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The purpose of this paper is to give general methods for
constructing Banach spaces whose duals are linearly isometric
to abstract L spaces. These methods are based on annihilat-
ing certain subspaces of the duals of certain Banach spaces
and in the existence of "affine" maps from a compact Haus-
dorff space X to the space of regular Borel measures on X.

1. Introduction* There have been several papers concerned with
the structure and classification of Banach spaces whose duals are
linearly isometric to a space of the type LL(μ) (see [25] and its ref-
erences). General methods for the generation of such spaces have
been developed in [6], [8], and [16]. The purpose of this paper is to
present these theorems in their most general framework.

In §2 a general result is presented which indicates several ways
in which Banach spaces whose duals are L-spaces can be constructed.
Using this as a base, §3 begins with an application of the main result
of section two, Theorem 2.2, to show the way in which certain affine
symmetric maps generate these spaces. Finally it is shown how some
of these maps from compact Hausdorff spaces to the corresponding
space of regular Borel measures generate the Banach spaces whose
duals are L-spaces.

All Banach spaces considered in this paper are over the real field.
If X is a compact Hausdorff space then C(X) denotes the Banach space
of all real-valued continuous functions on X and M(X) the Banach space
dual of C{X). If μ is a measure, Lt(μ) is the Banach space of all
integrable real-valued functions (sometimes called an (abstract) L-space).
The dual of a Banach space A is denoted by A*. If A is a Banach
space and SczA and {ax:xeS} is a set of numbers, then Σ*esfe)^
denotes the limit (provided it exists) of the net of all sums Σ.effe)^
for finite sets Fa S. The notation and terminology regarding Choquet
simplexes, maximal measures, affine functions, etc. is that of [26].

2* Methods of generating Banach spaces whose duals are L-
spaces* The purpose of this section is to prove a general result con-
cerning the generation of Banach spaces whose duals are L-spaces.
How to construct such spaces as subspaces of given Banach spaces
having the same property is revealed in Theorem 2.2.

If A is a Banach space and B is a subset of A then B± =
{x*eA*:x*(x) = 0 for all xeB}. For Ma A*, LM = {xe A: x*(x) = 0
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for all x* e ikf}. A contractive operator on A is a linear operator
T:A—+A satisfying | |Γ | | ^ 1. Of course the term "projection" has
its usual meaning.

A Banach space A whose isometric image in any other Banach
space B is the range of a contractive projection on B is called a Pλ

space. The relevant facts concerning Px spaces can be found in [9].
The following proposition serves a dual purpose. It provides

motivation to the main theorem of this section as well as the key to
the main result of §3.

PROPOSITION 2.1. Let A and B be Banach spaces with Ba A and
J5* an L-space. Then there is a contractive projection P: A* —•» A*
whose kernel is B1 and whose range is linearly isometric to J5* under
the restriction map x* —* x* \ B for ^ G i * .

Proof. Let J: 5* -> JS***, K: A -> A**, L: B-* £** and i:B->A
be the natural embeddings. Since B* is an L-space, J5** is a Ί?x

space [see 9, 10, or 17]. Hence there is a contractive projection
Q: A** -> A** whose range is ΐ**(£**). Set T = [(i^^QK]V. Then
|| T|| ^ 1 and Tx*(ίx) = x*(x) for all £* e J5* and xeB. For,

α;*, ix)

= ζJx*, {i**)~ιQKixy =

Hence T is a linear isometry of J3* into A* and P = Tΐ* is the re-
quired projection.

