FUNCTIONS WHICH OPERATE ON $\mathcal{F}L_p(T), 1 < p < 2$

DANIEL RIDER
FUNCTIONS WHICH OPERATE ON $\mathcal{F}L_p(T)$, $1 < p < 2$

DANIEL RIDER

$\mathcal{F}L_p(T)$ is the algebra of Fourier transforms of functions in L_p of the circle. It is shown that if F is defined on the plane and the composition $F \circ \phi \in \mathcal{F}L_1$ whenever $\phi \in \mathcal{F}L_p$ then for all $\varepsilon > 0, F(z) = P(z, z) + O(|z|^{1/2-\varepsilon})$ where P is a polynomial in z and \bar{z} and $p^{-1} + q^{-1} = 1$ ($1 < p < 2$).

1. Introduction. Throughout, $L_p = L_p(T)$ will denote the usual space of functions on T, the unit circle, normed by

$$||f||_p = \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(e^{it})|^p dt \right\}^{1/p}.$$

For $f \in L_1$ the Fourier transform is given by

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-int} f(e^{it}) dt \quad (n = 0, \pm 1, \pm 2, \ldots).$$

$\mathcal{F}L_q$ is the algebra of Fourier transforms of functions in L_q for $q \geq 1$ and $\mathcal{F}C$ is the algebra of transforms of the continuous functions.

Let F be a complex function defined on the plane. F is said to operate from $\mathcal{F}L_q$ to $\mathcal{F}L_r$ provided the composition $F \circ \phi$ belongs to $\mathcal{F}L_r$ whenever $\phi \in \mathcal{F}L_p$.

We shall write $F(z) = O(G(z))$ to mean $F(z)/G(z)$ is bounded near the origin. It is an immediate consequence of Parseval's theorem that F operates from $\mathcal{F}L_q$ to $\mathcal{F}L_q$ if and only if $F(z) = O(z)$. On the other hand it was shown by Helson and Kahane [2] that F operates from $\mathcal{F}L_1$ to $\mathcal{F}L_1$ if and only if F is real analytic in a neighbourhood of the origin and, of course, $F(0) = 0$ (cf. [6, chapter 6]).

For $2 < q \leq \infty$ it was shown by the author [3] that the functions operating from $\mathcal{F}L_q$ to $\mathcal{F}L_q$ and from $\mathcal{F}C$ to $\mathcal{F}L_q$ are the same and combine the types of behavior of the examples above. We state the result for completeness.

Theorem 1.1. Let $2 < q \leq \infty$ and $p^{-1} + q^{-1} = 1$. The following are equivalent.

(a) F operates from $\mathcal{F}L_q$ to $\mathcal{F}L_q$.

(b) F operates from $\mathcal{F}C$ to $\mathcal{F}L_q$.

(c) $F(z) = c_1 z + c_2 \bar{z} + O(|z|^{3/2}).$

Half of the Hausdorff-Young theorem [8, Theorem 2.3 ii] was used to show that (c) implies (a) in the above. In fact, it is not difficult to see that F operates from $\mathcal{F}L_q$ to $\mathcal{F}L_q$ if and only if $F(z) =$
The other half of the Hausdorff-Young theorem [8, Theorem 2.3 i] shows that if $1 < p < 2$, $p^{-1} + q^{-1} = 1$ and $F(z) = O(|z|^{\beta})$, then F operates from $\mathcal{F}L_p$ to $\mathcal{F}L_q$. It is also easy to see that this is a necessary condition. Since polynomials operate from $\mathcal{F}L_p$ to $\mathcal{F}L_q$, we then have

Theorem 1.2. Let $1 < p < 2$ and $p^{-1} + q^{-1} = 1$. If $F(z) = P(z, \overline{z}) + O(|z|^{\frac{q}{2}})$, where P is a polynomial in z and \overline{z} ($P(0) = 0$), then F operates from $\mathcal{F}L_p$ to $\mathcal{F}L_q$ and thus also from $\mathcal{F}L_p$ to $\mathcal{F}L_q$.

