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In this paper the lattice of all real-valued lower semi-conti-
nuous functions on a topological space is studied. It is first
shown that there is no essential loss if attention is restricted to
Ty-spaces. By suitably topologizing a certain set of equivalence
classes of prime ideals, it is shown that a topological space
is determined by the lattice. This topological space is homeo-
morphic with the original space X whenever X has the property
that every non-empty irreducible closed set is a point closure.
The sublattices of functions taking values only in intervals
of the form (a, b] and [a, b] are compared. Relations between
the above function lattices and the lattice of all closed subsets
are also discussed.

Preliminaries, Let L (X) (or briefly L;) denote the lattice of all
lower semi-continuous functions defined on the topological space X into
the real line B. It is well known that L, is a conditionally complete
distributive lattice under the usual order relation f < g which means
f(®) < g(x) for all xe X (except where otherwise indicated, lattice—
theoretic terminology will follow [1]). For an arbitrary bounded non-
empty set F'C L, the join VY F'satisfies VF(x) = sup {f(x): f € F}; the
meet AF is defined as V{ge Lz: g < f for all fe F} and it should be
noted that AF(®) = inf{f(x): f € F} need not hold when F is infinite.
The constant function with value s will be written s.

The elements of L, can be regarded more conveniently as con-
tinuous funections on X into R, where R, is the T,-space obtained by
giving the real line the topology having as non-empty closed sets those
of the form {x: x < »} (re R).

Some other function lattices will also be considered towards the
end of the paper. Let H,I denote the real intervals (0, 1], [0, 1]
respectively and L (X), L,(X) the sublattices of L,(X) consisting of
those functions which take values only in H, I respectively (no essential
difference will arise if any extended real intervals (a, b], [a, b] are taken
for H, I).

We will use 2°(X) to denote the lattice of closed subsets of the
topological space X. The set of nonzero irreducible elements of %
will be denoted by .o (X); thus % consists of the nonempty closed
sets A which cannot be expressed as the union of two properly smaller
closed sets. Closures will be written cl A with cla = cl{z} for point
closures.
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Relations between X and the lattice &’ (X) have been studied by
several authors notably Thron [3] and Blanksma [2]. We now give
a summary of relevant facts from these two papers in a form suitable
for our needs. We restrict attention to 7T,-spaces as this entails no
essential loss of generality.

The set .7 can be topologized by taking as closed sets those of
the form {Ae.>: AC F} where F e« (see [3, proof of 3.1] and [2,
I, ch 2]. We will denote the topological space thus obtained by 7X.
Since every point closure cla is irreducible, the mapping v(z) = clx
is an embedding of X into the set .7 and moreover it is a topological
embedding of X into wX (see [2, I, 3.4]). An important class of spaces
are those in which every Ae .o/ is a point closure (see [2, I, 2.2]).
Such spaces will be called pe-spaces; Tp-spaces (see [3]) are defined to
be those for which cla — {x} is always a closed set. It is perhaps
worth pointing out that these two types of spaces can be regarded
as the extreme cases of a certain situation. If we use .&7* to denote
the set of strongly irreducible elements of .o (i.e. those A € .&7 which
cannot be written A = cl{,.s B, for any family (B,) © ¥ with B, &
A), then we have for any 7T,-space X

v X)cC. .

(It is easily verified that each 4 € .o7* must be a point closure). The
T,-spaces can now be described as those for which .&* = v(X) while
the point closure spaces are those for which v(X) = .97. The specific
results concerning 7wX and & which will be needed in this paper can
now be stated as follows. (When we say X is determined as a space
with property P by the lattice C(X) (resp. Lp(X)) we mean that if YV
is also a space with property P then X and Y are homeomorphic iff
C(X) and (YY) (resp. Lp(X), Lz(Y)) are isomorphic.)

1. Known facts.

For any Tyrspace X we have

(@) nX is a pc-space.

(b) If X is a pec-space, then X and nX are homeomorphic.

(¢) Ewvery fe Ly(X) has a unique extension f~€ L, (wX) (here we
have identified X with a demse subspace of ©X, as may be done).

(d) The lattices (X) and & (xX) are isomorphic.

() The space wX s determined as a pe-space by the lattice & (X)
(hence if X 1is a pe-space, it is determined as such by the lattice € (X)).

(f) If X is a Tp-space, it is determined as such by the lattice
s (X).