For motivational purposes, let K be a compact Choquet simplex
and X any closed subset of K which contains the extreme points,
EK, of K. Setting A = {f\X: fe A(K)}, where A(K) is the space of
continuous affine functions on K, it follows from the Bauer maximum
principle [4] that / —> / 1 X is an order preserving linear isometric
isomorphism of A(K) onto i c C ( I ) . Since each maximal measure
on K vanishes on K\X, the maximal measures have support contained
in X. For each x e X let μx be the maximal measure representing

x (i.e., f(x) = \fdμx for all / e A j . The linear span, N, of the maximal

probability measures on X is a band in M(X) i.e. M(X) = N($NP

where iV* = {σeμ(X): \μ\ A \σ\ = 0 for all μe JV} and (Np)p = N,
and so is the closed linear span, ikf, of the point masses ζx with
xeY= X\EK. For (Σ*e*»*£*) e ikf, ΓίΣxeyα^) = Σi^Yaxμx defines a
contractive linear operator from If to iV. It is well-known that

A = L{Tv - i;: v G ΛΓ} = {/ e C(X): f(x) = [fdμx for all xex\ and A1

is the weak*-closure of {Tv - v: v e ikf}. Note that A1 Π N = {0}.
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For, suppose 0 Φ v e A1 Π N. Then since leA, \\v+\\ = \\v\\ and we
can assume that | |v+ | | = ||zr~|| = 1. Since v+(h) = v~{h) for all he A,
v+ and v represent the same point of K and since v+, ιτ are both
maximal measures and K is a simplex, v+ = v~ (see [26]). From
this it follows immediately that N Π A1 — {0}.

The main results of this section, Theorem 2.2 below, demonstrates
that by placing the preceding remarks in a more general setting,
one is able to generate conjugate L-spaces in a nice way. The nota-
tion is as follows: A is a Banach space whose dual is an L-space,
P: A* —> A* is a contractive projection, N is the range of P, M is the
kernel of P, Q = I — P, T: M —> N is a bounded linear operator, Λf0 is
the weak*-closure of {Tx* — x*: $* e M} and B = {xe A: Tx*(x) — $*(#)
for x* e M}.

THEOREM 2.2. Preserve the notation above. Then each of the
conditions below ensure that B* is an L-space linearly isometric to N.

(1) MQΠN= {0} and \\P + TQ\\ ̂  1.
( 2 ) M is weak""-closed, T, is weak*-continuous, \\T\\ < 1, and

\\P+ TQ\\^1.
( 3 ) N is a band, P is the band projection, MQΠ N = {0} and T

is contractive.
( 4 ) N is a band, P is the band projection, M is weak*-closed, T

is weak*-continuous, and \\T\\ < 1.

Proof. The range of any contractive projection on an L-space is
also linearly isometric to an L-space (see [17] or [30]).

Hence it is only required to show that B* in each case is linearly
isometric to N. The proofs of this fact in statements (1)—(4) are
given in the correspondingly numbered paragraphs below.

( 1 ) Let S:N~>B* be the restriction map. The \\Sx*\\ ^ \\x* \\
for all x* e N and Sx* - 0 implies that x*eBλ. Since MQ Π N = {0},
S is one-to-one. For x* e B* let y* e A* with y*\B = x* and \\y*\\ =
j |x* | | . Then z* = (P + TQ)y* belongs to N and

z*(x) = (P+ TQ)y*{x)

= Py*(x) + TQy*{x)

= y*(x)

for xeB. Hence Sz* = x*. For xeA, \z*(x)\ ^ \\P + TQ\\ \y*{x)\ ^
11 y* || 11 a; 11 and S is a linear isometry.

( 2 ) The conditions T is weak*-continuous and | | Γ | | < 1 imply
t h a t {Tx* — x*: x* e M} is weak*-closed when M is. For if
!| Tx* - x*\\ ̂  1, then ||α?*|| ^ II Γα* - α?*|| + | |Γαj* | | and so | |OJ* | | ^
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(|| Tx* — x*\\)/(l — || Γ| |). By the usual compactness argument the unit
sphere of {Tx* — x*: x* e M) is weak*-compact and thus {Tx*—
x*: x* e M} is weak*-closed. Clearly, NΓ\{Tx* — x*: x* eM} = {0} and
(2) now follows from (1).

