As an example, let t =2,1,---,1, and a set S consisting of n»
points given, with S* = 0 the product of the equations of the = lines
s*. Then any matrix pair having aS* + g8l,« ++- <, =0 (a, 8% 0,0)
as characteristic curve is L(S).

4. Special sets S. For S = S,, property L(S) does not involve
the origin and amounts to demanding that the characteristic hyper-
surface D = 0 split into n, not necessarily distinct, hyperplanes [, = 0,
l, = 0. This is exactly property L of [1], geometrically characterized
in [2], in its obvious generalization from & = 2 to general k = 2:

(3) L(S) = L.
At the other extreme we have:

(4) If the points of S are linearly independent then every k-tuple
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of matrices is L(S).

In fact, in whichever way we partition the points D,,s in S, into
n sets D,, ---, D, each having exactly one point on each line s*, there
exists at least one hyperplane through all points of each set.

5. Unindependent S. The next smallest sets S are the uninde-
pendent sets:

DEFINITION 4. A set of points is called unindependent if there is,
except for a factor, exactly one linear relation, with coefficients not all
zero, between its points.

(5) If the points s, ---,s, (r = 2) are linearly independent and
span the projective (r — 1)-space S, then either (4,, .-+, 4,) is L(S)
or there exist at most (#n — r)(n" — 1) points s, such that S = (s, sy,
+++,8,) is unindependent and that (A4, ---, 4, is L(S).

Indeed suppose that (4., ---, 4,) is not L(S,) and therefore » < u,
and that exactly », among the at most #” projective (r — 1)-spaces
connecting points of D = 0 corresponding to s,, -+, s, belong to D = 0.
Then to each s, there corresponds at least one point of D = 0 on one
of the n" — m, other (r — 1)-spaces, while each of the latter contains
at most n — » points of D = 0 that do not correspond to s, --,s,.
Hence there exist at most (n — 7)(n" — %,) points s,; but for n, = 0
each s, consumes even n of the (r — 1)-spaces.

From (5) follows:

(6) For n = 2 an L(S)-tuple is also L(S,), where S, is the linear
space spanned by S.

Thus, for % = 2, no property L(S) essentially different from L
(for a linear subfamily) exists.

6. L(S) for infinitely many S. No s, as in (5) need exist for
any s, +++,5, (see (16). On the other hand:

(7) If D— op is free of N then an s, exists for almost all
Syy 20ty Spe
This follows from:

(8) If D— or is free of o0, then, for arbitrarily prescribed
iy *+ oy N in F, (4, -, 4;) is L(S) where S is the set of all points
s for which D(no, + +++ + N0, 8) = 0.

Indeed, for s in S, we have D = (M — @t + ==+ + @ufty))e ~o» +
A = eulap, + oo0 + Artte)s with M —~1=N—¢)+er - (M~ €a)
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The linear families with o,-free D — ¢’ are those contained in
the locus: |0, — A| — oF free of o, The number of ensuing condi-
tions leaves n* — n + 1 degrees of freedom for A, (for f = 0, 4, is,
but for a secalar factor, similar to a diagonal matrix with the nth

roots of unity in the diagonal), at least (n—zl- 1> for A,, 2 — 1 for A,,

so that such families, with linearly independent A4,, ---, 4,, exist for
every #» = 2 and &k = 2 or 8. For A, the number of degrees of freedom
is, for n = 5,6, ---, at least 3,1, ---, which leaves the existence of
an A, independent of A4,, 4,, A, in doubt; but for » = 3 and »n = 4,
their number is 4, so that such families exist also for ¥ =4 and n = 3
or 4. For A, and % = 4 the number is 1, so that an independent A4,
may not exist; for 4, and #» = 3 it is 3, and since the conditions for
n = 3 are all but one linear and easily seen to be independent, » = 3
and %k =5 is impossible. For n = 2 the matrices A such that
(lo,d — A} — o7) is free of o, are those of trace 0 and form a linear
family with %, = 3.

Note that (4, ---, 4, is not L for o,-free D — ¢ except if
D — oy is an nth power. In this case the number of degrees of
freedom becomes at least 1 + (n/2) for A, and 1 for 4,. For n=2
these are the same as before, in harmony with (6). But e.g., for
n=23, k=2, f=0, a pair not L but in infinitely many ways L(S)

1 0 0 T0 0 17
is given by 4, =10 ¢ 0 |, 4,= 0 0 1}, where 1+¢+¢*=0.
0 0 & 1 -1 0

The characteristic curves of such pairs are also mentioned in the
proof of (15).

7. L(S)-pairs. Evidently:

(9) For k= 2 and infinite S, L(S) = L.

This follows also from (6) or (10).

For & = 2 and finite sets S we consider also sets S with finite
multiplicities attached to their points. We write A, B, A, +++, \,,
Ly eyt Tor Al Aoy Ny ooy Mgy Nagy 00y Ay

DerFmITION 5. The pair (4, B) is said to be L(S) if there exist
Niy * ooy Mgy [ ooy t, in F such that, identically in o,, D = (0, —
MO, — W0y)e oo (0g — Mo, — ,0°) for all (6,0, in S, with corres-
ponding identities derived by differentiation up to p — 1 times along
the branches of D = 0 for each p-fold point of S.

That is, the = straight lines are required not only to pass
(severally when needed) through the points (g,, ¢, 6;) of D = 0 with
(6,,0,) in S, but for o >1 to have (0 — 1)-order contact with the
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branches at these points. Then:

(10) If the sum ~ of multiplicities of points of S surpasses
n, L(S) = L.

