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S. SIiMoNs

This paper contains a number of minimax theorems in
various topological and non-topological situations. Probably
the most interesting is the following: if X is a nonempty
bounded convex subset of a real Hausdorff locally convex
space E with dual £’ and each ¢c E’ attains its supremum on
X then

for all nonempty convex equicontinuous Y E’} *
infyey sup <X, > < supsex inf <z, ) )

It is also proved that if (*) is true and X is complete then
X is w(FE, E')-compact. Combining these results, a proof of
a well known result of R. C. James is obtained.

We suppose throughout that X # ¢, Y+ ¢, and f: X x Y—R.
We write . # (X) for {F:¢ « Fc X, F is finite} and define & (Y)
similarly. The maziminimaz inequality is the relation
(1) inf supinf f(z, G) < S}lp inf sup f(F, )
FeJ(X)yeY

GeF(Y) zeX

and the minimax inequality is the relation

(2) infsup f(X, y) < supinf f(z, Y) .
yey reX

The main result of this paper is Theorem 5, which gives some
conditions under which (1) holds. These conditions are completely
non-topological and depend only on the fact that certain functions
attain their suprema on X. We prove Theorem 5 by defining a
“remoteness” relation on the subsets of Y, but we point out that
Theorem 5 can also be proved by first reducing the problem to the
“iterated limits unequal” situation (by using the technique of Remark
8 and then the diagonal process) and then going through the same
steps as in [6], Lemmas 1-7. The approach adopted here embodies a
new type of diagonal argument (Lemmas 2 and 3) which might find
applications elsewhere, and an argument similar to but subtler than
that used in [9], Lemma 2. There is another proof of Theorem 5
that is “frontended” in the sense that we can choose the functions
k., k,, +-+ of Theorem 5 by a purely inductive process without having
first to choose a sequence {y,},-;- The price one pays for the “front-
endedness” is that the induction is more complicated and that is why
we have avoided the alternative approach.
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Remarks 6, 7, and 8 give certain topological conditions under
which (1) holds; the result in Remark 8 uses Theorem 5 and is con-

siderably deeper than the other two.
In Lemma 11 we give some conditions (far from the best, but

adequate for our purposes) under which (2) follows from (1) and thus
derive some minimax Theorems in Theorem 12, Remark 13 and Theo-

rem 14.
Theorem 15 is a converse minimax theorem and leads immediately

to Theorem 16, which contains the result of James referred to in the
title. Those sections of this paper that are needed for Theorem 16
are entitled “Lemma” and “Theorem”, while those not so needed are

entitled “Remark”.

1. A maximinimax theorem with no topology and hardly

any convexity.

NoratioN 1. If Z # ¢ we write S, for “supremum on Z”7. We
write “conv” for “convex hull of”.

LEMMA 2. We suppose that f(X, Y) is bounded and Ae R. If
p+ W Yand ZCY we write W2 Z if there exists he l.(X) such
that, whenever Ge Z (W U 2),

Sy(inf (-, G) — h) — sup inf Sp(f(-,9) —h) > A.
Fesd (X)yeWw
If Y2 Z we write t(Y,, Z) = infyuycyyw.rsup f(-, W) € l.(X).

We suppose that Y,s#Z¢. Then we can choose v, Y, ¥, Y3, «--
such that, for all p = 1,

3, p) Yp€ Yooy and Ly =AYy, *~, Yo}
4,p o0=Y,CY,,YRZ,S:(nf f(-,Z,) —sup f(-, Y,) > 4,

and
for all geconv f(-, Z,)

(5, p) Sy(g — sup f(-, Y)) > Sxlg — U(Y,, Z,)) — % .

Proof. We suppose inductively that p = 1 and that, for all n < p,
¥, and Y, have been chosen so that (3, n), (4, n), and (5, n) are satis-
fied. We choose y,¢c Y,_, arbitrarily and define Z, so that (3, p) is
satisfled. Since Y, #Z,_, and Y,_,U Z, = Y,_, U Z,_, (with the con-
vention that Z, = ¢), it follows that Y, ,.<#Z,. Hence there exists
hel.(X) such that (taking G = Z,e &% (Y,_. U Z,))
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Sx(inf f(-, Z,) — ) —a > 4,

where @ = SUDre »x) infyer, , Se(f(+, ¥) — k). Consequently there exist
z,€ X and 7 > 0 such that

(6) inf f(x, Z,) — h(wy) —a>A+7.