( 3 ) The only difference in the proof of (3) and (1) is to notice
that because P is the band projection, ||a?*|| = \\Px*\\ + \\Q%*\\ for
every x* e A*. Hence for y* = (P + TQ)x**

I + I | Γ | | | |Qaj*||

| + IIQΊI
- \\Px* + Qx*\\

— I I x I

It now follows that the restriction map in (1) is an isometry.

(4) Combine the remarks of (2) and (3) above.
Contractive projections (in fact band projections) are plentiful in

L-spaces and by Theorem 2.2, many of these projections in dual L-
spaces generate Banach spaces whose duals are L-spaces.

To get a less abstract idea of situations analogous to the require-
ments of Theorem 2.2, some important special cases of the above
theorem are summarized below.

1. If T = 0 and M weak*-closed (or (weak-*closure of
M) Π N = {0}), then B - λM.

2. If N has finite codimension, then M and Mo are automatically
weak*-closed. So, Γcan be any linear operator satisfying \\P + TQ\\^1,
or in case P is the band projection onto a band N, just || Γ|| ^ 1.

3. If P: A —• A is a contractive projection, then P*: A*—> A* is
a contractive projection and kernel P* = (Range P)L is already weak*-
closed.

4. Let X be a compact Hausdorff space and F c l a nonempty
closed subset. Then A = {f eC(X): f(F) = 0} is a closed sub-lattice
of C(X) and A1 = {μ e C{X)*\ μ{X\F) = 0} is a weak*-closed band in
C(X)*. Taking N as the complementary band to A1 and P the band
projection provides a nice example of (4).

3* Generation of general Banach spaces whose duals are L~
spaces* At this point it is natural to consider a rather simple ap-
plication of Theorem 2.2. which allows the generation of Banach spaces
whose duals are L-spaces. This application is presented in Theorem
3.2 below. First; however, additional terminology is need.
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DEFINITION 3.1. Let R be an L-space with unit sphere S. A
convex set Fez S is called a bίface if its linear span is a band in R
(see [14] for a discussion of bifaces).

Examples of such sets are plentiful in L-spaces. Specifically the
norm closed absolutely convex hull of any face of a compact Choquet
simplex is such a set.

Within the notation of the definition above if E is any subset of
the extreme points of S (assuming that S has extreme points), then
E = {Σβe^ e )β: Σ etf |α β | <; 1} is a biface in L.

An additional example of a biface is given by the set of all
regular Borel measures on a compact Hausdorίf space X whose total
variation is 0 on some Borel subset B. If X\B is closed this biface
is weak*-closed and hence compact.

THEOREM 3.2. Let A be a Banach space whose dual is an L-space
and F a weak*-closed bίface in S(A*), the unit sphere of A*. Let M
be the span of F and N be the complementary band to M. If
a:F—>NC)S is an affine symmetric weak*-continuous function, then
for B = {x e A: a(x*)(x) = x*(x) for all x* e F}9 B* is linearly isometric
to N.

Proof. Since F = M i l S(A*) and F is weak*-closed, M is weak*-
closed (see [11]) Because a is affine and symmetric, it has a quique
weak*-continuous linear extension T: M—> N with || T\\ ̂  1. Theorem
2.2 now completes the proof.

An interesting special case of the above is the following situa-
tion. Let x*y • ••,#£ be positive extreme points of A* and F—
{Σti=iβ&ϊ' Σ ^ i l α l ^ 1}. Letting y*, •••,?/* be any elements of A*
such that \yT\ A \xf\ = 0 for i, j = 1, •-., n, define α(Σ**=Λί»*) =
Σ?=iαΐ2/* t° obtain a weak*-continuous affine symmetric map from JP
to the complementary band determined by F. Then B = {x e A: yf{x) —
xf{x) for i — 1, 2, , n} is a Banach space whose dual is an L-space.