Indeed, each of the % straight lines has (taking account of
multiplicities) more than % points in common with D = 0 and thus
is part of D = 0.

8. [l-pairs. DEFINITION 6. Property ! is defined as L(S), S =
(1, 0), 1,0),(,1)).

From (10) follows (extending the corresponding result in [2,
Theorem 3] and strengthening (6)):

(11) For n =2,1= L.

For n = 8, (A, B) can be I without (B, A) being I; but even if
both are [l-pairs, (4, B) need not be L. Such double-l-not-L pairs
exist already for n = 3; the three roots D,, of A (i.e., the points
D = 0,0, = 0) and those D,, of B are connected by six tangents at
the roots. For 7 =4 there can be n,n+1,.-.,2n connecting
tangents.

The coefficients of ¢~ in D and in [, --- I, are linear and
thus coincide identically if they coincide for two values of o./o,, or
for one value and the derivative there. Hence we obtain:

(12) If » — 1 branch tangents to the characteristic curve D = 0
of the pencil 0,4 + 0,B at the roots of A pass through the roots of
B (but for one root, as often as the multiplicity of the roots of B
indicates) then (4, B) is I.

9. The l-pairs in a pencil. Every pair (v,4, 7.4) is trivially L
and a fortiori . For n = 2 a pencil 0,4 + 0.B, where (4, B) is not
L, cannot contain any [-pair except these trivial (linearly dependent)
pairs; for » = 4 it need not, though as we shall see (15) this is for
n =3 and f = 0 still an exceptional case.

On the other hand, for (A, B) not I, the pencil cannot contain
more than n — 2 nontrivial [-pairs with given first matrix. Even so:

(13) If D — o7 is free of o, then the pencil contains infinitely
many nontrivial I-pairs.

The proof is analogous to that of (7).

10. Characteristic cubics. Obviously:
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(14) For n = 3 and reducible D = 0, no or all nontrivial pairs in a
pencil are ! according as its characteristic cubic splits into a conic and
a line or into three (not necessarily distinct) lines.

In the next result “almost always” means “except possibly for
values of the coefficients satisfying an additional polynomial relation.”
For such values the number of pairs could conceivably be infinity,
by indeterminacy, smaller than indicated, by coincidence of pairs,
and even 0, by coincidence of elements of a pair. (We are careful
not to use nonhomogeneous formulas.)

(15) For » = 8 and f = 0, a pencil whose characteristic cubic is
of class 3,4, or 6, contains almost always 1,2, or 4 l-pairs.

“Almost always” refers equivalently to cubics or pencils; this
follows without difficulty from (1).

First consider a cubic of class 3; after a projective transforma-
tion it can be parametrically represented by (1, 7, t%). Three distinct
points 7, 7,, T, on it are collinear if and only if

1 7, ¢
1 7, ¢dlf(co—t)es—T)Nes —T) =7, + T+ T3 = 0.
1 7z, <

The coordinates v, v, v. of the line ¢ joining them are —r7,7,7,, 7,7, +
7,7y + 7,75, 1. The tangents at the three points meet the cubic in
—27,, —2t,, —27,, points on ¢ = (—8v, 4v,, 7,). If both lines ¢ and ¢
are to pass through a given point d = (d,, d,, d;) then ¢ is uniquely
determined if 0,0,0, = 0; if one of ¢,,0,0, is 0 no ¢ with ¢ # ¢
exists; if two are 0 each line through d, with two exceptions, will do
(special case of (13)). In the application to pencils of matrices d is
given by o, = 0,0, = 0 and can be any point outside the cubic.

For the cubie (1, 7% 7® + 7), of class 4, the collinearity condition
is 7,7, + 7,7, + 7,0, = 1. Here v,, v, 7. are —7,7,0;, — T, — Ty — T3 1.
The tangents meet the cubic in 1/2(1/z,—7), 1/2(1/7.—72), 1/2(1/7s—73),
points on ¢ = ((7, + v)* — 47%, 4(V: — v7.), 8v7.). This gives two ¢
for general d.

For a cubic 7(7), n,(7), n,(z)) of class 6, where %, 7,7, are
elliptic functions of periods 7z, and 7, collinearity is expressed by
7, + 7, + 7, = 0 (mod 7, 7). The tangents meet the cubic in —27,
~27,, —27,. Hence every ¢’ belongs to 16 lines

¢ = (7, + Yy Ty + ey Ty + “r/fS) ’

where , = —p, — 4, and 2+, = 0, 24, = 0. Since no ¢’ belongs to
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infinitely many ¢ the polynomials expressing ¢’ in terms of ¢ must be
of degree 4.
Another proof uses the Chasles correspondence principle.

11. No-L-pencils. DEFINITION 6. A pencil 0, A + 0.B is called
no-L if there is no 3-point S for which (4, B) is L(S).

This excludes trivial sets S (with at most two points) and trivial
pencils (generated by a trivial pair). Property L(S) for any S with
more than three (not necessarily distinet) points implies L(S’) for
every 3-point subset S'.

(16) Almost all pencils are no-L for » =2 and %n =5, but not
for n = 8 and » = 4.

Indeed, for given A and B, choose two values of (¢, 0;). There
are then, for irreducible characteristic curve and = = 8, finitely many
candidates for a third point of s. By (12), » — 2 conditions have to
be fullfilled to ensure L(S)-ness. This is, if and only if n = 5, too
much for an appropriate choice of the first two points.

Pencils with a characteristic curve consisting of a conic and
n — 2 straight lines are always no-L. Whether other no-L pencils
exist for » = 3 and » = 4 remains open.

For n = 7 almost all pencils are no-L with respect to every point
outside the characteristic curve.
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