We write W,= {y:ye Yoy, f(@, ¥) — h(x) Sa + 7. If Fe 7 (X)
then F'U {#,} € # (X) hence

inf {S(f(-,9) — BV (f@, ¥) — (@)} = a

yeYp_y
from which inf,., Sz(f(+,y) — h) < a. We have proved that

sup inf Sy(f(-,y) —h) =«

Fes (X)yeW,

and it follows easily from this and Y, ,#Z, that W,2#Z,. We next
choose ¢, +-+, g,cconv f(-, Z,) so that, for all geconv f(-, Z,),
there exists re{l, ---, s} such that S;(lg — ¢.{) < 1/3p. We choose
W, ---, W, in sequence as follows: we choose W,, ¢ = W, W,_, such
that W.2Z, and

1

Sx(g, — sup f(+, W.)) > Sx(9, — W, Z,)) — e

We write Y, = W,. It is immediate that ¢ # Y, Y,_, and Y,<ZZ,.
Further
Sy(inf f(-, Z,) — sup f(+, Y)) = Sx(inf 1 (-, Z,) — sup f(-, W,))

= inf f (%, Z,) — sup f(z,, W)

= inf f(,, Z,) — h(z) —ax — 9> A
from the definition of W, and (6). Hence (4, p) is satisfled. Finally,
if geconv f(-, Z,) we choose rc{l, «--, s} such that S;y(lg — g.]) <
1/3p. Then

Sx(g — sup f(-, Y,)) = Sx(g — sup f(-, W,))
1

> Sx(g. — sup f(-, W,)) — 3

> Si(g, — UWoeyy Z,) — 2=
3p

> Silo — HWoosy Z) — =
VY
= S:(g — (Yo Z) — % :

Hence (5, p) is satisfied and the Lemma is proved by induction.
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LeEMMA 3. We use the notation of Lemma 2 and suppose p = 1.
(@) If {.}.s 15 a subsequence of {Y,}us, then {z,:n = 1} FZ,.
(b) We suppose that gcconv f(-, Z,). Then

S.(g — limsup £(-, y.)) = Se(g — lim inf £(+, ) — L .
n—oo P 0O p

Proof. (@) We write W = {z,:n = 1} and % = lim sup,_.. f(-, 2,).
If Feo (X) then inf,., S,(f(-, ) —h) = inf,o, S,(f(-, 2) — h) =
lim sup,.. Sp(f (-, 2,) —h) = Sp(lim sup,_.. (-, 2,) —h) =8S,(0) =0. On
the other hand if Ge & (W U Z,) then there exists ¢ = p such that
int (-, G) = inf f(-, Z,) and since A = sup,., f(-, ¥.) = sup f(-Y,)

Sy(inf f(+, G) — h) = Sy(inf f(+, Z) — sup f(+, Y;)) > A

from (4, p). It follows that W.<#Z,, as required.
(b) If {#,}.s, is as in (a) then, from (a) and (5, p),

Sy(g — lim sup Sy 4.) = Sx(g — sup f(-, ¥}))

7
(7) sz(g~s7}1;13f(-,zn)) —%.

Now the lim inf of a real sequence is the infimum of the suprema of
all its subsequences (this is the crux of [6], Lemma 2) so, taking the
supremum of the right-hand side of (7) over all subsequences {z,}.s.
of {Yu}usn We get the required result.

LEMMA 4. We use the notation of Lemma 2. If geconv {f(-, y.):
n = 1} then

(8) Sx(g — lim sup Sy ya) = Selg — limj_{{f Sy ) > A

Proof. If p is sufficiently large then gecconv f(-,Z,). The
equality follows from Lemma 3(b) by letting p — <« and the inequality
follows from (4, p).

THEOREM 5. We suppose that f(X, Y) is bounded and, whenever
0< A<l and {k,;:m =1} Cconv f(-, Y) then there exists ke l.(X)
such that liminf, .k, < k < lim sup,_ .k, and >, A7k, — k) attains
its supremum on X. Then (1) holds.

Proof. 1If (1) does not hold then, for an appropriate 4 > 0 (taking
h=0) Y#¢é. From Lemmas 2 and 4, there exists {yon=1CY
such that, whenever geconv{f(-,y):n =1}, (8) holds. For m =1
we write f,, = f(+, ¢,) — limsup,—. f(+, ) and B = sup,», S:(f,). We
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write 6 = A/3 > 0 and choose N > 0,9, ¢, -+ as in [9], Lemma 2.
Proceeding as therein we obtain ([9], relation (3)) for all m =1

(9) Sx( X AM70.) — Sx( 2 A7g) 2 [A — 01 + M.

n=m-—1

For all m =1 there exists k, € conv {f(-, ¥,): » = m} such that g, =
k, — limsup,.. f(+, ¥.). We choose kecl.(X) as in the statement of
the theorem and write ¢, = k, — k. Since liminf, . f(-,%,) <k <
lim sup,-. f (-, ¥.), it follows from (8) that, for all m = 1,

S:(35 V) = S (T V) -

Thus (9) is true with g, replaced by g,. Since >, A"'g, attains its
supremum on X we can continue as in [9], Lemma 2 and find 2 e X
such that, for all m = 1, g,.(x) = A — 26 = A/3, i.e., k,(x) = k(z) + A/3.
This contradicts our assumption that % = liminf,_. k,.