We can assume the polynomial P has order less than $q/2$, for higher order terms can be absorbed into $O(|z|^{\frac{q}{2}})$.

The main result of this paper is the following partial converse to Theorem 1.2.

Theorem 1.3. Let $1 < p < 2$ and $p^{-1} + q^{-1} = 1$. If F operates from $\mathcal{F}L_p$ to $\mathcal{F}L_q$, then, for all $\varepsilon > 0$,

\begin{equation}
F(z) = P(z, \overline{z}) + O(|z|^{\beta - \varepsilon})
\end{equation}

where P is a polynomial in z and \overline{z}.

I have not been able to remove the ε in (1.4). In fact, I have not been able to show whether or not $z^{\frac{q}{2}} \log |z|$ operates from $\mathcal{F}L_p$ to $\mathcal{F}L_q$. However, as a corollary to Theorems 1.2 and 1.3 we can state the following complete result.

Corollary 1.5. Let $1 < p < 2$ and $p^{-1} + q^{-1} = 1$. The following are equivalent.

(a) F operates from $\bigcup_{r>p} \mathcal{F}L_r$ to $\mathcal{F}L_q$.
(b) F operates from $\bigcup_{r>p} \mathcal{F}L_r$ to $\bigcup_{r<p} \mathcal{F}L_r$.
(c) $F(z) = P(z, \overline{z}) + O(|z|^{\beta - \varepsilon})$ for all $\varepsilon > 0$.

The proof of Theorem 1.3 uses a factorization of the Rudin-Shapiro polynomials. The idea is to construct polynomials, P, with few coefficients so that small changes in P cause large changes in the norms of P. This is done in §2.

In §3 these polynomials are used to show that if F operates then, for all complex w, all integers k and certain β,

\begin{equation}
\sum_{j=0}^{k} (-1)^j F((w + j)z) = O(|z|^{\beta})
\end{equation}

Now any polynomial in z and \overline{z} of degree less than k satisfies (1.6). In §4 it is shown that, except for a $O(|z|^{\beta})$ term, these are the only functions which satisfy 1.6, at least if β is not an integer and $F(z) = O(|z|^{\beta})$.

FUNCTIONS WHICH OPERATE ON \(L_p(T), 1 < p < 2 \) O(1). This is then used to obtain a proof of Theorem 1.3.

2. The Rudin-Shapiro polynomials. The Rudin-Shapiro polynomials are defined as follows: let \(P_0(x) = Q_0(x) = 1 \) and define inductively

\[
P_{k+1}(x) = P_k(x) + x^k Q_k(x)
\]
\[
Q_{k+1}(x) = P_k(x) - x^k Q_k(x).
\]

Then

\[
(2.1) \quad P_k(x) = \sum_{\varepsilon(n)} \varepsilon(n)x^n
\]

where \(\varepsilon(n) = \pm 1 \) is independent of \(k \). As shown in [5] and [7],

\[
(2.2) \quad \left| \sum_{n=0}^{N} \varepsilon(n)e^{int} \right| < 5(N + 1)^{1/2} \quad (0 \leq t < 2\pi; N = 1, 2, \cdots).
\]

This definition differs slightly from that given in [5] and [7]. It has also been given by Brillhart and Carlitz [1].

We have the following explicit representation for \(\varepsilon(n) \) (cf. [1] and [4, Lemma 2]).

Lemma 2.3. If \(n \) has a binary expansion

\[
n = \delta_0 + 2\delta_1 + 2^2\delta_2 + \cdots + 2^k\delta_k \quad (\delta_i = 1 \text{ or } 0)
\]

then

\[
\varepsilon(n) = \Pi_{i=1}^{k} (1 - 2\delta_i \delta_{i-1}).
\]

In the following we will factor \(\varepsilon(n) \) in various ways as was done in [4]. Fix positive integers \(N \) and \(k \) and let \(0 \leq n < 2^{Nk+1} \) so that \(n \) has a binary expansion

\[
n = \delta_0 + 2\delta_1 + \cdots + 2^k\delta_N.
\]

