ON SPACES WITH REGULAR $G_δ$-DIAGONALS

PHILLIP LEE ZENOR
ON SPACES WITH REGULAR $G_δ$-DIAGONALS

PHILLIP ZENOR

It is the purpose of this note to investigate spaces with regular $G_δ$-diagonals. Among other things, it is shown that if X is T_1-space, then 1. X admits a development satisfying the 3-link property if and only if X is a $ωJ$-space with a regular $G_δ$-diagonal and 2. X is metrizable if and only if X is an iF-space with a regular $G_δ$-diagonal.

Recall that a subset H of the space X is a regular $G_δ$-set if there is a sequence $\{U_n\}$ of open sets in X such that $H = \bigcap_{n=1}^{∞} U_i = \bigcap_{r=1}^{∞} U_r$. We will say that X has a regular $G_δ$-diagonal if $ΔX = \{(x, x) : x ∈ X\}$ is a regular $G_δ$-set in X^2.

In [4], Ceder shows that X has a $G_δ$-diagonal if and only if there is a sequence $\{G_n\}$ of open covers of X such that if x is a point of X, then $x = \bigcap_{i=1}^{∞} \text{st}(x, G_i)$. In Theorem 1, we show that there is a similar characterizing property for spaces with regular $G_δ$-diagonals.

Theorem 1. The topological space X has a regular $G_δ$-diagonal if and only if there is a sequence $\{G_n\}$ of open covers of X such that if x and y are distinct points of X, then there are an integer n and open sets u and v containing x and y respectively such that no member of G_n intersects both u and v.

Proof. Suppose that X has a regular $G_δ$-diagonal. Let $\{U_n\}$ be a sequence of open sets in X^2 such that $ΔX = \bigcap_{i=1}^{∞} U_i = \bigcap_{r=1}^{∞} U_r$. For each n, let $G_n = \{g : g$ is an open subset of X such that $g × g ⊆ U_n\}$. Let x and y be distinct points of X. Let n be an integer such that (x, y) is not in U_n. Let u and v be open sets in X that contain x and y respectively such that $u × v$ does not intersect U_n. To see that no member of G_n intersects both u and v, suppose otherwise; that is, suppose that g is a member of G_n, p is a point of g in u and q is a point of g in v. Then (p, q) is a point of $U_n \cap (u × v)$ which is a contradiction.

Now, suppose that $\{G_n\}$ is a sequence of open covers of X as described in the theorem. For each n, let $U_n = \bigcup \{(g × g) : g ∈ G_n\}$. Clearly, $ΔX ⊆ \bigcap_{i=1}^{∞} U_i$. To see that $ΔX = \bigcap_{i=1}^{∞} U_i$, let x and y be distinct points of X. Then there are an integer n and open sets u and v containing x and y respectively such that no member of G_n intersects both u and v. It must be the case that U_n does not intersect $u × v$.

Corollary. If X has a regular $G_δ$-diagonal, then X is Hausdorff.
A development \(\{G_n\} \) for the space \(X \) is said to satisfy the 3-link property if it is true that if \(p \) and \(q \) are distinct points of \(X \), then there is an integer \(n \) such that no member of \(G_n \) intersects both \(\text{st}(x, G_n) \) and \(\text{st}(y, G_n) \) (Heath \[6\]). According to Borges \[3\], the space \(X \) is a \(\omega \Delta \)-space if there is a sequence \(\{U_n\} \) of open covers of \(X \) such that if \(x \) is a point and if, for each \(n \), \(x_n \) is a point of \(\text{st}(x, U_n) \), then the sequence \(\{x_n\} \) has a cluster point. Clearly, the class of \(\omega \Delta \)-spaces includes the class of strict \(p \)-spaces, the class of \(M \)-spaces, and the class of developable spaces. It is easy to see that the Niemytski plane (page 100 of \[11\]) is a non-metrizable Moore space that admits a development satisfying the 3-link property. In \[6\], Heath establishes the existence of Moore spaces that do not admit developments that satisfy the 3-link property. In \[5\], Cook asserts that a continuously semi-metrizable space is a Moore space that admits a development that satisfies the 3-link property. Cook’s result follows as a corollary to the following theorem:

Theorem 2. Let \(X \) be a topological space. Then the following conditions are equivalent:

1. \(X \) admits a development satisfying the 3-link property.
2. \(X \) is a \(\omega \Delta \)-space with a regular \(G_\delta \)-diagonal. And
3. There is a semi-metric \(d \) on \(X \) such that:
 a. If \(\{x_n\} \) and \(\{y_n\} \) are sequences both converging to \(x \), then \(\lim_{n \to \infty} d(x_n, y_n) = 0 \), and
 b. If \(x \) and \(y \) are distinct points of \(X \) and \(\{x_n\} \) and \(\{y_n\} \) are sequences converging to \(x \) and \(y \) respectively, then there are integers \(N \) and \(M \) such that if \(n > N \), then \(d(x_n, y_n) > 1/M \).

