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WEAK ORTHOGONALITY

ANATOLE BECK AND PETER WARREN

Two Hilbert space-valued functions, f and g, are ortho-
gonal iff { < f(), (@) > p(dw) =0, where <, > denotes the

inner product of the Hilbert space. This paper concerns an
analogous condition for Banach space-valued functions where,
in general, no inner product structure is given.

DEerFINITION 1.1. Let (2, 2, 1) be a measure space and let f be
a function from £ into a Banach space X. Let X* denote the dual
of X. [ is said to be almost separably-valued iff there exists a separ-
able subspace X, Cc X such that u(f~(X/X,)) = 0. f is said to be
strongly measurable iff f is almost separably-valued and, for each Borel
set BC X, f~(B) is measurable. f is said to be an X-valued function
iff the range of f is contained in X and f is strongly measurable.

DErFINITION 1.2. Two X-valued functions, f and g, are said to be
weakly orthogonal iff, for each x* e X*,

|, o f @-a*g(@pdw) = 0.

A sequence of X-valued functions is said to be a weakly orthogonal
sequence iff each pair of its functions is weakly orthogonal.

It is easy to see that if f and g are independent, X-valued func-
tions with S = ‘ g =0, then f and g are weakly orthogonal. In

the event that X 1s also a Hilbert space where f and ¢ satisfy the
above conditions, then f and ¢ will be orthogonal in the classical
sense. Thus both orthogonality and weak orthogonality generalize the
concept of independence and as such have a role in probability theory.
In a subsequent paper we will consider some results connecting weak
orthogonality and the strong law of large numbers for X-valued func-
tions. Here, however, we will restrict our attention to some of the
structural aspects of weak orthogonality.

2. Hilbert space. Orthogonality and weak orthogonality can only
be compared in inner-product spaces. In this context, namely in a
Hilbert space, weak orthogonality is a more restrictive condition than
orthogonality. Let H denote a Hilbert space with an inner-product
<, > and let L,(2, H) be the space of L,-integrable H-valued functions.

THEOREM 2.1. If f and g are weakly orthogonal H-valued fumnc-
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tions belonging to L2, H), then f and g are orthogonal.
We need two technical lemmas.

LEMMA 2.2. Let {u.: a€ A} be any orthonormal basis for H. If
f is an H-valued fumnction, then there exists a countable subcollection
of basis elements U,.y, Uaw, =+, Such that

f((l)) = ’241 < f(a))p ﬂ(x(k) > Hay Qo

Proof. Since f is strongly measurable, the range of f is almost
separably-valued. This implies that there exists a closed, separable
subspace H, of H containing the essential range of f. Since H, is
separable, it has a countable orthonormal basis, say v, v, --+. Fur-
thermore, for fixed 7, it is a well known fact that < v, u,> # 0
for at most countably many values of @. Denote these values by
a9, j=1,2, ««-. Thus, for t =1,2, ---,

V; = D, <V Waiyg) > Wadi,d) »
=1

Let
B = {44,521, 75 =1,2, ---}. Clearly B is a countable subset of
{u.: € A} and, for f(w)e H, it follows that

F@) = 35 <F(@), oo > s

where

Uy € B

LEMMA 2.8. Let f and g be H-valued functions with both f and
g in L,Q, H). Let {u,ac A} be an orthonormal basis for H and
suppose

f(@) = 3 < f(O), ey > Yoy 2-€-
g((l)) = kzﬂ < g(a))y ua(k) > ua(k) a.c.

are the representations given in Lemma 2.2. Then

S!J Ici:‘l <f(w)y ua(k)> <g(w)y ua(k)> :k2=189<f(a))’ ua(k)> <g(w)’ ua(k)> .
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Proof. Clearly < f(w), g(w)> = 355, < f(®), Uey > < 9(@), Ue) >
a.e.. For these w, define

hn(w) = kﬁz‘al < f(w)s Uy > < g(w), WUqry > o

It is easy to show, using the inequalities of Cauchy and Bessel, that

[ha(@) | = |[f(@)]-[lg(@)]] -

As a consequence of Holder’s inequality, the expression on the right
is integrable. The conclusion now follows from the Lebesgue limit
theorem.!