For (a) through (e), see [2, I, chapters 2, 3]; (c) is not stated
explicitly, but H. Herrlich has pointed out in his review of [2] (MR
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37, 5851) that the pc-spaces form an epireflective subcategory of the
T,-spaces and (c) follows at once from the fact that zX is the epirefi-
ection of X. See [3] for a proof of (f).

THEOREM 2. Let T be any topological space and X its Tyidentifica-
tion. Then the lattices Ln(T) and Lx(X) are isomorphic.

Proof. X is the quotient space T/po, where the relation oy means
clz = cly. Let ¢ denote the canonical mapping of T onto T/po. Notice
that el = cly iff f(®) # f(y) for some f e L(T). Hence for each
f e La(T) there is a unique function f* on T/po such that f*oc= f.
Since f* is defined on a quotient space, its continuity follows from
the continuity of f. The proof is completed with the simple verification
that f— f* is an isomorphism of Lz(T) onto L.(T/0).

In view of this theorem all spaces X under discussion will from
now on supposed to be T,-spaces.

Closed prime ideals in Lp(X). By an 4deal in L will be meant
a nonempty proper subset J of L, such that f A geJ whenever f¢
J,ge L, and f V geJ whenever f, geJ (here we differ from [1] where
an ideal in a lattice need not be a proper subset). An ideal J will
be called closed if for any G < J such that VG exists in L, we have
VGedJ. As usual, prime ideal will mean an ideal which contains
f A g only if it contains f or g.

ProrosiTiON 3. The set I(r, A) = {f € Lg(X): f(x) < r when ze€
A} is a closed prime ideal, where r€ Rand Ae 7. FEvery closed prime
ideal tn Ly ts of this form.

Proof. If fi A f.e I(r, A), then the closed sets 4; = {xc A: fi(x) <
r} (i =1, 2) have A as their union. Since A is irreducible we conclude
that A = A4, and f;(x) £r when x€ A for some ¢ Hence I(r, 4),
which is clearly a closed ideal, is prime. Let us now consider any
closed prime ideal P in L, and let B denote the set of all xe€ X for
which the number

m(x) = sup (p(x): p € P}

exists. We show that m(x) is the same number for all xe B. If
m(y) < m(z) holds we can chose s, te R such that

m(y) < s < mz) <t.

Given any ge P we define elements u, ve Ly as follows: u = s \V g and
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g(x) when g(x) < s

v(®) = t V g(z) when g{z) > s.

Then g =u A v, wg P and v¢ P which is absurd. We conclude that
B is of the form {xe X: m(x) = »} for some re R. The function ¢ =
Vi{p A s: pe P} belongs to P (where » < s) and so {x: e(x) < v} = B is
a closed set. Moreover, B is irreducible for if it is the union of
closed proper subsets B,, B, then

rif xe B,
filw) =

_ =12
sifwe B, (=12

satisfy fiANf.=¢ecP, f,¢ P, f,¢ P. Finally, if fe I(r, B), then f =
V{f A »: pe P}e P and we conclude P = I(r, B).

The symbol .27 will be used from now on to denote the set of
closed prime ideals in L. For a given Pe 2 the irreducible set A
such that P = I(r, A) will be called the carrier of P and for elements
P, Qe .2 we define P~ @ to hold iff P and Q have the same carrier.
The relation thus defined is evidently an equivalence relation and it
will be of importance to know that this relation can be characterized
in terms of the lattice structure of L,(X) without reference to X.
For this purpose we make the following definition. An ideal I(r, 4) ¢
27 is called quasi-minimal if {Pe K: PcC I(r, A)} forms a chain under
the relation .

LEmmaA 4.

(@) An ideal I(r, A)e o 1is quasi-minimal iff A s mazimal
wrreducible.

(b) For quasi-minimal ideals the relation I(r, A) < I(s, B) holds iff
r<s aond A= B.

Proof. The elements Pe.2” with PcC I(r, A) are those of the
form I(»', B) where " < r and B> A. These elements form a chain
iff B= A holds. Thus (a) follows and (b) is an immediate consequence.

Notice that P ~ @ can hold only if PC ® or @ < P. So in order
to obtain the desired characterization of the relation ~ it is enough
to consider comparable ideals.