In particular, if X is a compact Hausdorff space x19 , xn are in

X, £Ί, 9 ̂ n are regular Borel measures with 11 μ{ \ \ ̂  1 and

lΛ I ({»i, , *»}) = 0 for i - 1, 2, . , n then Λ = {/ e C(X): ffa) =

\/d/ί<; i = 1, 2, ••., ^} is a Banach space whose dual is an L-space.

This result was obtained by the first author in [6], later refined in
[8] and later by Gleit in a different setting in [15].

In view of the preceding theorem, one is naturally lead to ask
under what conditions maps from compact Hausdorff spaces to sets
of measures induce Banach spaces whose duals are L-spaces. A.
Gleit [15] has obtained some partial results. It is possible to use
Theorems 2.2 and 3.2 to provide a complete answer.
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To motivate subsequent results, return to the setting immediately
following Proposition 2.1. That is, let K be a compact Choquet sim-
plex, X any compact set containing EK and μx be the unique maximal
measure with resultant x e K. For x e X let p{x) — μx. From [26,

p. 71], ρ:X —> M(X) is Borel measurable (i.e. x-+\fdp(x) is Borel

measurable for each / e C(X)). It is also true [27] that f —*fP where

fp(x) = \fdp(x) for all Borel measurable functions is a positive projec-

tion when restricted to the space H = {/ + gp: f, ge C(X)}. Equival-

ently, (fp)p = fp for each continuous / on X. Denoting this projection

by P, one has | | P | | = 1 when H is given the uniform norm.
Effros has shown that the continuous functions on EK which

satisfy f(x) = \fdux for xeEK are precisely those having a unique

continuous affine extension to all iΓ[13]. Obviously the statement
remains valid if EK is replaced by X. So Ap = {f:fP = /, / e C(X)}
is linearly order isometric to A(K).

Observe that if \fdμ = \fdv for all f e Ap where μ, v are proba-

bility measures on X, then μ and v have the same resultant in K.

Appealing to [26, p. 63] it follows that the function defined by

fP(x) = \fdμx where / e C(X) is affine and \fPdμ = fp(x) for any prob-

ability measure μ on K having x as a resultant. Thus \fPdμ = \fPdv

for all feC(X).
Thus A(iΓ) is generated by a natural Borel measurable map p

defined on a compact set X with EKd Xcz K. This map satisfies the
following three conditions.

( i ) fp is Borel measurable for each feC(X),
(ii) H φ̂OII ̂  1 for all xeX,

(iii) if μ, v e M(X) and [fdμ = [fdμ for all f e A, then f/^ =

dv for all feC(X).

As will be demonstrated any map p: X-+ M(X) having these three
properties generates a Banach space whose dual is an L-space. The
essential ingredient of condition (i) is that fp is universally integrable
(i.e. integrable for each μeM(X)).

DEFINITION 3.2. A function ρ:X—> M(X) is said to be affine if
( i ) fp is universally integrable for all / e C(X),
(ii) \\ρ(x)\\ ^ 1 for all xeX

(iii) if μ, v e M(X) and [fdμ = [fdμ for all fe C(X) such that
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/ =/„ then ^fpdμ = \fpdv for all feC(X).

If p is an affine map on a compact Hausdorff space X, then for

μ e M(X), Pμ denotes the unique element of M(X) such that \fdPμ =

\fPdμ for all feC(X), which exists since the map / —> \fpdμ is a

continuous linear functional on C(X).

LEMMA 3.4. Preserve the notation above. Then

( 1 ) P is a contractive projection,

( 2) the range of P is the set R = {μ: μ e M(X), ί(/ - fP)dμ = 0

for all feC(X)}.
( 3) the kernel of P is weak*-closed.

Proof. (1) that P is linear is trivial. Because 11 p{x) \ | ̂  1, 11 fp \ | ^

j | /1 | and hence | | P | | ^ 1. Since for / =fpeC(X) one has \fdPμ =

[fpdμ = \fdμ, it follows from (iii) that [fdP[Pμ] = [fPdPμ = [fdPμ

for~a\ΓfeC(X) and, thus, P[Pμ] = Pμ.
(2) This follows immediately from the definition of P and (1).
( 3 ) Let {fii} be a net element in the kernel of P which is weak*-

convergent to μ. Then \fdμ{ —• \fdμ for / e C(X) and hence \fdμ = 0

when / = fp. Using (iii) it follows that \fPdμ - 0 for all / e C(X)

and thus Pμ = 0.
The following theorem is an immediate consequence of the above

lemma and Theorem 2.2.