Define

\[
(2.4) \quad \rho_j(n) = \Pi_{(j-1)N+1}^{jN} (1 - 2\delta_i \delta_{i-1}) \quad (j = 1, 2, \cdots k).
\]

Note also that \(n \) can be written in a unique way as

\[
(2.5) \quad n = n_1 + n_22^{N+1} + n_32^{N(j-1)}
\]

where
and, by Lemma 2.3, \(\rho_j(n) = \varepsilon(n) \). It also follows from Lemma 2.3 that

\[
\varepsilon(n) = \prod_{j=1}^{k} \rho_j(n) .
\]

Define

\[
R_j(t) = \sum \rho_j(n) e^{int} \quad (j = 1, 2, \ldots, k) ,
\]

the sum being from 0 to \(2^{Nk+1} - 1 \).

The usefulness of the \(R_j \) comes about because if \(S \) is the convolution product \(S = R_1 * R_2 * \cdots * R_k \), then by (2.6)

\[
S = \sum_{n=0}^{2^{Nk+1}-1} \varepsilon(n) e^{int} .
\]

Now, by (2.2), \(\| S \|_\infty \leq 5 \cdot 2^{Nk+1} \) and since \(\| S \|_2 = 2^{(Nk+1)/2} \) it follows that

\[
\frac{1}{5} 2^{(Nk+1)/2} \leq \| S \|_1 \leq \prod_{j=1}^{k} \| R_j \|_1 .
\]

Thus, very roughly, \(\| R_j \|_1 \) must be as large as \(2^{N/2} \). The following shows that \(\| R_j \|_1 \) is not much larger than this.

Proposition 2.8.

\[
\| R_j \|_1 \leq 2^{N/2} N^2 k^2 C
\]

where \(C \) is an absolute constant.

Proof. \(R_j \) can be written

\[
R_j = F_1 F_2 F_3
\]

where

\[
F_1(t) = \sum_{0}^{2^{N(j-1)-1}} e^{int}
\]

\[
F_2(t) = \sum_{0}^{2^{N(k-j)-1}} \exp (in 2^{Nj+1}t)
\]

\[
F_3(t) = \sum_{0}^{2^{N+1}-1} \varepsilon(n) \exp (in 2^{N(j-1)}t) .
\]

To see that (2.9) holds, note that the product \(F_1 F_2 F_3 \) consists of \(2^{Nk+1} \) distinct exponentials between 0 and \(2^{Nk+1} - 1 \). Also the coefficient
of e^{int} where n is given as in (2.5) is $\varepsilon(n_3) = \rho_j(n)$ so that $F_jF_2F_3 = R_j$.

It is not difficult to see that $\|F_jF_2\|_1 \leq Ck^2N^2$ and since, by (2.2), $\|F_j\|_\infty \leq 52^{(N+1)/2}$ the proposition follows.

Proposition 2.10. For $1 < p \leq 2$ and $p^{-1} + q^{-1} = 1$

$$\| R_j \|_p \leq C2^{N(1/p + (k-1)/q)}N^2k^2.$$

Proof. Since $\| R_j \|_2 = 2^{(Nk+1)/2}$ this follows from H"older's inequality and (2.8).

Lemma 2.11. For N and k positive integers there is a decomposition of \{0, 1, 2, \cdots, 2^{Nk+1} - 1\} into $k + 1$ sets A_0, A_1, \cdots, A_k such that if

$$T_{N,k}(t) = \sum_{j=0}^{k} j \sum_{A_j} e^{int}$$

and

$$R_{N,k}(t) = \sum_{j=0}^{k} j^k \sum_{A_j} e^{int}$$

then

(a) $\| T_{N,k} \|_1 \leq C(k)N^22^{N/2}$

(b) $\| T_{N,k} \|_p \leq C(k)N^22^{(Nk+1)/2}N^2k^{k-1}$

(c) $\| S_{N,k} \|_1 \geq C(k)2^{Nk/2}$

(d) $\| R_{N,k} \|_1 \geq C(k)2^{Nk/2}$

(e) $\left\| \sum_{A_j} e^{int} \right\|_1 \geq C(k)2^{Nk/2}$

where the $C(k)$ are (different) positive constants depending only on k.