Proof of Theorem 2.1. Let {u, ac A} be an orthonormal basis
for H. The Riesz-Fisher theorem implies that each u, defines a unique
element e H* such that

xX(h) = < h,u, > for each he H.

Lemmas 2.2 and 2.3 and the fact that f and g are weakly orthog-
onal imply that

|,< @), 9@ > = | 3 < £(0), > < 9@), v >
- 25 < f(a))y u’a (k) > < g((l)), a(k) >
- ig 5 (@), (0(@)

The next example shows that orthogonal H-valued functions are
not necessarily weakly orthogonal.

ExampLE 2.4. Let f=(,1,0,0,---) and g = (1, —1,0,0, --+),
so that f and ¢ are l,-valued functions. Clearly f and ¢ are orthog-
onal, but if z* is the vector (1,0, 0, 0, ---) regarded as an element of
l¥, then we have

[orr@)-a7g@) = 1
so that f and g are not weakly orthogonal.

3. Characterization and examples. The next result provides
some insight into the structure of weakly orthogonal X-valued func-
tions for a wide class of sequence spaces.

1 Cf. E. Hille and R. S. Phillips [1], p. 83.
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THEOREM 38.1. Let X be either an l,-space, with 1 < p < oo, or
the space ¢, (the space of sequences which converge to zero). Let f
aond g be X-valued fumctions and suppose that

f((()) (Bl(a)) Bz(w)a ° % Bz(w)’ "')
g(@) = (7.(®), 7:(@), * <+, V@), +++)

are representations for f and g in X. Suppose, further, that
H f@) x|l 9(w) ||z (dw) exists. Then f and g are weakly orthogonal
zf and only if both

(@) | s@r@)yudo) = o, vi

() | 8@ + si@m@)]udo) = 0,vi+ .

Proof. We remark that for 1 < p < o, [} =1, where 1 < ¢ < o
and ¢ =1,. We define

90;: = (61k1 521(:, b ')
and, for ¢+ 7,
xi; =af +af.

xf has a 1 in the kth coordinate and 0’s elsewhere whereas a7, has
1’s in the ¢th and jth coordinates with 0’s elsewhere. It is clear that
for any positive integers 4, J, k, both aF and z}; belong to X*.

Now suppose that S o*(f(w)x*(g(w)) = 0, va*€ X*. Then (i) and

(ii) follow from evaluations of this integral using the functionals
and af;.

Now suppose that (i) and (ii) are satisfied. Choose an arbitrary
z*e X* and let it be represented as

* = (al’Q{Z, ee)
Define, for each n,
= (aly Qyy =00y Oy, 0! 0) "') .

Clearly zfe X™* and ||| < ||z*|| for n = 1,2, ---. Also 2} —2a* as
n — . Moreover, for each #,

| (P @)az (@)
= S (Zn. akﬁk(w)>(i ak'yk(w))
= | S ats@m©) + S aas@nio) + si)i@)

2 k=1
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= 5] s@m© + 3 aa| @@ + sir©)
=0

as a consequence of (i) and (ii). Choose an arbitrary ¢ > 0 and let
% be so large that ||z} — 2*|| < ¢ if n = n,. Then, if n = n,,

[ o @) - | st @)@
= | Jo@@) 1@ — 9] + | [s: @)1 6" = s)g))]
< 2"l | I f@]-lg@)]l -
Since ¢ is arbitrary, this implies that

[ o (F@)e*g@) = 0
which completes the proof.

It is not difficult to find functions which satisfy both conditions
(1) and (i) of Theorem 3.1 in a rather trivial way.

ExAmpLE 3.2. Let a,, k=1,2 -+ be a sequence of mutually
orthogonal real-valued functions with |a,(®@)] <1 for all k. The
Radamacher functions would do here. Let (a, a, +-+) and (b, b, --+)
be sequences of scalars which both belong to one of the spaces [,
1< p< o ore. Let

S(@) = (a,ax(w), a.0,(®), -+ a;x,(®), -+ +)
g(a)) = (blal(w)a b2a3(a)), °e 'bia%“l(ft)), . ') .
Then, clearly, f and g are weakly orthogonal by Theorem 3.1.

