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F L,(T) is the algebra of Fourier transforms of func-
tions in L, of the circle. It is shown that if F is defined on
the plane and the composition Fo¢ € & L; whenever € &Z L,
then for all ¢ > 0, F(z) = P(z,%2) + O(|z|¥?%) where P is a
polynomial in z and Z and p* 4+ ¢ =1 A <p < 2).

1. Introduction. Throughout, L, = L(T) will denote the usual
space of functions on T, the unit circle, normed by

171l = {5 | e patf

For fe L, the Fourier transform is given by

Fy = =

e~ fle)dt (n=0, %1 +£2, +..).

& L, is the algebra of Fourier transforms of funections in L,(p = 1)
and & C is the algebra of transforms of the continuous functions.

Let F be a complex function defined on the plane. F' is said to
operate from F# L, to # L, provided the composition Fog belongs to
& L, whenever ¢c & L,.

We shall write F(z) = O(G(2)) to mean F(z)/G(z) is bounded near
the origin. It is an immediate consequence of Parseval’s theorem that
F operates from & L, to & L, if and only if F(z) = O(z). On the
other hand it was shown by Helson and Kahane [2] that F' operates
from & L, to & L, if and only if F is real analytic in a neighbour-
hood of the origin and, of course, F(0) = 0 (cf. [6, chapter 6]).

For 2 < q £ « it was shown by the author [3] that the functions
operating from & L, to & L, and from &# C to % L, are the same
and combine the types of behavior of the examples above. We state
the result for completeness.

THEOREM 1.1. Let 2 << q < o and p + ¢ ' =1. The following
are equivalent.

(a) F operates from & L, to & L,.

(b) F operates from & C to & L,

(¢) F(z) =cz+ ez + O z["7).

Half of the Hausdorff-Young theorem [8, Thorem 2.3 ii] was used
to show that (c) implies (a) in the above. In fact, it is not difficult
to see that F operates from & L, to & L, if and only if F(z) =
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O( z["'7).

The other half of the Hausdorff-Young theorem [8, Theorem 2.3 i]
shows that if 1<p<2 p*'+¢*=1 and F(z) = O(2[*"), then F
operates from & L, to & L,. It is also easy to see that this is a
necessary condition. Since polynomials operate from & L, to & L,
we then have

THEOREM 1.2. Letl<p<2and p™+q'=1. If F(z) = P(z, %)+
O(| z|*®), where P is a polynomial in z and z (P(0) = 0), then F oper-
ates from & L, to & L, and thus also from 5 L, to Z L.

We can assume the polynomial P has order less than ¢/2, for
higher order terms can be absorbed into O(] z|"?).

The main result of this paper is the following partial converse
to Theorem 1.2.

THEOREM 1.8. Let 1 <p <2 and p'+q¢*=1. If F operates
from & L, to & L., then, for all ¢ > 0,

(1.4) F(z) = P(z,2) + O z["*7)
where P is a polynomial in z and Z.

I have not been able to remove the ¢ in (1.4). In fact, I have
not been able to show whether or not 2*log |z | operates from & L,
to & L,. However, as a corollary to Theorems 1.2 and 1.3 we can
state the following complete result.

COROLLARY 1.5, Let 1< p <2 and p* + ¢ = 1. The following
are equivalent.

(a) F operates from U,», & L, to & L,.

(b) F operates from U,>, & L, to U,>p» & L,.

(c) F(2) = P(z,2) + O( z|Y%) for all ¢ > 0.

The proof of Theorem 1.3 uses a factorization of the Rudin-
Shapiro polynomials. The idea is to construct polynomials, P, with
few coefficients so that small changes in P cause large changes in
the norms of P. This is done in § 2.

In §3 these polynomials are used to show that if F operates
then, for all complex w, all integers k& and certain 23,

(16 3 (- DIOF(w + 2 = 0021 -

Now any polynomial in z and Z of degree less than £k satisfies (1.6).
In §4 it is shown that, except for a O(|z|’) term, these are the only
functions which satisfy 1.6, at least if B is not an integer and F(z) =
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O(1). This is then used to obtain a proof of Theorem 1.3.