Proof. It is obvious that a developable space is a \(\omega \Delta \)-space; thus, that (1) implies (2) is a corollary to Theorem 1.

To see that (2) implies (1), let \(X \) be a \(\omega \Delta \)-space with a regular \(G_\delta \)-diagonal. Let \(\{U_n\} \) be a sequence of open covers of \(X \) as given by the fact that \(X \) is a \(\omega \Delta \)-space. According to Theorem 1, there is a sequence \(\{V_n\} \) of open covers of \(X \) such that if \(p \) and \(q \) are distinct points, then there are an integer \(n \) and open sets \(u \) and \(v \) containing \(p \) and \(q \) respectively such that no member of \(V_n \) intersects both \(u \) and \(v \). For each integer \(n \), let \(G_n \) be an open cover of \(X \) such that (i) \(G_n \) refines both \(U_n \) and \(V_n \) and (ii) \(G_{n+1} \) refines \(G_n \). We will show that \(\{G_n\} \) is a development for \(X \) that satisfies the 3-link property. First, to see that \(\{G_n\} \) is a development, suppose the contrary; that is, suppose that there are a point \(x \) and an open set \(u \) containing \(x \) such that, for each \(n \), there is a point \(p_n \) in \(\text{st}(x, G_n) \) — \(u \). Then, for each \(n \), \(p_n \) is in \(\text{st}(x, U_n) \). Thus, \(\{p_n\} \) has a cluster point \(p \). Since for each \(n \), \(G_n \) refines each of \(V_1, \ldots, V_n \), it follows that there are an
integer \(N \) and open sets \(v \) and \(w \) containing \(x \) and \(p \) respectively such that if \(j > N \), then no member of \(G_j \) intersects both \(v \) and \(w \). But this is a contradiction since there is a \(j < N \) such that \(p_j \) is in \(w \). Thus, \(\{G_j\} \) is a development for \(X \). To see that \(G_n \) satisfies the 3-link property, let \(p \) and \(q \) be distinct points, \(u \) and \(v \) open sets containing \(p \) and \(q \) respectively, and \(N \) an integer such that if \(n > N \), then no member of \(G_n \) meets both \(u \) and \(v \). Let \(S \) and \(T \) be integers such that \(\text{st}(p, G_S) \subset u \) and \(\text{st}(q, G_T) \subset v \). Let \(M = \max\{N, S, T\} \). Then no member of \(G_M \) meets both \(\text{st}(p, G_M) \) and \(\text{st}(q, G_M) \).

(1) implies (3): Let \(\{G_n\} \) be a development satisfying the 3-link property. Assume that for each \(n, G_{n+1} \) refines \(G_n \). If \(x \) and \(y \) are distinct points, define \(d(x, y) = 1/N \), where \(N \) is the first integer such that \(y \) is not in \(\text{st}(x, G_N) \). Define \(d(x, x) = 0 \). It is a standard argument to see that \(d \) is a semi-metric on \(X \). To show that (a) is satisfied, suppose that \(\{x_n\} \) and \(\{y_n\} \) are sequences converging to \(x \). Let \(N \) be an integer and let \(g \) be a member of \(G_N \) that contains \(x \). There is an integer \(M > 0 \) such that if \(n > M \), then both \(x_n \) and \(y_n \) are in \(g \). It follows that if \(n > M \), then \(d(x_n, y_n) < 1/N \); and so, \(\lim_{n \to \infty} d(x_n, y_n) = 0 \).

To see that (b) is satisfied, let \(x \) and \(y \) be distinct points of \(X \) and suppose that \(\{x_n\} \) converges to \(x \) and \(\{y_n\} \) converges to \(y \). Let \(M \) denote an integer such that if \(n \geq M \), then no member of \(G_n \) intersects both \(\text{st}(x, G_n) \) and \(\text{st}(y, G_n) \). There is an integer \(N \) such that if \(n > N \), then \(x_n \) is in \(\text{st}(x, G_M) \) and \(y_n \) is in \(\text{st}(y, G_M) \). Thus, if \(n > \max\{N, M\} \), then \(d(x_n, y_n) > 1/M \).