LEMMA 5. Let P,Q<c .2 satisfy PC Q. Then P~ @ holds iff
there exists a patr of quasi-minimal ideals J,, J,€ .2 such that

J cd,, J,TPNJ, and PVJ, = Q,
where PN J, = {fVg: feP,ged,}.

Proof. If P~ Q with PCcQ, then P= I(r, A), Q = I(s, A) for
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some 7 < s. A standard application of Zorn’s lemma shows that there
is a maximal set Me . such that MDD A. Put J, = I(r, M), J, =
I(s, M). It is easy to verify that J,, J, satisfy the requirements of the
lemma. Conversely, let us start with P = I(r, A) C I(s, B) = @ and
J, = I(m, M), J,= I(n, N) as stated. From J,Cc P and PV J,=Q
we deduce respectively MDA and ANN= B. Using J, CJ, and
Lemma 4 we conclude that M = N and hence A = B. This completes
the proof.

In view of Lemma 5 and the remark preceding it we have the
following important fact.

COROLLARY. The set Q(Lgz) (or briefly 2) of equivalence classes
w(P) = {Q: P ~ Q} (Pe 5¢") is determined by the lattice structure of Ly.

The topological space 2(Lz). Our next undertaking is to introduce
a topology in the set 2. We do this by specifying a subset 22 to
be closed iff it has the following property: if P, Q.€ .2 (te T) are
such that P> N):.r Q. # @ holds where each Q, belongs to some ce Y,
then w(P)e 2. This is reminiscent of the hull-kernel topology encoun-
tered in commutative ring theory.

THEOREM 6. The topological space 2(Ly) ts determined by the lattice
structure of Lg(X). It is a pc-space, homeomorphic to the space wX.

Proof. It will be shown that £ can be put in a 1 — 1 corres-
pondence with the pc-space #X in such a way that the sets called
closed above correspond to the closed subsets of 7X. We note first
of all that, by definition, a class w(P) € 2 consists of all ideals Qe .~
which have a common carrier. Thus by putting

I(A) = {I(r, A): re R)

we obtain a 1 — 1 correspondence between the elements AezX and
the elements I(A) € 2. Let us now consider an arbitrary subset 3 =
{I(A: Ae &} (¥ crnX)of Qand any I(s, B)e .27". Then I(s, B)D Ner L(7,,
A) # & holds for some family {I(r, A,): te T} with all 4,¢.&” iff
Bcelu .. Indeed, if B¢ elU & and fe€ N,ep I(r, 4,) holds with
all 4,¢.9”, then either f ¢ I(s, B) or any function g such that g(z) =
sV f(®) (s > s) when e X\clU,.r A, and which agrees with f on
clU:.r A4, satisfies ge N, I(r, 4,) and g¢ I(s, B); and if Bcely.&”
holds then I(s, B) > N {I(s, A): Ae.&”} #+ @ clearly holds. We conclude
that % is closed in Q iff it is the image of some closed set & c X
under the mapping A — I(A). Hence 2 is homeomorphic to #X. That
the topological space 2 is determined by the lattice L, is clear from
the corollary to Lemma 5 and the definition of closed sets in ©2: only
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the lattice structure of L, is used to define it.

COROLLARY 7. If X is a pe-space, then X is homeomorphic to 2(Ly)
and s therefore determined by the lattice structure of Liz(X).

This follows at once in view of Theorem 6 and the known fact 1(b).

Remarks on the lattice Ly;(X). We will now turn our attention
to the sublattice L, (X) of Lp(X). The results proved above for L,(X)
all remain valid if L, is substituted for L, and some minor adaptations
are made, the most important of which is to restrict the variable »
in the ideals I (r, A) to the interval 0 < » < 1. As a matter of fact, the
theory for L,(X) can be simplified by using prime elements (i.e. those
g€ Ly such that g <1 and g =u A v only if g =u or g = v) rather
than closed prime ideals. This will be clear from the following fact.

ProrosiTION 8.

(@) ge Ly is prime iff g is of the form e,, where e, (¥) = r when
xe A and e, (x) =1 when xe X\4A 0 <r <1 and Aec ).

(b) Ewvery closed prime ideal in L, is of the form {f: f £ e,.}.

The proof is very much like that of Proposition 3 and is therefore
omitted.

By using equivalence classes of primes in L, one can now prove
as for L, that the lattice L, determines a topological space (L)
which is homeomorphic to #X and hence to X whenever X is a pc-space.