For $k = 2$ this has been done in [4].

Proof. Define

$$2T_{N,k}(t) = \sum_{i=1}^{k} R_j(t) + \sum_{0}^{2^{Nk+1}-1} e^{int}.$$

Now

$$T_{N,k}(t) = \sum_{0}^{2^{Nk+1}-1} \phi(n)e^{int}$$

where

$$\phi(n) = \sum_{i=1}^{k} \frac{\rho_j(n) + 1}{2}.$$

Since $\rho_j(n) = \pm 1$, $\phi(n)$ assumes only the values $0, 1, \cdots, k$ so that
if \(A_j \) consists of the \(n \) with \(\phi(n) = j \) then \(T_{N,k} \) is as in (2.12). (a) then follows from (2.8) and (b) from (2.10).

Now if \(\phi(n) = j \), then precisely \(k - j \) of the \(\rho_i(n) = -1 \), so that, by (2.6), \(\varepsilon(n) = (-1)^{k-j} \). Hence

\[
S_{N,k}(t) = (-1)^k \sum_{0}^{\phi(n) - 1} \varepsilon(n)e^{i\pi t}
\]

so that (e) follows from (2.7).

Define \(T_{N,k} = \sum_{1}^{N^{k+1-1}} e^{i\pi t} \), and inductively

\[
T_{N,k}^{j+1} = T_{N,k}^j \cdot T_{N,k}.
\]

Then \(\{T_{N,k}^j\} (s = 0, 1, \ldots, k) \) are \(k+1 \) linearly independent polynomials which span the space of polynomials of the form \(\sum_0^k c_j \sum_{A_j} e^{i\pi t} \). In particular,

\[
(2.13) \quad S_{N,k} = \sum_{s=0}^k b_s T_{N,k}^s
\]

where the \(b_s \) depend on \(k \) but not on \(N \).

Now it follows from (a) that

\[
|| T_{N,k}^s \||_1 \leq C(k)N^{2s}2^{N\pi/2} \quad (s = 1, 2, \ldots).
\]

Also

\[
|| T_{N,k}^s \||_1 \leq C(k)N
\]

so that

\[
(2.15) \quad || S_{N,k} \||_1 \leq \sum_{0}^{k} || T_{N,k}^s \||_1 \leq C(k)N^{2(k-1)}2^{N(k-1)/2} + || b_k || \cdot || T_{N,k}^k \||_1.
\]

(d) then follows from (2.15) and (c) since \(T_{N,k}^k = R_{N,k} \). (e) holds for the same reasons since, for each \(j \), \(\sum_{A_j} e^{i\pi t} \) and \(\{T_{N,k}^s\} (s = 0, \ldots, k-1) \) are linearly independent.

REMARK. Because \(T_{N,k}^k = R_{N,k} \) we must have \(|| T_{N,k} \||_1 \geq C(k)2^{N/2} \). It would be useful to know if the \(N^2 \) in (a) can be removed. Also, by the Hausdorff-Young theorem, \(|| T_{N,k} \||_p \geq C(k)2^{N/kq} \). If the right side of (b) could be replaced by \(C(k)2^{N/kq} \), then the \(\varepsilon \) in Theorem 1.3 could be removed.

3. The main lemma. The purpose of this section is to use the polynomials of Lemma 2.11 to prove the following.

Lemma 3.1. Let \(F \) operate from \(\mathcal{L}_p \) to \(\mathcal{L}_q \) \((1 < p \leq 2; p^{-1} + q^{-1} = 1) \). Assume that \(F(z) = O(|z|^\beta) \) for some \(\beta > 0 \). Then for each positive integer \(k \) and each complex \(w \)
FUNCTIONS WHICH OPERATE ON $\mathcal{L}_p(T), 1 < p < 2$

(3.2) $\sum_{c} (-1)^{c} F((w + j)z) = O(|z|^{\beta'})$

where

$$\beta' = \min \left(\beta + \frac{q}{4(k + q)}, \frac{qk}{2(k + q)} \right).$$

Before proving this we need the following lemma. If F operates from \mathcal{L}_p to \mathcal{L}_1 then, for $f \in L_p$, $F \circ f$ will denote the function in L_1 such that $(F \circ f)^\ast(n) = F(f(n))$.