(3) implies (1): Let \(G = \{\text{int. } D_i(x) : \varepsilon > 0, x \in X\} \) where \(D_i(x) = \{y \in X : d(x, y) < \varepsilon\} \). For each \(N \), let \(G_N = \{g \in G : \text{diam. } g < 1/N\} \) where \(\text{diam. } g = \text{lub}\{d(x, y) : (x, y) \in g \times g\} \). Clearly, if for each \(n, G_n \) converges \(X \), then \(\{G_n\} \) is a development for \(X \). Suppose that \(x \in X \) and \(N \) is an integer such that no member of \(G_N \) contains \(x \). Then for each integer \(j \) there are points \(x_j \) and \(y_j \) such that \(d(x, x_j) \leq 1/j \) and \(d(x, y_j) \leq 1/j \) and such that \(d(x_j, y_j) > 1/N \). But this says that \(\{x_j\} \) and \(\{y_j\} \) are sequences converging to \(x \) such that the sequence \(\{d(x_j, y_j)\} \) does not converge to zero. This is a contradiction from which it follows that \(\{G_n\} \) is a development for \(X \).

Now, suppose that \(x \) and \(y \) are distinct points of \(X \) such that for each \(n \) there is a member of \(G_n \) intersecting both \(\text{st}(x, G_n) \) and \(\text{st}(y, G_n) \). Then for each \(n \), there are points \(x_n \) and \(y_n \) in \(\text{st}(x, G_n) \) and \(\text{st}(y, G_n) \) respectively such that \(x_n \) and \(y_n \) are in a common member of \(G_n \). But this means that \(\{x_n\} \) converges to \(x \), \(\{y_n\} \) converges to \(y \), and \(\lim_{n \to \infty} d(x_n, y_n) = 0 \) which is a contradiction.

Note. The argument that (3) implies (1) is essentially the argument that H. Cook used when he showed the author how to prove that a continuously semi-metrizable space admits a development satisfy-
ing the 3-link property. Also, recall that in [1] it is shown that X is developable if and only if there is a semi-metric satisfying condition (a) and in [7], Hodel defines the notion of a G^*_d-diagonal and he shows that the space X is a Hausdorff developable space if and only if X is a ωd-space with a G^*_d-diagonal.

A space X is said to be an M-space if there is a normal sequence $\{G_n\}$ of open covers of X such that if x is a point and $\{x_n\}$ is a sequence of points such that, for each n, x_n is in $st(x, G_n)$, then $\{x_n\}$ has a cluster point (Morita [10]).

Lemma. If X is an M-space, then either X is discrete or there is a countable discrete subspace of X that is not closed in X.

Proof. Suppose that x_0 is a limit point of X. Let $\{G_\lambda\}$ be a normal sequence of open covers of X as given by the fact that X is an M-space. Let x_λ be a point of $st(x_0, G_\lambda)$ distinct from x_0 and let u_λ be an open set containing x_λ such that x_0 is not in $cl\ u_\lambda$. Having x_1, \cdots, x_μ and u_1, \cdots, u_μ, let $x_{\mu+1}$ be a point of $st(x_0, G_{\mu+1}) - \bigcup_{i=1}^\mu cl\ u_i$ distinct from x_0. Let $u_{\mu+1}$ be an open set containing $x_{\mu+1}$ such that x_0 is not in $cl\ u_{\mu+1} \cdot \{x_1, x_2, \cdots\}$ is a countable discrete subspace of X that is not closed in X.

Theorem 3. Let X be a topological space. The following statements are equivalent:

1. X is metrizable.
2. X is a Hausdorff M-space such that X^2 is perfectly normal.
3. X is an M-space with a regular G_δ-diagonal.
4. X is a Hausdorff M-space such that X^3 is hereditarily normal.
5. X is a Hausdorff M-space such that X^3 is hereditarily countable paracompact.

Proof. That (1) implies each of the other conditions is obvious. Also, it is clear that (2) implies (3). That (4) implies (2) follows from our Lemma and Corollary 1 of [8] and that (5) implies (2) follows from our Lemma and Theorem B of [12]. It remains to show that (3) implies (1). To this end, it follows from Theorem 2 that X is developable and Hausdorff. According to Theorem 6.1 of [10], there is a closed mapping f taking X onto a metric space Y such that $f^{-1}(y)$ is countably compact for each y in Y. Since X is developable, $f^{-1}(y)$ is compact for each y in Y; thus, f is a perfect map. It is a well known consequence of Theorem 1 of [9] that the preimage of a metric space under a perfect map is paracompact. But, it is shown in [2] that a paracompact developable space is metrizable.
REFERENCES

1. P. S. Alexandrov and V. V. Nemitskii, *Der allgemeine metrisatienssatz und das symmetricaxiom*, (Russian), Mat. Sbornik, 3 (45) (1938), 663–672.