We now consider some properties of L, which are not included
in the theory presented for Lg.

ProposiTION 9.

(a) The lattices Ly(X) and Ly,(tX) are isomorphic.

(b) Fora given X the lattices L(X) and € (X) determine each other.

(¢) If X is a T,-space, then it is determined as such by the
lattice Lz (X).

Proofs. (a) The mapping f — f* (see 1(c)) is easily seen to be
an isomorphism of L,(X) onto L,(nX).

(b) If the lattice Ly(X) (resp. (X)) is known then 7 X is known
and thus also the lattice 2 #X) = & (X) (resp. L,(nX) = L,(X)).

(¢) The lattice L,(X) determines the lattice %= (X) which deter-
mines X as a Tp-space.

Let us give an example to show that 9(a) is not valid for L (X).
If X is the subspace (0, 1) of R;, then 7X is the subspace (0, 1] of R;.
In the case of both X and nX there is just one maximal irreducible
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set namely the whole space. Thus the quasi-minimal ideals in both
L,(X) and L,(zX) are the principal ideals {f: f < r} of the constant
funetions (see Lemma 4(a)). Now every f in L (xX) attains a maximum
value f(1) and so every fe€ L,(wrX) belongs to some quasi-minimal
ideal. This cannot hold for L.(X) which clearly contains functions
unbounded above. The two lattices are therefore not isomorphic.
There is in fact a class wider than the pc-spaces such that the
lattice L(X) determines X whenever X belongs to this class. This
will be discussed in a later paper. L. D. Nel and R. G. Wilson, Epi-
reflections in the category of T,-spaces (to appear in Fund. Math.).

Remarks on the lattice L;(X). The method used above to prove
that the lattices Lp(X) and L;(X) determine pc-spaces cannot be
applied to L,(X). Theorem 2, Propositions 3 and 8 remain valid for
L, (X) but Lemma 4(a) fails (and therefore all further results based
on it). It fails because in the case of L,(X) there are two types of
quasi-minimal ideals, namely those of the form I(0, A) for non-maximal
Ac 57 and those of the form I(r, A) for 0 < » < 1 and maximal Ae
7. There appears to be no lattice theoretic method of distinguishing
between these types.

It seems plausible nevertheless that L,(X) should determine X
whenever it is a pc-space. A settlement of this open question should
be interesting.

REFERENCES

1. Garret Birkhoff, Lattice Theory, Amer. Math. Soe., Colloquium Publications 25, Pro-
vidence, 1967.

2. T. Blanksma, Lattice characterizations of topologies and compactifications, Doctoral
dissertation, Rijks universiteit te Utrecht, 1968.

3. W. J. Thron, Lattice-equivalence of topological spaces, Duke Math. J., 29 (1962),
671-679.

Received February 11, 1971. This research was supported partly by the National
Research Council of Canada (grant A5297).

CARLETON UNIVERSITY, CANADA






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California 943056 University of Southern California

Los Angeles, California 90007
C.R. HoBBY RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E.F. BECKENBACH B.H. NEUMANN F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO

MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH

UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY

NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON

OREGON STATE UNIVERSITY * * *

UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two
must be capable of being used separately as a synopsis of the entire paper. The editorial
“we” must not be used in the synopsis, and items of the bibliography should not be cited
there unless absolutely necessary, in which case they must be identified by author and Journal,
rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of
the four editors. Please classify according to the scheme of Math. Rev. Index. to Vol. 39. All
other communications to the editors should be addressed to the managing editor, Richard Arens,
University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the
price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to
individual faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available,

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270,
3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.



Pacific Journal of Mathematics

Vol. 40, No. 3 November, 1972

Wazir Husan Abdi, A quasi-Kummer function .................c.cccouunnn. 521
Vasily Cateforis, Minimal injective cogenerators for the class of modules of

zero singular submodule. . ....... ... . ... . . . . . 527
W. Wistar (William) Comfort and Anthony Wood Hager, Cardinality of

k-complete Boolean algebras ........... ... i, 541
Richard Brian Darst and Gene Allen DeBoth, Norm convergence of

martingales of Radon-Nikodym derivatives given a o-lattice . .. ....... 547
M. Edelstein and Anthony Charles Thompson, Some results on nearest

points and support properties of CONVex SetS i Co .....o.ooveeeeueeen... 553
Richard Goodrick, Two bridge knots are alternating knots . ................ 561
Jean-Pierre Gossez and Enrique José Lami Dozo, Some geometric properties

related to the fixed point theory for nonexpansive mappings ........... 565
Dang Xuan Hong, Covering relations among lattice varieties . ............. 575
Carl Groos Jockusch, Jr. and Robert Irving Soare, Degrees of members of H(l)