Lemma 3.3. Let F operate from \mathcal{L}_p to \mathcal{L}_1.

(a) There are constants M and $\hat{\delta}$ such that $\|f\|_p < \hat{\delta}$ implies $\|F \circ f\|_1 < M$.

(b) $F(z) = O(z)$.

(c) $F(0) = 0$.

Proof. The proof of (a) is the same as that of Lemma 1 of [3]. By considering Sidon sets, it is easily seen that F must operate from \mathcal{L}_2 to \mathcal{L}_2 and this gives (b). (c) is obvious.

Proof of 3.1. k and w are fixed throughout this proof. If $0 < |z| < 1$, then a positive integer N can be chosen so that

(3.4) $2^{-N((k + \varphi)/q)} \leq |z| < 2^{-(N - 1)((k + \varphi)/q)}$.

Let $T_{N,k}$ be as in Lemma 2.11 and define

$$f(t) = z(T_{N,k}(t) + wT_{N,k}^t(t)).$$

Then by (3.4) and (2.11 (b))

$$\|f\|_p \leq C(k, w)N^22^{-N(1/2+1/q)}.$$

Thus if M and $\hat{\delta}$ are as in Lemma 3.2 and $|z|$ is small enough then $\|f\|_p < \hat{\delta}$ so that

(3.5) $\|F \circ f\|_1 < M$.

Now

$$F \circ f = \sum_c F((w + j)z) \sum_{A_i} e^{int}$$

(3.6) $\sum_c b_c T_{N,k}^c$

where the b_c satisfy
\[F((w + j)z) = \sum_{j=0}^{k} b_j z^j \quad (j = 0, 1, \ldots, k). \]

Solving for the \(b_s \) and using the assumption that \(F(z) = O(|z|^\beta) \) gives that, for \(|z| \) small enough,

\[|b_s| \leq C(k) |z|^\beta \quad (s = 0, 1, \ldots) \]

and

\[
\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 & F(wz) \\
1 & 1 & 1 & \cdots & 1 & F((w + 1)z) \\
1 & 2 & 2^2 & \cdots & 2^{k-1} & F((w + 2)z) \\
1 & 3 & 3^2 & \cdots & 3^{k-1} & F((w + 3)z) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & k & k^2 & \cdots & k^{k-1} & F((w + k)z)
\end{pmatrix}
\]

\[b_k = \frac{\det}{F(wz)} = A(k) \sum_{i=0}^{k} (-1)^i \binom{k}{i} F((w + j)z) \]

where \(A(k) \neq 0 \) is independent of \(z \). Now by (3.5) and (3.6)

\[|b_k| \leq T_{N,k}^* \leq M + \sum_{i=0}^{k-1} |b_i| \leq T_{N,k}^*. \]

Lemma 2.11d, (2.14), (3.7), (3.8) and (3.9) then give, if \(|z| \) is small enough,

\[|\sum_{i=0}^{k} (-1)^i \binom{k}{i} F((w + j)z)| \leq C(k) \left\{ \frac{M}{2^{Nk^2}} + \frac{|z|^\beta N^{2(k-1)}}{2^{N^2}} \right\} \]

\[\leq C(k) \left\{ \frac{M}{2^{Nk^2}} + \frac{|z|^\beta}{2^{N^2}} \right\}. \]

By (3.4) the right side of (3.10) is bounded by

\[C(k)\{M |z|^{k/(2(k+q))} + |z|^\beta} \}

and this gives (3.2).