2. Topological conditions implying the maximinimax rela-

tion.

REMARK 6. If X is a compact topological space and, for all ye
Y, f(-, y) is uppersemicontinuous on X then (1) holds.

Proof. If a < inf;. -y, sup,.y inf f(z, G) then, for all Ge & (Y),
Nyec{rz:2e X, f(x, y) = a} # 6. From compactness, [}, {x:2e X,
f(z, ¥) = a} # ¢ hence sup,.yinf f(x, Y) = a. It follows that

inf supinf f(z, G) < supinf f(z, Y)
eX

GeF(Y) xeX z

and so (1) certainly holds.

REMARK 7. If X and Y are countably compact topological spaces
and f is separately continuous then (1) holds.

Proof. If
a < inf supinf f(»,G) and sup inf sup f(F, %) < B
GesF(Y) zeX FeZ (X) yeY

then we can construct inductively {r,:n =21} Cc X and {y:n=1}C Y
such that f(z,, ¥, =<8 when 1 <m <n and f(@,, ¥, = @ when 1 <
n < m. We suppose that z,€ X is a cluster point of {z,},., and y, €
Y is a cluster point of {y,},-.. Then simultaneously f(x,, ¥,) < 8 and
S, ¥) = @, hence @« < 8. Thus (1) holds.

REMARK 8. If X is a pseudocompact topological space, f(X, Y) is
bounded and each sequence from conv f(-, Y) has a continuous cluster
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point in the topology of pointwise convergence on X then (1) is true.

Proof. This is immediate from Theorem 5.

3. Some old and new minimax theorems for concave-convex
functions.

LEMMA 9. We suppose that X is a nonempty convex subset of a
real linear space and a,, <<+, a, are real concave functions on X.
Then there exist Ny, *+y Ay = 0, Ny + ¢+« + A, = 1 such that

Sr(na, + +o0 4 Npy) = Sx(@, A <o A ay) «

Proof. The result is immediate if S;y(@, A <-+ A a,) = o s0 we
suppose that Sey(a, A +-+ A a,) < . If feR™ we write
a(f) = Sgl(a, — f@) A +++ A (@n — f(m))]

« is a well-defined concave function on B™. If fe R™ we write
i _afL ]
st = e — (2]
Then g is a well-defined sublinear functional on B™. From the Hahn-
Banach theorem there exist \,, ++, A\, such that

for all feR™NSF@) + ¢+ + Nuf(m) < B(S) -

For all feR", B(f) = fQ)V -+ V f(m), hence \, +++, 1, =0 and
A+ oo + 2, = 1. Further

Sx(kqaq + e + A‘ma'm)
é Sygg B(ai(y)a ct a’m(y))

< sup [@(0) — a(a,(y), -+, aa(¥))]
a(0) — ymf sup [(a:(@) — a¥) N <+ A (@n(@) — an(y))]
a(0) = Sy(a, A\ <+ A a,) .

11

IA

REMARK 10. The axiom of choice is not used in Lemma 9. (The
Hahn-Banach theorem is used only in R™.) TUsing the axiom of choice
one can prove the following extension: if N = ¢, for all ne N, a, is
a real concave function on X and, for all ze X, a.(x) € l.(N) then there
exists a positive linear functional ¢ on [.(N) such that (1) =1 and
SUpP, e x Ma.(®)) = Sy(@inf,., a,). This is closely related to the following
result: if S is a sublinear functional on a real linear space E and D
is a nonempty convex subset of F then there exists a linear func-
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tional @ on E such that ¢ is dominated by S on E and inf@(D) =
inf S(D). This latter result is discussed in [4], [5], and [8], Theorem

28(d) and Remark 29.
We point out that Lemma 9 can be deduced from known minimax

theorems. On the other hand Lemma 9 generalizes [2], Theorem 6.

LEMMA 11. We suppose that X and Y are nonempty convex sub-
sets of real linear spaces and

10) for all yeY f(-,y) s concave on X,
(11) for all zeX f(x,) ts convex on Y,
then
12) inf supinf f(x, G) = inf sup (X, )
Ge #(Y) zeX yey
and
13) sup infsup f(F, y) = supinf f(z, Y) .
Fe s (X)yeY reX

Proof. If G={y, +++, Yu} € F (Y) then, from (10) and Lemma 9,
there exist A, ¢+, Ny 20, N, + «++ 4+ N, = 1 such that

SXO"lf(” y1) + oo + )‘J'm,f('; y’m)) = xseg’p lnff(my G) .

From (11), if
Y= MY+ *+ + MYn€ Y then sup f(X, y) < supinf f(z, G) .
reX

This establishes “=" in (12) and “<” is trivial. (13) is proved by an
analogous argument. (Compare [1], Theorem 1.)