2. The Rudin-Shapiro polynomials. The Rudin-Shapiro poly-
nomials are defined as follows: let Py(x) = Q) =1 and define in-
ductively

Ppi(x) = Pu®) + 2°Q,(2)
Qni(®) = Pu(x) — @ Qu(@) -

Then
ok—1
2.1) P(x) = OZ e(n)x"
where e(n) = +1 is independent of k. As shown in [5] and [7],

BN 4L (0st<emN=1,2-..).

2.2) |§, e(n)et

This definition differs slightly from that given in [5] and [7]. It
has also been given by Brillhart and Carlitz [1].

We have the following explicit representation for e(n) (cf. [1] and
[4, Lemma 2J).

LemmA 2.3. If n has a binary expansion
N = 0, + 20, + 20, + -+ + 2%, (6; =1 or 0)

then
e(n) = TI (L — 20:.,) -

In the following we will factor ¢(n) in various ways as was done
in [4]. Fix positive integers N and k and let 0 < n < 2¥%*! g0 that
# has a binary expansion

M= 0, + 20, + o+ + 2%%0y;, .

Define

(2.4) omy = I (1—205) (=12 -1).

(§—DN-+1
Note also that n can be written in a unique way as
(2.5) n=mn,+ nZZNJ'H + n32N(j~1)

where
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0< n, < N (j=1)
0 é Ny < 23'():—]‘,
O g ns < 2N+1

and, by Lemma 2.3, 0,(n) = &(n,). It also follows from Lemma 2.3
that

(2.6) () = 11 0,(m) -
Define
Rl(t) = Z Ioj(n)eim (.9 = 1: 2) ) k) ’

the sum being from 0 to 2% — 1.
The usefulness of the R; comes about because if S is the con-
volution product S = R, * R, x --+ x R, then by (2.6)

oNie+1

S = ZO] e(n)e™ .

Now, by (2.2), || S|]. < 5-2"*" and since || S|, = 2¥*+/* it follows that

@.7) Lt < S|l < TR L -

Thus, very roughly, || B;||, must be as large as 2", The following
shows that || R, ||, is not much larger than this.
ProposiTION 2.8.
IR |l = 2"°N°k*C

where C 1s an absolute constant.

Proof. R; can be written
(2.9) .Rj - FngFg

where

N (=1
Py = 5 e
[
oN (le—3)—1

F,(t) = >, exp(in2Y"'t)

oN-+1

Fyt) = >, &(n)exp (in 2¥97Y¢) .

To see that (2.9) holds, note that the product F.F,F, consists of
2N+ distinet exponentials between 0 and 27+ — 1. Also the coefficient



FUNCTIONS WHICH OPERATE ON #Ly(T), 1<p<2 685

of e where n is given as in (2.5) is &(n;)=p;(n) so that F . F,F,=R,.
It is not difficult to see that || F\F;||, =< Ck°N°® and since, by (2.2),
| Fyll. <5277 the proposition follows.

PROPOSITION 2.10. Forl <p=2andp'+qg'=1
” Rj ”p é CzN(1/2+(k—1)/q)Nzkz .
Proof. Since || B; ||, = 2%V this follows from Hélder’s inequality

and (2.8).

LEMMA 2.11. For N and k positive integers there is a decomposi-
tton of {0,1,2, -, 2VE+t — 1} 4nto k + 1 sets A, A,, +--, A, such that
if

k .
Tyu®) = 3153 e

(2.12) .

Rya(t) = 315" 5 6™
and !

k .