4. Proof of Theorem 1.3. We can now prove Theorem 1.3 provided we have the following theorem.
THEOREM 4.1. Suppose F is bounded near the origin and for some positive integer k and each complex w, F satisfies

\[(4.2) \sum_{0}^{k} (-1)^{\binom{k}{j}} F((w + j)z) = O(|z|^\beta)\]

where $\beta > 0$ and is not an integer. Then

$$F(z) = P(z, \bar{z}) + H(z)$$

where P is a polynomial in z and \bar{z} of degree less than k,

$$H(z) = O(|z|^\beta) \text{ and } H(0) = 0.$$

REMARKS. Since $\beta > 0$ and $H(0) = 0$ it follows that H and thus also F is continuous at 0. F need not be continuous anywhere else.

The theorem is false if β is an integer as can be seen by letting $\beta = 1$, $k = 2$ and $F(z) = z \log |z|$ for all $z \neq 0$.

It is also false if $F(z) \neq O(1)$. For there are functions defined on the plane which are unbounded near the origin and satisfy $F(z + w) = F(z) + F(w)$ for all z and w. The left side of (4.2) is then 0 for all $k > 1$. Being unbounded F cannot satisfy the conclusion of the theorem.

Proof of 1.3. F operates from $\mathcal{F}L_p$ to $\mathcal{F}L_1$ where $1 < p < 2$. There is a positive integer r such that $r < q/2 \leq r + 1$. We will prove the theorem by induction on r.

First, we can assume that

\[(4.3) \quad F(z) = O(|z|^{-\delta}) \quad \text{ for all } \delta > 0.\]

For if $r = 1$ then, by Lemma 3.3b, (4.3) holds even with $\delta = 0$. On the other hand, suppose $r > 1$ and the theorem holds when $r - 1 < q'/2 \leq r$. Since F operates from $\mathcal{F}L_p$ to $\mathcal{F}L_1$, it operates from $\mathcal{F}L_s$ to $\mathcal{F}L_1$ where $s^{-1} + (2r)^{-1} = 1$. Thus $F(z) = P(z, \bar{z}) + O(|z|^{-\delta})$ for all $\epsilon > 0$. Since polynomials operate we can assume $p = 0$, that is (4.3).

Next choose k so large and then δ so small that $\beta' = \min (r - \delta + q/4(k + q), q/2(k + q)) > r$ and also so that β' is not an integer. Then by (4.3), Lemma 3.1 and Theorem 4.1

$$F(z) = P(z, \bar{z}) + O(|z|^\beta).$$

Thus, by subtracting another polynomial from F, we can assume

\[(4.4) \quad F(z) = O(|z|^\beta') \quad \text{ for some } \beta' > r.\]

Finally, let $\gamma = \sup \beta'$ such that (4.4) holds. If $\gamma < q/2$ then we
can choose \(k \) so large and then \(r < \beta' < \gamma \) so that

\[
(4.5) \quad \beta'' = \min \left(\beta' + \frac{q}{4(k + q)}, \frac{qk}{2(k + q)} \right) > \gamma
\]

and \(\beta'' \) is not an integer.

Then by Lemma 3.1 and Theorem 4.1 again

\[
F(z) = P(z, \bar{z}) + O(|z|^\beta').
\]

Since \(F(z) = O(|z|^\beta') \) and \(r < \beta' < \beta'' < r + 1 \) we must have \(P(z, \bar{z}) = O(|z|^\beta'') \) so that \(F(z) = O(|z|^\beta') \). Since \(\beta'' > \gamma \) this is a contradiction. Thus (4.4) holds for all \(\beta' < q/2 \) and this completes the proof of the theorem.

It now remains to give a proof of Theorem 4.1.

Lemma 4.6. Suppose \(F \), defined on the plane—\(\{0\} \), satisfies

\[
F(qz) - q^s F(z) = O(|z|^\beta)
\]

where \(q > 1 \).

(a) If \(F = O(1) \) and \(s > \beta > 0 \), then \(F(z) = O(|z|^\beta) \).

(b) If \(\beta > s > 0 \) then \(F(z) = K(z) + O(|z|^\beta) \) where \(K(qz) = q^s K(z) \).