THEOREM 3.5. Let p be an affine map from X to M(X). Then
the Banach space

Ap = {f:f=fpeC(X)}

is a Banach space whose dual is the L-space \μ: \(f — fP)dμ — 0 for

feC(X)}.

Proof. It suffices to show that A^ is the kernel of the contrac-
tive projection P defined through p. But trivially, by (iii) of the

definition of affine map \fdμ = 0 when feA implies \fPdμ = 0 for

feC(X). Hence Pμ = 0. As the converse is just as trivial, Aϊ is
the kernel of P. Theorem 22 now completes the proof.
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The significance of Theorem 3.5 is enhanced by the fact that
every Banach space whose dual is an L-space arises in this fashion.
The proof of this is based upon recent works of Lazar [23] and Effros
[14].

Let A be a Banach space whose dual is an L-space and let S(A*)
denote the unit ball in A*. Then S(A*) is an absolutely convex weak*-
compact set and so the general Choquet theory may be used to obtain
the maximal measures on S(A*). Such measures are supported by
the weak*-closure, X of the set of extreme points of S(A*).

Define the homeomorphism σ: S(A*) —>S(A*) by σ(x) = — x. Then
σ induces natural order preserving isometries f—»σf and μ—*σμ on
C(S(A*)) and M(S(A*)) respectively. These are defined by the formulas

σf{x) = f(σx)

and

σμ(C) = μ(σC) .

For μe M(S(A*)) let odd (μ) = l/2(μ - σμ). From [23] it follows
that odd (μ) = odd (v) for any pair of maximal measures on S(A*)
having the same resultant in S(A*). Since each maximal measure on
S(A*) vanishes off X, they can be considered as maximal measures
on X. For x e X let μ be any maximal measure which represents x
and let p(x) = odd μ. Then p: X-+M{X) and \\ρ{x)\\ ^ 1 for all xeX.

It is shown in the sequel that p is an aίϊine map. A positive

measure μ on S(A*) is maximal if and only if \fdμ = \fdμ for all

feC(S(A*)) (see [26]). For such a measure it follows that [fdσμ =

\fdσμ and \σfdμ = \σfdμ for all feC(S(A*)). The main theorem

of [23] then demonstrates that

-iH/(s) - σf(x)l = \-ΐrlf ~ σfW

for any maximal measure with resultant x and continuous convex
function / on S(A*). Since

it is true that

(*) γ[/(α) ~ σf(x)\ - J/d[odd (μ)] .
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The preceding remarks provide a portion of the proof of the
lemma below.

LEMMA 3.6. Preserve the notation above. Then p:X-+M{X) is
affine.

Proof. Condition (ii) of the definition is already verified. That
condition (i) is true is an easy consequence of (*) above. Only the
verification of (iii) is lacking.

Define P: M(X) -> M(X) as follows: For v ^ 0 in M(X) let β be
any maximal measure which dominates in the ordering of Choquet
(see [26]) and set Pv = odd β. For arbitrary v = v+ — v~ e M{X) let
Pv = Pv+ - Pv-. Then P is linear, | | P | | ^ 1 and because odd (odd β) =
odd (β) for any βeM(X), P is a projection.

The kernel of the projection P is the set of measures μ in M(X)

which satisfy [fpdμ = 0 for all feC(X). If P = 0 and / is contin-

uous and convex, then

^M = i-j[/ - σf]dμ = -|-j[/ - tf

Now, let μ1? //2 be maximal measures majorizing μ+, μ~ respectively
in Choquet's ordering. Since / — / is affine and satisfies the bary
centric formula [26, p. 100] one has

\fpdμ - γj[/ - σfjdμ, -

- 0 .