SN,k(t) — %“ (___1).7 AZ eznt
then
(a) H Tyl = C(R)N2""E
(b) | Twell, < CR)NZ2V0E+ =00 1<p=2
(c) | Syl = C(k)2v**
(d) [| By.ell, = C(k)2V 2
(e) Ze"’“‘ = C(k)2ver (G=0,1, -+, k)

where the C(k) are (different) positive constants depending only on k.
For & = 2 this has been done in [4].

Proof. Define

oNE+1_

k 2
2T, (1) = zl“ R(t) + k %“ ot .

Now
oNk+1_y

Tyut) = 3 e
where

é(n) :ﬁﬁzﬁ”‘)_+1_,
T 2

Since p;(n) = *+ 1, ¢(n) assumes only the values 0,1, .-+, & so that
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if A; consists of the n with ¢(») =j then T, , is as in (2.12). (a)
then follows from (2.8) and (b) from (2.10).

Now if ¢(n) = 7, then precisely k& — j of the p,(n) = —1, so that,
by (2.6), e(n) = (—1)*%. Hence

oNE+1_y

Syalt) = (=1 3 e(m)e™

so that (c) follows from (2.7).
Define T3, = S2¥"~ ¢, and inductively

f\}Lkl = Tiu* TN,k .

Then {T5,} (s =0,1, -+, k) are k + 1 linearly independent polynomials
which span the space of polynomials of the form Xife; >, ¢™. In
particular,

3
(2'13) Szvxk = % bsTAs',k

where the b, depend on %k but not on N.
Now it follows from (a) that

(2.14) | Tixllh < C(E)N®2V:2 (s=1,2,+-4).
Also
| T ll. = C(k)N
so that
E
St = 221011l T Il
(2.15) °

< C(k)N2<k-1)2N(k~1)/z + ]bk| || T{»k Hl .

(d) then follows from (2.15) and (c¢) since T%, = Ry.. (e) holds for
the same reasons since, for each j, P e and {Ty.} (s=0, -+, k—1)
are linearly independent.

REMARK. Because T, = Ry, we must have || Ty .|, = C(k)2~".
It would be useful to know if the N*? in (a) can be removed. Also,
by the Hausdorff-Young theorem, || Ty.(l, = C(k)2¥*¢. 1f the right
side of (b) could be replaced by C(k)2"*, then the ¢ in Theorem 1.3
could be removed.

3. The main lemma. The purpose of this section is to use the
polynomials of Lemma 2.11 to prove the following.

LemmA 3.1. Let F operate from & L,to F L, (1< p<2;p" +
g ' =1). Assume that F(z) = O(z|°) for some g > 0. Then for each
positive integer k and each complex w
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(3.2) S (- DI F(@w + 9)2) = 0(z7)
where
g =min (6 + 2+ 9 2(k + q)) '

Before proving this we need the following lemma. If F operates
from & L, to 5 L, then, for fe L,, F o f will denote the function in
L, such that (F'o f)"(n) = F(f(w)).

LemmaA 3.3. Let F operate from & L, to & L.

(a) There are constants M and ¢ such that || f|l, <o implies
HFfl, <M.

(b) F(z) = O(z).

(¢) F(0)=0.

Proof. The proof of (a) is the same as that of Lemma 1 of [3].
By considering Sidon sets, is is easily seen that F must operate
from & L, to % L, and this gives (b). (c) is obvious.

Proof of 3.1. k and w are fixed throughout this proof. If 0 <
z] < 1, then a positive integer N can be chosen so that

(3.4) 2TNUHOID L | g | L 2TINTURRDID
Let Ty, be as in Lemma 2.11 and define

J@) = 2{Tyi(®) + wTi.(@)} .
Then by (3.4) and (2.11 (b))

1f 11y < O, w) N2 esio

Thus if M and 6 are as in Lemma 3.2 and |2/ is small enough then
| £, < & so that

(3.5) | Fofll, < M.
Now
Fof =3 F(w+ 52 S, e
(3.6) ’ o
= 02 b,Ts

where the b, satisfy
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Flw +97) = 365" (G =01+, 1) .