Note that condition (ii) of Theorem 3.1 is trivially satisfied because,
in terms of the coordinate functions of f and g, everything in sight
is mutually orthogonal. Loosely speaking, condition (ii) suggests a
sort of “cross-product” orthogonality. For the sake of curiosity, it is
worth inquiring what sorts of funections satisfy this condition in a
non-trivial manner. The following is an example of a weakly orthog-
onal sequence of c¢,-valued functions which are, in the sense of these
remarks, as nontrivial as they possibly can be. That is, the coordi-
nate functions are orthogonal only when they have to be as necessitated
by condition (i).

ExampLE 8.3. We shall construct a sequence of ¢,-valued functions
f,1=1,238, --+. Each f; will be described in terms of its coordinate
functions
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fz(a)) = ('7«5,1(60), '\/i,Z(w)y M) 'Yi,j(w)y °* ') .
The objective of the construction is to have

(i) Sg%,y‘(w)-“/b,j(w)p(dw) =0 for a 5= b and V;.
() | [70e@)+70.4(0) + Yo.s@) -7, (@)} pe(d) = 0 for a #b,

(iii) g Ya.o{@) + 7, s{@) pt(dw) = 0 for a = b and ¢ +=d.
2

The order of business is to first construct the <v;; and then show
that they satisfy the above.

Let S be the set of all 4-tuples (7, 7, m, n) taken from the positive
integers. S is countable and hence may be put into one-to-one corre-
spondence with the set of positive integers I. For keI, let (¢, 7, m, n),
be the 4-tuple in correspondence with k. We will associate with each
such 4-tuple a 2-dimensional array of scalar-valued functions (called
the kth array). The functions of the kith array are denoted by

{re (@)}7-,

and will be chosen to meet the requirement that

k — k
Tii =T —Tiimitn

/"Z‘t-rm i = TZLC,J’—M
and otherwise when (u, v) # (p, ¢) or k +# h it will always be the case
that |»f ,| = |7%,|. The collection of functions {rf ,:u, v, k=1,2,8, ---}
is countable and so can be replaced by the Radamacher functions
defined on Q2 = [0,1]. Assume that this has already been done to
conform with the above requirement.

By this construction, distinct arrays do not have any elements
in common and furthermore, when %k + k, we have S rE (@) -7t (w) =

2

0. Also in the kth array there are four special elements which dis-
tinguish, so to speak, the four corners of a rectangle. These elements
are in relation to one another as

O »=o '8
A

Notice that for an arbitrary 2-tuple of positive integers (i, j,), all
possible rectangles of the above sort with corners (upper left, lower
left, upper right, lower right) at (4, j,)th position occurs. Each is in
its own array corresponding to some value of k.

Let a5, 7=1,2, +--, be any sequence of positive real numbers
which converges to zero. Define
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— —kpok
Vs = aij 2755 ; .
=1

It is almost immediate that for each 1, f; is ¢,-valued. Indeed, for all
we L,

es@)| = |l | S 2 @)| S sl B2 =,

so that the jth coordinate function of f; is uniformly bounded by the
jth term of a convergent sequence.
From Dominated Convergence, it follows that, if ¢ == b, then

[ es@) 7 s@)pdo) = a3 (32740 5(@) )( £ 277, 10) ) ido)

2

— i 2—(k+z>S 7k (W) -7} (@) p(dw)
k,i=1 4

= 0.

So that condition (i) is satisfied. On the other hand, if we consider
the coordinate functions of two different coordinates, say 7,. and 7,
where a == b, ¢ # d, it follows that there is exactly one array in our
construction where (a, ¢) and (b, d) determine two diagonally opposite
corners of a rectangle of the form given above. Suppose this occurs
for ¥ ==w. Thus it must be that either »,= —7i, or 7,6 = 7} ,.
Now, as before, it follows that

gﬁva,c(w)-vb,d(w)/z(dw) — aa, ki gtk Sgr’;,c(a))-qﬂé,d(a})y(dm)

= aa; 3 471t (@)1 s(0)udo)
=1
= +H4"a,@, .