If also \(F(z) = O(1) \) then \(K(s) = O(|z|^s) \).

The proof of (a) is simple and that of (b) is the same as the proof of Lemma 3 of [3].

Lemma 4.7. Suppose \(F \) is bounded near the origin and, for some positive integer \(k \) and each nonnegative integer \(p \), \(F \) satisfies

\[
(4.8) \quad \sum_{j=0}^{k} (-1)^j \binom{k}{j} F((p + j)z) = O(|z|^\beta)
\]

where \(\beta > 0 \) and \(\beta \) is not an integer. Then

\[
(4.9) \quad F(z) = F(0) + \sum_{j=1}^{k-1} F_j(z) + O(|z|^\beta)
\]

where

\[
(4.10) \quad F_j(qz) = q^j F_j(z)
\]

for all positive integers \(q \) and \(F_j(z) = O(|z|^j) \).

Note that it follows from the conclusion that \(F \) is continuous at 0.

Proof. The lemma is clear if \(k = 1 \), so assume \(k > 1 \) and the lemma holds for \(k - 1 \). Fix \(q > 1 \), an integer and for a nonnegative integer \(p \) consider the polynomial
FUNCTIONS WHICH OPERATE ON $L_p(T)$, $1 < p < 2$

$S(\lambda) = \sum_{0}^{k-1} (-1)^i(\lambda_{p+j}^p - q^{k-1}\lambda_{p+j})$.

Now S has a zero of order k at 1 and thus can be written

$S(\lambda) = (1 - \lambda)^k \sum_{0}^{b} a_{j} \lambda^j \quad (b = (p + k - 1)q - k)$

$= \sum_{0}^{b} a_{j} \sum_{0}^{k} (-1)^i \lambda_{p+j}^i$.

By comparing the coefficients of λ^n in the two forms of S it is seen that for any function F

$\sum_{0}^{k-1} (-1)^i(\lambda^i)F((p+j)qz) - q^{k-1}F((p+j)z) = \sum_{0}^{b} a_{j} \sum_{0}^{k} (-1)^i \lambda F((s+j)z)$.

Thus if F satisfies the hypotheses of the lemma for k then the function $T(z) = F(qz) - q^{k-1}F(z)$ satisfies them for $k - 1$. Thus

$T(z) = T(0) + \sum_{1}^{k-2} T_{j}(z) + O(|z|^\beta)$

where the T_{j} satisfy (4.10). Let

$(4.11) \quad H(z) = F(z) - F(0) - \sum_{0}^{k-1} T_{j}(z) - q^{k-1}.$

Then $H(qz) - q^{k-1}H(z) = O(|z|^\beta)$. Since β is not an integer and $H(z) = O(1)$ one of the two cases of Lemma 4.6 holds so that H can be written

$H(z) = K(z) + O(|z|^\beta)$

where $K(qz) = q^{k-1}K(z)$ and $K(z) = O(|z^{k-1}|)$. If $\beta < k - 1$ then we can assume $K = 0$ and by using any q, (4.11) gives the desired form for F. If $\beta > k - 1$, then it is easily seen that $F_{j} = T_{j}/(q^{i} - q^{k-1})$ and $F_{k-1} = K$ are independent of the choice of q. All the F_{j} then satisfy (4.10), and by (4.11), F is given by (4.9).

Proof of Theorem 4.1. We have that for each complex w

$(4.12) \quad \sum_{0}^{k} (-1)^i(\lambda^i)F((w+j)z) = O(|z|^\beta)$.

Because of the previous lemma we need only consider functions of the form

$F(z) = F(0) + \sum_{1}^{k-1} F_{s}(z)$

where the F_{s} satisfy (4.10) and $F_{s} = 0$ if $s > \beta$. Also since constant functions satisfy (4.12) we can assume $F(0) = 0$. If $\beta < 1$ there is
nothing left to prove so assume $\beta > 1$.