CLASSES .o o e 605
Leroy Milton Kelly and R. Rottenberg, Simple points in pseudoline

ATTANGEIMENLS « . o oottt et e et e e e e e e ettt e 617

Joe Eckley Kirk, Jr., The uniformizing function for a class of Riemann
SUFTACES e

Glenn Richard Luecke, Operators satisfying condition (G
T. S. Motzkin, On L(S)-tuples and [-pairs of matrices . . ..

Charles Estep Murley, The classification of certain classes
Abelian groups . ........... i

Louis D. Nel, Lattices of lower semi-continuous functions
topological spaces ....................cciiiiii...

David Emroy Penney, 11, Establishing isomorphism betwe
knotsin E3. .. . ... .

Daniel Rider, Functions which operate on ¥L,(T), 1 <
Thomas Stephen Shores, Injective modules over duo rings
Stephen Simons, A convergence theorem with boundary . .

Stephen Simons, Maximinimax, minimax, and antiminima
result of R. C. James .............ccouiiiiieennnnnn,
Stephen Simons, On Ptak’s combinatorial lemma . . ... ...
Stuart A. Steinberg, Finitely-valued f-modules..........
Pui-kei Wong, Integral inequalities of Wirtinger-type and
elliptic differential inequalities . ...................

Yen-Yi Wu, Completions of Boolean algebras with partial
OPEFATOTS « . v ittt e et et e et

Phillip Lee Zenor, On spaces with regular G s-diagonals . |


http://dx.doi.org/10.2140/pjm.1972.40.521
http://dx.doi.org/10.2140/pjm.1972.40.527
http://dx.doi.org/10.2140/pjm.1972.40.527
http://dx.doi.org/10.2140/pjm.1972.40.541
http://dx.doi.org/10.2140/pjm.1972.40.541
http://dx.doi.org/10.2140/pjm.1972.40.547
http://dx.doi.org/10.2140/pjm.1972.40.547
http://dx.doi.org/10.2140/pjm.1972.40.553
http://dx.doi.org/10.2140/pjm.1972.40.553
http://dx.doi.org/10.2140/pjm.1972.40.561
http://dx.doi.org/10.2140/pjm.1972.40.565
http://dx.doi.org/10.2140/pjm.1972.40.565
http://dx.doi.org/10.2140/pjm.1972.40.575
http://dx.doi.org/10.2140/pjm.1972.40.605
http://dx.doi.org/10.2140/pjm.1972.40.605
http://dx.doi.org/10.2140/pjm.1972.40.617
http://dx.doi.org/10.2140/pjm.1972.40.617
http://dx.doi.org/10.2140/pjm.1972.40.623
http://dx.doi.org/10.2140/pjm.1972.40.623
http://dx.doi.org/10.2140/pjm.1972.40.629
http://dx.doi.org/10.2140/pjm.1972.40.639
http://dx.doi.org/10.2140/pjm.1972.40.647
http://dx.doi.org/10.2140/pjm.1972.40.647
http://dx.doi.org/10.2140/pjm.1972.40.675
http://dx.doi.org/10.2140/pjm.1972.40.675
http://dx.doi.org/10.2140/pjm.1972.40.681
http://dx.doi.org/10.2140/pjm.1972.40.695
http://dx.doi.org/10.2140/pjm.1972.40.703
http://dx.doi.org/10.2140/pjm.1972.40.709
http://dx.doi.org/10.2140/pjm.1972.40.709
http://dx.doi.org/10.2140/pjm.1972.40.719
http://dx.doi.org/10.2140/pjm.1972.40.723
http://dx.doi.org/10.2140/pjm.1972.40.739
http://dx.doi.org/10.2140/pjm.1972.40.739
http://dx.doi.org/10.2140/pjm.1972.40.753
http://dx.doi.org/10.2140/pjm.1972.40.753
http://dx.doi.org/10.2140/pjm.1972.40.759

	
	
	