Furthermore, (a, d) and (b, ¢) determine the “other” two corners of
the rectangle in this mth array. Thus, by the same considerations,

| esl@) @) pde) = = v @) @) p(do) -

This verifies conditions (ii) and (iii).

4. General properties. In this section we explore some of the
structure of weakly orthogonal sequences of Banach space-valued
functions which parallels the structure of orthogonal sequences of
Hilbert space-valued functions.

Weak orthogonality of X-valued functions is an invariant with
respect to all linear transformations on X. This may be compared
with the fact that orthogonality of Hilbert space-valued functions is
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an invariant only with respect to all unitary operators (an operator
is called unitary if and only if composition with its adjoint produces
the identity operator). In the following <#(X, Y) denotes the space
of linear transformations from the space X into the space Y.

THEOREM 4.1. Let X and Y be arbitrary Banach spaces over the
same field of scalars @. Let {f,}r-., be a sequence of X-valued fumnc-
ttons. Then {f.}r-, 18 @ weakly orthogonal sequence of X-valued func-
tions if and only if, for each Te F(X, Y), the sequence of Y-valued
Sunctions {Tf,}o-, is also weakly orthogonal.

Proof. Suppose that f,, n=1,2, ---, is a weakly orthogonal
sequence of X-valued functions. Fix T, where Te¢ <# (X, Y). Fix
an arbitrary element ¢ Y*. Define x} mapping X to @ by x;(x) =
vwT(x) for ze X. Clearly z; is a continuous linear functional and
hence belongs to X*. Thus, for each ¢ Y*,

| HTf @) (Th@) = o3 (F@) -3 (@) = 0

when n == m. This means that Tf, is a weakly orthogonal sequence
of Y-valued functions and this is true for each Te Z (X, Y).

On the other hand, suppose that Tf,, n =1,2, ---, is a weakly
orthogonal sequence for each Te¢ .<Z(X, Y). Choose any vector #€ Y
such that |[#|| = 1. Let V= {ye Y:y = au where ae€ ®}. Note that
V is a 1-dimensional subspace of Y. Define 9 ={Te Z(X,Y): T(X)S
V}. That is, T€ .9  means that T has 1-dimensional range. For T¢
7, let gr, mapping X to @, be defined by

gr(@)it = T{x) for zeX.

Since |g(®)|-||%] = || T@)|| < || Tl|+||2|], it follows that g, is continuous
and hence g, X*.
Now, for each Te . &, define Y, mapping T(X) to @, by

YH(Tx) = g.(x) for zeX.

It is clear that Y, is linear since g, is linear. Also Y/ is continuous
on T(X) since |Y}(Tx)| = ||Tx||. Since T(X) is a linear subspace of
Y, the Hahn-Banach theorem implies that we can extend Y} to all
of Y. Denote this extension by ++,. Note that +,€ Y*. For any
Te. 7 and n %= m, we have by assumption that

0r(£.@) - Fui@) = (o TF @) 2 Tf (@) = 0 -

Finally pick any pe X* and define T, mapping X to V by
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To(@) = p(x)a .

Certainly T,€ .7 and g,,(x) = o(x) for all z € X so that gr, = p. Thus,
for any pc X* and n # m, it follows that

[etu@)-p(fu@) = 0.

As a direct corollary, the preceding theorem provides an alterna-
tive and more general characterization of weak orthogonality than
that given in 1.3.1.

COROLLARY 4.2. Let X be a Banach space and H be a Hilbert
space having the same field of scalars ®. Then f,,n=1,2 -+, is a
weakly orthogonal sequence of X-valued fumctions if and only if, for
every Te # (X, H), Tf,,n =1,2, ---, is an orthogonal sequence of
H-valued functions.

Proof. Suppose fi, k=1,2, ---, is a weakly orthogonal sequence
of X-valued functions. Then, by Theorem 4.1, Tf,, k=1,2, +--, is a
weakly orthogonal sequence of H-valued functions. But, by Theorem
2.1, this implies that Tf, k=12, --., is orthogonal in the usual
sense.