Now by (4.10) and (4.12), for each positive integer q,

$$\sum_{j=0}^{k-1} q^j \sum_{w=0}^{k-1} (-1)^j F_s((w + j)z) = q \sum_{j=0}^{k-1} (-1)^j F((w + j)z/q) = qO\left(\frac{|z|^\beta}{q^\beta}\right).$$

Fixing z and letting $q \to \infty$ then gives

$$\sum_{j=0}^{k-1} (-1)^j F_i((w + j)z) = 0$$

so that

$$\sum_{j=0}^{k-1} (-1)^j F_i(w + jz) = 0 \quad \text{(4.13)}$$

for all z and w. Similarly (4.13) holds for $F_2, F_3, \ldots, F_{k-1}$. Then, for each complex w, the function $H(z) = F_s(w + z)$ satisfies the hypotheses of Lemma 4.7, but this implies that H is continuous at 0 so that F_s is continuous everywhere and $F_s(xz) = x^s F_s(z)$ for all $x \geq 0$. Finally, for each integer n,

$$K_n(z) = \int_0^{2\pi} F_s(ze^{it}) e^{-i nt} dt$$

satisfies (4.13) and for $x \geq 0$

$$K_n(xe^{it}) = x^s e^{i nt} K_n(1).$$

It can be easily seen directly that $K_n(1)$ must be zero unless $s + n$ is even and $|n| \leq s$ which implies $F_s(z) = \sum c_r z^{2r-s}$ and this completes the proof of the theorem.

REFERENCES

Received October 26, 1970. This research was supported in part by NSF Grant GP-24182. The author is a fellow of the Alfred P. Sloan Foundation.
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMUELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

C. R. HOBBY
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index. to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
Wazir Husan Abdi, *A quasi-Kummer function* .. 521
Vasily Cateforis, *Minimal injective cogenerators for the class of modules of zero singular submodule* .. 527
W. Wistar (William) Comfort and Anthony Wood Hager, *Cardinality of k-complete Boolean algebras* .. 541
Richard Brian Darst and Gene Allen DeBoth, *Norm convergence of martingales of Radon-Nikodym derivatives given a σ-lattice* 547
M. Edelstein and Anthony Charles Thompson, *Some results on nearest points and support properties of convex sets in c₀* 553
Richard Goodrick, *Two bridge knots are alternating knots* 561
Jean-Pierre Gossez and Enrique José Lami Dozo, *Some geometric properties related to the fixed point theory for nonexpansive mappings* 565
Dang Xuan Hong, *Covering relations among lattice varieties* 575
Carl Groos Jockusch, Jr. and Robert Irving Soare, *Degrees of members of \(\Pi^0_1 \) classes* .. 605
Leroy Milton Kelly and R. Rottenberg, *Simple points in pseudoline arrangements* .. 617
Joe Eckley Kirk, Jr., *The uniformizing function for a class of Riemann surfaces* .. 623
Glenn Richard Luecke, *Operators satisfying condition (G₁) locally* 629
T. S. Motzkin, *On L(S)-tuples and l-pairs of matrices* .. 639
Charles Estep Murley, *The classification of certain classes of torsion free Abelian groups* .. 647
Louis D. Nel, *Lattices of lower semi-continuous functions and associated topological spaces* .. 667
David Emroy Penney, II, *Establishing isomorphism between tame prime knots in \(E^3 \)* .. 675
Daniel Rider, *Functions which operate on \(\mathcal{F}L_p(T) \), \(1 < p < 2 \)* 681
Thomas Stephen Shores, *Injective modules over duo rings* 695
Stephen Simons, *A convergence theorem with boundary* 703
Stephen Simons, *Maximinmax, minimax, and antiminimax theorems and a result of R. C. James* .. 709
Stephen Simons, *On Ptak’s combinatorial lemma* ... 719
Stuart A. Steinberg, *Finitely-valued f-modules* .. 723
Pui-kei Wong, *Integral inequalities of Wirtinger-type and fourth-order elliptic differential inequalities* .. 739
Yen-Yi Wu, *Completions of Boolean algebras with partially additive operators* .. 753
Phillip Lee Zenor, *On spaces with regular \(G_δ \)-diagonals* 759