THEOREM 12. We suppose that X, Y and f satisfy the conditions
of Lemma 11 and Theorem 5. Then (2) holds.

Proof. This is immediate from Theorem 5 and Lemma 11.

REMARK 13. Arguing as above, we can prove easily thatif X, Y
and f satisfy the conditions of Lemma 11 and either Remark 6, 7, or
8 then (2) is satisfied. The first of these results is well known; the
other two do not seem to be.

THEOREM 14. We suppose that E is a real Hausdorf locally con-
vex space with dual E' and that X is a nonempty bounded convex
subset of E. Then (14)=(15)=(16)=(1T7)=(18).
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(14) X is w(F, E'y-compact
(15) There exists Z such that X = conv™ Z and Z is w(k, K')-compact

(16) For all pc E', ¢ attains its supremum on X
(17 { Whenever Y s a nonempty conver equicontinuous subset
of E' then inf,.;, sup<{X, > < sup,.rinfle, Y

Whenever Y 1is a nonempty convex equicontinuous subset
of E' and de Z then inf,.. Sy{d — <z, +>) =0, where Z stands
Jor the closure in R* of Kz, ->rxe X}.

(18)

Proof. It is trivial that (14)=(15) and immediate from the bipolar
theorem that (15)=(16). It follows from Theorem 12 that (16)=(17).
(If {y:m =1} Y and ye £’ is a w(E’, E)-cluster point of {y,},-, then,
for all ze X, liminf, .. <z, ¥, < <{x, ¥> < limsup, .. <z, ¥,». Conse-
quently the conditions of Theorem 5 are satisfied.)

(17)=(18). We suppose that Y, Z and d are as in (18) and 6 > 0.
Since d is bounded and affine on Y we can write Y=Y, uU---UY,
where, for all n=1, ---, m, Y, is nonempty and convex and supd(Y,) —
infd(Y,) <6. From (17) (with Y repiaced by Y,) there exists z,e X
such that

inflx,, Y,> = inf sup<{X, y> — 0

yev,
> infd(Y, — 0 since deZ
=supd(Y,) — 20 from the choice of Y, .

From Lemma 9, there exists x e X such that

Sp(d — <&, -)) = Sp((d — <&y D) N ooo A (d — &y +D))
= sup Sy, (d — <&, -))
< sup [supd(Y,) — inflz,, Y,>] < 20

1=nEm

from the inequalities above. The result follows since 6 >0 is arbitrary.
(18)=(17). We suppose that Y is as in (17) and we define Z as in
(18). We suppose, further, that a < inf,.; sup<{X, y>. If Ge F(Y)
then, from Lemma 9, there exists ye Y such that sup<{X, y> =
sup,. y inf {x, G>, hence sup,., inf {z, G> > a. Consequently
Nid:dez,dy) za} > NKe, Do X, o, ypzaf# O .
ye ye
From Tychonoff’s theorem, Z is compact hence (,.r{d:de Z, d(y) =
a} = @ from which there exists de Z such that infd(Y) = a. (Com-
pare the proof of Remark 6.) From (18)
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0 = inf Sp(d — <z, ->) = in}f (infd(Y) — inf<z, YD)
rzeX ze
= infd(Y) — supinf<lz, Y) = a — supinf<z, ¥
reX relX

i.e.,

a < supinflz, Y.
reX
The result follows since a < inf,., sup<{X, ¥> is arbitrary.

4, A converse minimax theorem, James’s Theorem and Krein’s
theorem.

THEOREM 15. We suppose that E, E' and X are as in Theorem
14 and that X is complete. If (17) is true then X is w(E, E')-compact.

Proof. We suppose that Z, d are as in (18) and we write % for
the family of closed, circled neighborhoods of 0 in E directed by <.
If Ue % then, since (17) = (18), there exists (U)ec X such that
Sy(|d — {p(U), +>|) £ 1/2. (The absolute value can be put in because
d — {y(U), +> is linear on E’ and U° is symmetric.) If U, V, WeZ
and V, W U then 4(V) — (W) e U” = U hence the net 4 is Cauchy
in X. Since X is complete, there exists x e X such that  —2x. We
suppose that ye E’. If UeZ and U°’sy then |d(y) — {y(U), )| <
1/2 and, passing to the limit, |d(y) — <{®, ¥>| < 1/2. By homogeneity,
d =<z, ->e R*. We have proved that <X, > is closed in R” hence,
by Tychonoff’s theorem, X is w(E, E')-compact.

THEOREM 16. We suppose that E, E' and X are as in Theorem
15. Then (14), (15) and (16) are equivalent.

Proof. This is immediate from Theorems 14 and 15. (14) « (15)
is Krein’s Theorem and (14) < (16) is James’s Theorem. (See [3], [6],
and [7].)
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