Received February 8, 1971 and in revised form March 25, 1971.

AUBURN UNIVERSITY
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

C. R. HOBBY
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial “we” must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index, to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 105 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wazir Husan Abdi</td>
<td>A quasi-Kummer function</td>
<td>521</td>
</tr>
<tr>
<td>Vasily Cateforis</td>
<td>Minimal injective cogenerators for the class of modules of zero singular submodule</td>
<td>527</td>
</tr>
<tr>
<td>W. Wistar (William) Comfort and Anthony Wood Hager</td>
<td>Cardinality of k-complete Boolean algebras</td>
<td>541</td>
</tr>
<tr>
<td>Richard Brian Darst and Gene Allen DeBoth</td>
<td>Norm convergence of martingales of Radon-Nikodym derivatives given a σ-lattice</td>
<td>547</td>
</tr>
<tr>
<td>M. Edelstein and Anthony Charles Thompson</td>
<td>Some results on nearest points and support properties of convex sets in c₀</td>
<td>553</td>
</tr>
<tr>
<td>Richard Goodrick</td>
<td>Two bridge knots are alternating knots</td>
<td>561</td>
</tr>
<tr>
<td>Jean-Pierre Gossez and Enrique José Lami Dozo</td>
<td>Some geometric properties related to the fixed point theory for nonexpansive mappings</td>
<td>565</td>
</tr>
<tr>
<td>Dang Xuan Hong</td>
<td>Covering relations among lattice varieties</td>
<td>575</td>
</tr>
<tr>
<td>Carl Groos Jockusch, Jr. and Robert Irving Soare</td>
<td>Degrees of members of Π^0_1 classes</td>
<td>605</td>
</tr>
<tr>
<td>Leroy Milton Kelly and R. Rottenberg</td>
<td>Simple points in pseudoline arrangements</td>
<td>617</td>
</tr>
<tr>
<td>Joe Eckley Kirk, Jr.</td>
<td>The uniformizing function for a class of Riemann surfaces</td>
<td>623</td>
</tr>
<tr>
<td>Glenn Richard Luecke</td>
<td>Operators satisfying condition (G_1) locally</td>
<td>629</td>
</tr>
<tr>
<td>T. S. Motzkin</td>
<td>On L(S)-tuples and l-pairs of matrices</td>
<td>639</td>
</tr>
<tr>
<td>Charles Estep Murley</td>
<td>The classification of certain classes of torsion free Abelian groups</td>
<td>647</td>
</tr>
<tr>
<td>Louis D. Nel</td>
<td>Lattices of lower semi-continuous functions and associated topological spaces</td>
<td>667</td>
</tr>
<tr>
<td>David Emroy Penney, II</td>
<td>Establishing isomorphism between tame prime knots in E^3</td>
<td>675</td>
</tr>
<tr>
<td>Daniel Rider</td>
<td>Functions which operate on $\mathcal{F}L_p(T)$, $1 < p < 2$</td>
<td>681</td>
</tr>
<tr>
<td>Thomas Stephen Shores</td>
<td>Injective modules over duo rings</td>
<td>695</td>
</tr>
<tr>
<td>Stephen Simons</td>
<td>A convergence theorem with boundary</td>
<td>703</td>
</tr>
<tr>
<td>Stephen Simons</td>
<td>Maximinimax, minimax, and antiminimax theorems and a result of R. C. James</td>
<td>709</td>
</tr>
<tr>
<td>Stephen Simons</td>
<td>On Ptak’s combinatorial lemma</td>
<td>719</td>
</tr>
<tr>
<td>Stuart A. Steinberg</td>
<td>Finitely-valued f-modules</td>
<td>723</td>
</tr>
<tr>
<td>Pui-kei Wong</td>
<td>Integral inequalities of Wirtinger-type and fourth-order elliptic differential inequalities</td>
<td>739</td>
</tr>
<tr>
<td>Yen-Yi Wu</td>
<td>Completions of Boolean algebras with partially additive operators</td>
<td>753</td>
</tr>
<tr>
<td>Phillip Lee Zenor</td>
<td>On spaces with regular $G_δ$-diagonals</td>
<td>759</td>
</tr>
</tbody>
</table>