Solving for the b, and using the assumption that F'(z) = O(| z|?) gives
that, for |z| small enough,

(3.7 [b,| = C(k) |2 ° (s=0,1,---)
and

100 -..-0 F(wz)
111..-1 F((w + 1))
det 122... 200 F((w + 2)2)
138... 3 F((w + 3)2)
1EkK .- B F((w + k)2)
100 .--0 0
111..-1 1
122... 261 2F

13 8... 3kt 3k

I

(3.8) b,

det

LER - b R

= A 3 (- OF (@ + 2)
where A(k) # 0 is independent of z. Now by (3.5) and (3.6)
(3.9) Bl 1 Tl S M+ 518,111 Tl -

Lemma 2.11d, (2.14), (3.7), (3.8) and (3.9) then give, if |z]| is
small enough,

5 (- OR@w + 99| = Cif 2L ¢ LN

gcw{M“+Eﬁ}

oNk[2 N [4

(3.10)

By (3.4) the right side of (3.10) is bounded by
C(k){M[ 2 qul(2(k+q)) + [z ‘S+q/4(k+q)}

and this gives (3.2).

4, Proof of Theorem 1.3. We can now prove Theorem 1.3
provided we have the following theorem.
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THEOREM 4.1. Suppose F is bounded near the origin and for some
positive integer k and each complex w, F satisfies

“.2) S (O F(@ + §)2) = 0z 1)

where 8 > 0 and is not an integer. Then
F(z) = P(z,z) + H(z)
where P is a polynomial in z and Z of degree less than k,

H(z) = 0(|2|%) and HO) =0 .

REMARKS. Since 8> 0 and H(0) = 0 it follows that H and thus
also F is continuous at 0. F need not be continuous anywhere else.

The theorem is false if g is an integer as can be seen by letting
B=1, k=2 and F(z) = zlog|z| (F(0) = 0).

It is also false if F(z) == O(1). For there are functions defined
on the plane which are unbounded near the origin and satisfy F(z +
w) = F(2) + F(w) for all z and w. The left side of (4.2) is then 0
for all £ > 1. Being unbounded F cannot satisfy the conclusion of

the theorem.

Proof of 1.3. F operates from &# L, to & L, where 1 < p < 2.
There is a positive integer » such that r < g2 =r+ 1. We will
prove the theorem by induction on 7.

First, we can assume that

4.3) F(z) = O(z["°)  for all 5 > 0.

For if » = 1 then, by Lemma 3.38b, (4.3) holds even with ¢ = 0. On
the other hand, suppose > 1 and the theorem holds when » — 1 <
¢'/2 < r. Since F operates from & L, to & L, it operates from
Z L, to # L, where s + (2r)~' = 1. Thus F(z) = P(z,2) + O(|z|)
for all e >0. Since polynomials operate we can assume p =0, that is
4.3).

Next choose k& so large and then & so small that £’ = min (r—
o + q/A(k + q), q/2(k + g)) > r and also so that B’ is not an integer.
Then by (4.3), Lemma 3.1 and Theorem 4.1

F(z) = P(z,2) + O(| ") .
Thus, by subtracting another polynomial from F, we can assume
4.4) F(z) = O(|#2|”) for some B’ > r.
Finally, let v = sup 8’ such that (4.4) holds. If v < ¢/2 then we
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can choose k so large and then » < 8’ < v so that

. k
4.5 " =min( s + q/4(k + ,——i———>>"/
(4.5) 8 (8 + a4 + 0
and g” is not an integer.
Then by Lemma 3.1 and Theorem 4.1 again

F(z) = Pz, 2) + O z]"") .

Since F(z) = O(z]”) and » < 8’ < 8’ <r + 1 we must have P(z, z) =
O(|z|"*") so that F'(z) = O(|z|*'). Since g"” > v this is a contradiction.
Thus (4.4) holds for all B’ < ¢/2 and this completes the proof of the
theorem.