It is now clear that Pμ = 0 implies f/^ = 0 for all feC(X). On
j

the other hand the condition \fpdPμ = 0 for all feC(X) together

with the fact that σ/ = - / if / e A c A(S{A*)) implies that f/d/i = 0
when f e A. Let ^x and μ2 be maximal measures whose resultants
xλ and ίc2 are the same as those of μ+ and μ~~. If xL Φ X2 there is
some ge A such that g(x1) Φ g(x2). For gr,

- μ~) Φ 0

is a contradiction and so xι — a?2. Thus odd (μj = odd (/f2) and Pμ = 0.
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A consequences of the above is the fact that 1 fpd(I— P)μ — 0 for

all βeM(X). This is so because the range of I — P is precisely the
kernel of P. Suppose β ̂  0 and \\β\\ = 1. If μ is a maximal measure
which dominates β in Choquet's ordering and feC(S(A*))> then since

\fσdμ - \σfdμ + Jσ

\fdσμ\ = \fdPβ .

From this it follows that [gdPβ = [gPdPβ for all geC(X) and all

βeM(X). Hence [fdPβ = [fpdβ for all feC(X).

Arguing as in the case which showed that {μ:Pμ = 0} = Iμ: \fpdμ = 0>

it is possible to show that \fdβ = 0 for / = fp implies that Pβ = 0.

Hence if μ, v e M(X) and \fdμ = [fdv when / = fp, P(μ - v) = 0 so

that [gdPμ = LdPv for all geC(X). Hence tadi; = f^di; for all

geC(X). This completes the proof of the lemma.
Lemma 3.6 is fundamental in the proof of 3.7 below.

THEOREM 3.7. Suppose A is a Banach space whose dual is an
L-space. Then there is a compact Hausdorff space X and affine map
p: X —> M(X) such that

= {feC(X):f(x) = \fdp(x)}.

Proof. Let p and X be as in Lemma 3.6 and the remarks pre-
ceding it. By Lemma 3.6 and Theorem 3.5, Ap = {/: / =fpeC(X)}
is a Banach space whose dual is an L-space. Since A1 = {μ: Pμ = 0},
Ap = A and the proof is complete.

These affine mappings can be used to obtain some known results
in an efficient manner. For example, if {Kι}ieI is a family of compact
Choquet simplexes and K= I L e / ^ is the product of the iί/s, let
p:K-+ M(K) be defined by p({Xi}) = ILe/ft where μt is the maximal
measure representing x{ for each i e I. Then p is an affine mapping
and AP = A(L) where L is the product simplex as defined in [21].

Another example is the following. Suppose A is a Banach space
whose dual is an L-space and that the extreme points X of S(A*)
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form a closed set. Let Σ: X-+X be defined by Σ(x*) = -x*. Then
Σ is an involutary homeomorphism. The p of Theorem 3.7 is given
by p(x*) = l/2[f,* - &„*,] and A - {/e C(X): f(x*) = -f(Σx*)}, i.e.,
A = CΓ(X). (This was proved in [25].)

We close with an application which seems to be new. Let A be
a Banach space whose dual is an L-space and suppose that the weak*-
closure X of the set E of extreme points of the unit sphere of A*
is E [j {0}. The mapping defined by σx* = — x* is an involutary
homeomorphism on X, i.e., σ2 = identity.

THEOREM 3.8. A = Cσ(X) = {feC(X): f(x*) = -f(σx*) for all
x* e X).

Proof. The mapping p is given by p(x*) = l/2[fβ* - ςσx*] for x* e E
and p(0) = 0. By Theorem 3.7,

A = AP = {feC(X): f(x*) = \fdp{x*)} = Cσ{X) .

This result is similar to the one for CΣ{X) above when the extreme
points are closed.

We wish to thank the referee for his many valuable comments.
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