Now assume that Tf,, k =1, 2, --+, is an orthogonal sequence for
each Te <% (X, H). Choose any vector & € H such that |[#|| = 1. Let

V={heHh=au where «ac®}.

Define
T ={Texz(X,H:TX)<SV}.

For Te &, define ¢,, mapping X to @, by gr(x)u = T(x) for xze X.
Exactly as in the previous proof, we can verify that g,e X*. Further-
more,

[< @), Thu(@) > = 1718 0: (7 @)gr(F o) -
Thus, by our assumption, for m = n, we have that

[orF @) gr(Fu@)) = 0.+

Pick any pe X*. Define T,, mapping X to V, by
To() = z*(x)% .

Hence T,e .7~ and gr, = - This implies, for each o€ X* and n # m,
that we have
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[ett@)-orut@) = 0.

By now it should be obvious that the term weak orthogonality is
somewhat of a misnomer since this condition is really stronger than
orthogonality in a Hilbert space. Indeed, many of the nice properties
of the orthogonal sequences in Hilbert space are not present in the
analogous weakly orthogonal sequences of a Banach space. For ex-
ample, there is no appropriate analog of the fact that, in a Hilbert
space, a maximal (i.e., complete) class of mutually orthogonal functions
is a basis for the space. By a maximal orthogonal (or weakly orthog-
onal) class M, we mean a collection of mutually orthogonal (weakly
orthogonal) functions such that if f is orthogonal (weakly orthogonal)
to each function in M, then either f belongs to M or f =0 a.e.
Maximal weakly orthogonal classes are not necessarily “rich” enough
to provide the space with a basis. This is shown in example 4.4 and
is a consequence of the following theorem. Here L,(2, X) denotes the
space of L.-integrable, X-valued functions.

THEOREM 4.3. Let X be the space 1,, with 1 < p < oo, over the
scalar field @. Let {f.}n-. be a sequence of X-valued functions. Fur-
thermore, let f; = g:;, where #; is the ith unit vector in 1, and g;€
L2, 9). If {9.)7-. is a maximal (i.e., complete) orthogonal set in
the Hilbert space L,(2, @), then {f,}z-, is a maximal weakly orthogonal
set in Ly(2, X).

Proof. Suppose that the theorem is false. That is, there exists a
function ¢e L,(Q2, X) of the form

$(@) = (.(0), a(®), +++)

such that for each ax*e X*
[ 6@ u@ndo =0, k=12

We will show that this will imply that each «; must be zero a.e.

Consider first a functional x*e X* = [} of the form «f = (0.,
834 *++). This functional has a 1 in the 7th coordinate and zeros else-
where. Then, for every 1,

0 = |ar(p@)ar (@) = < ay 9> -
Next fix an arbitrary integer j, where j = 4, and consider the func-

tional in I* of the form «}; = @} + x¥. This functional has a 1 in
both the ith and jth coordinates and zeros elsewhere. Then, for every
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7% J,
0=af(g(@)af;(fi(w) = < a;, g: > + < ajy0: >

Therefore < «;, 9; > =0 for ¢ =1, 2, .-+, which implies that a; =0
a.e. since g;, © = 1, 2, -+ - constitutes a complete orthonormal set. Since
7 was arbitrary this completes the proof.

I

ExAMPLE 4.4. Let p = 2 in Theorem 4.3 in which case L,(Q, [,
is a Hilbert space. Suppose furthermore that {g,}7-, is a complete
orthonormal set in L,(2, I,) so that according to the theorem, the class
of functions I" = {f; = g;u;: 1 =1, 2, ---} is a maximal weakly orthog-
onal class. However, this class does not contain a basis for the space
L,(2,1,). If it did, then since L.(2, l,) is a Hilbert space, it would be
necessary that I" also be a maximal orthogonal class. To see that
this is not the case, consider the function given by f = g, k %= h.
It is clear that f¢ " and yet

S, fi>LZ(.@,lz) = Sg<f(w)’ fi(a))>lz

= | 0@-0,@
=0 for all 7,
since the g,’s are orthonormal.
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