It now remains to give a proof of Theorem 4.1.

LEMMA 4.6. Suppose F, defined on the plane—{0}, satisfies
F(qz) — ¢'F(z) = O(|z])

where q > 1.

(a) If F=0Q) and s > g >0, then F(z) = O(|z%).

(b) If B>s>0 then F(z) = K(z) + O(|2|?) where K(qz) = ¢°K(z).
If also F(z) = OQ) then K(s) = O(lz]%).

The proof of (a) is simple and that of (b) is the same as the
proof of Lemma 3 of [3].

LEMMA 4.7. Suppose F is bounded near the origin and, for some
positive integer k and each nonnegative integer p, F satisfies
k

(4.8) S(=DGOF(p + 52 = 0(z])

4

where B> 0 and B ts not an integer. Then

) F@) = FO) + 5. Fy(2) + 0( 2 1)
where
(4.10) Fi(q?) = ¢°Fy(2)

Sor all positive integers q and F;(2) = O(27)).
Note that it follows from the conclusion that F is continuous at 0.

Proof. The lemma is clear if &t =1, so assume %k > 1 and the
lemma holds for &t — 1. Fix ¢ > 1, an integer and for a nonnegative
integer p consider the polynomial
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S0 = 5 (PO = g
Now S has a zero of order k£ at 1 and thus can be written
S0 = (L —NSap, (b= +k—1g—h
=30, 3 (1

By comparing the coefficients of A" in the two forms of S it is
seen that for any function F'

S (~ DT F(@+9)02) ~ - F(@+92) =3 45 3 (D OF(-+)) .

Thus if F satisfies the hypotheses of the lemma for % then the
function T'(2) = F(qz) — q*'F(z) satisfies them for k¥ — 1. Thus

T@ = T0) + 3 T, + 0|2 1)

where the T; satisfy (4.10). Let

k—1 .

4.11) H) = F@) — FO) - 5 FT_% .

Then H(gz) — ¢*'H(2) = O(|#|?). Since A is not an integer and H(z) =

O(1) one of the two cases of Lemma 4.6 holds so that H can be written
H(z) = K(z) + O(1z]%)

where K(gz) = ¢*'K(z) and K(z) = O(jz**)). If <k — 1 then we
can assume K = 0 and by using any q, (4.11) gives the desired form
for F. If 8>k — 1, then it is easily seen that F; = T,/(¢° — ¢*™*) and
F_, = K are independent of the choice of ¢g. All the F'; then satisfy
(4.10), and by (4.11), F is given by (4.9).

Proof of Theorem 4.1. We have that for each complex w
k
(4.12) ZOI (=GO F(w + 5)2) = 0(|z]°) .

Because of the previous lemma we need only consider functions of
the form

F@) = FO) + S F.@)

where the F, satisfy (4.10) and F, = 0 if s > 8. Also since constant
functions satisfy (4.12) we can assume F(0) =0. If g< 1 there is
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nothing left to prove so assume g > 1.
Now by (4.10) and (4.12), for each positive integer g,

SIS ORI + 92
= 43 (~ DO F(w + feia) = 0(125) .
Fixing z and letting ¢ — o then gives
S (- P + 5)7) = 0
so that
(@.13) S (P F (w + 2) = 0

for all z and w. Similarly (4.13) holds for F%, Fj, +-+, F,_,. Then,
for each complex w, the function H(z) = F(w + z) satisfies the
hypotheses of Lemma 4.7, but this implies that H is continuous at 0
so that F, is continuous everywhere and F,(xz) = »°F,(?) for all v =
0. Finally, for each integer =,

K,(z) = S:”Fs(zeit)e-mdt

satisfies (4.13) and for © = 0
K, (xe") = x¢™ K, (1) .

It can be easily seen directly that K,(1) must be zero unless s + n
is even and |n| < s which implies F,(z) = >5¢,22°" and this com-
pletes the proof of the theorem.
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