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A stochastic process, E[x({, -)| % |(»), on a probability
space (©2,.97, P) and an interval D, where # € L(D X 2) and
{ &, te D} is an increasing collection of sigma-fields in , g7,
is considered. Sufficient conditions for the joint measurability
of E[xz(t, )| & () in (¢, ) are given, and if x¢€ Ly(D X 2),
it is shown that, under certain fairly general conditions,
Elx(t, -)| & w) can be identified with the projection of z
onto a certain subspace of the Hilbert space associated with
Ly(D x 2). The results obtained herein have application in
certain classes of stochastic optimization problems.

1. Introduction. Interest in the application of mathematical
analysis to problems associated with optimizing control systems has
been significant in recent years. [16], [6], [7], [9], [13]. A particular
class of stochastic optimization problems [1] which are of interest in
certain control system applications can be abstractly formulated in
the following manner.

Let (2, .o7; P) be a probability space and let (D, <&, m) be a
measure space, where D = [a, bjC R, <& is the collection of Borel
measurable subsets of D, and m is a finite measure defined on (D, <Z).
Consider the product measure space (D x 2, & x %, m X P), and
denote by L.(D x 2) the collection of real valued <& x .o/~measurable
functions defined on D x 2 which are square-integrable with respect
to m x P. Let y(t, w) be a stochastic process on (2, .o, P) and R,
and let

Y, 0) = [y(t, w), t < t], t, w)e R X 2.

For each te¢ R, denote by 2, the minimal sigma-field of subsets
of 2 with respect to which every element of the random vector
Y(t, ) is measurable, and observe that ¢, t"e D, ¢ <t” implies
Yy C Yy

In the stochastic optimization application under consideration,
the random vector Y(¢, -) is the observation available to a controller
at time ¢ € D, and the control problem is the following: For an arbitrary
but fixed element we LD x 2) determine a control u,€ L,(D x2)
with the property that u(¢, -) is 2/,-measurable for each te D and
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[, st @) = o(t, @)F(n x PYd(, o)
- inf{SD [ult, ) = oft, @)F(m x P)A(t, ®)); ue L(DX9) ,
u(t, +) is Z/-measurable for each te D} .

The Z/,-measurability condition is imposed in order that the minimizing
control wu,(t, -) be a Baire function of the observation vector Y(t, -)
for each te D.

Now let

A ={Ge F x &; G, €z, for all te D},

where G,.={we®; (t, )€ G}, te D, and observe that 7 Cc &2 x &
is a sigma-field. Consider the Hilbert space H of m x P-equivalence
classes in L, D x 2), and let Sc H be the collection of m x P-
equivalence classes generated by the _#“measurable elements in
LD x £2). It is readily verified that S is a subspace of H, and
hence P, the projection operator which maps H onto S, exists.
Consequently, for each v H, there exists a unique u,€ S such that

[lug — v|| = inf{||w — v|;ueS},
and, by the Projection theorem,
U, = Pgv .

Thus, ascertaining a solution to the stochastic optimization problem
stated above is tantamount to identifying the projection operator
P, and this is done in the following theorem, the proof of which
will be given later.

THEOREM 1.1. Let ve LyD X Q). Then there exists an _#Z-
measurable real-valued function defined on D X 2, denoted by
Ev(t, -) | Z.](®), which is a conditional expectation of v(t, -) given
2z, for m-a.e. te D, and moreover,

(Psv)(t, ®) = Ev(t, -) | 2:](@)

for m X P-a.e. (t, w)e D x Q.

The crux of the proof of the above theorem is to prove the
existence of the _#‘measurable function E[v(t, +) | 2.](®w). The main
result obtained in the sequel is that an _#-measurable function
Efv(t, +) | 2.](w) does indeed exist. Other results which make use
of this measurability are also presented.

The utility of the conditional expectation representation of the
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operator P is twofold. First, some interesting and useful facts
regarding the solution of the stochastic optimization problem can be
deduced using properties of conditional expectations [1]; and second,
the problem of calculating conditional expectations of the type
encountered above has received much attention in the literature, and
efficient computational algorithms have been developed in certain
cases. [8], [10], [11], [12], [3], [15], [17], [5], [4].

2. Preliminaries. Let { &, t€ D} be a collection of increasing
sigma-fields in .o, i.e., for each teD, #,c.» and ¢, t"eD,
t' <t implies &, < F,.. Let zeL(D x Q). Then x(t, )€ L,(2)
for m-a.e. t€ D, and consequently, [14], a conditional expectation
Elx@t, -) | Z; |(w) exists for m-a.e. t€ D. By defining E[x(t, -) | Z; [(®)
to be an arbitrary random variable for each ¢ in the exceptional set,
Elx(t, «)| F:]J(w) can be extended to be a stochastic process on
(2, .7, P) and D, and this is the basis of the following definition.

DEFINITION 2.1. Let xe L,(D x Q). A conditional expectation
of x with respect to { ¥, te D}, denoted by E[x(t, )| Z (@), is a
stochastic process on (2, .%7, P) and D with the property that for
m-a.e. t€D,

(i) El=(, <) | ] is F,-measurable,

(i) Elatt, -)| 7] e L(Q),

(iii) SFE[x(t, ) | F (@) P(dw) = SFx(t, w)P(dw) for all Fe &,

It has already been mentioned that a conditional expectation of
x with respect to {,, t € D} exists, although not necessarily uniquely,
for each xeL,(D x 2), and the question which is now asked is
whether there exists a <& X .9~-measurable representation for the
conditional expectation of x with respect to { &, teD}. Before
addressing this fundamental question, several preliminary results
will be given.

LEMMA 2.1. Let xe L, (D x 2), 1 < p < . If E[z(t, )| Z; [(®)
is B X -measurable, then FE[x(t, )| F|(w)e L,(D x Q). More-
over, if Elx(t, )| F: (@) is any other & X or~measurable condi-
tional expectation of x with respect to {F,, te D}, then

Elx(t, )| F (@) = B, -) | F (@) m X P-a.e.

Proof. The uniqueness of <# X .-measurable representations
for the conditional expectation of & with respect to { &, t€ D} up to
m X P-equivalence on D x 2 is immediate, and an application of
Jensen’s inequality for conditional expectation, together with Tonelli’s
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theorem, proves E[x(t, +) | Z; |(w)e L,(D x Q).

LEMMA 2.2. Let & C . be a sigma-field and let xe€ L,(D X Q).
Then there exists a <& X F-measurable stochastic process on (2, 7, P)
and D, denoted by E|x(t, )| & (@), which s a conditional expecta-
tion of w(t, «) given & for each t€ D such that x(t, +) € L,(2).

Proof. It is sufficient to prove that the lemma holds on L{(D x 2),
where L{(Dx Q) = {xe L(D x 9Q); «(t, -)e L(2) for all te D}, and to
this end let S be the collection of elements in L)(D x 2) for which
the lemma holds.

(1) To show that S contains the characteristic functions of
measurable rectangles, observe that if FF = B X A, where B¢ <7,
A€ .7, then y(t, @) = yx(t)x(®), (¢, w)e D x 2, and, for each te D,

(1) Elxet, )| F (@) = L0 Elx. | & (@)

for P-a.e. we 2, where E[x,| & (@) is a conditional expectation of
Y. given . #. Thus the right-hand side of (1) is a && X .#-measurable
stochastic process on (2, .97, P) and D which is a conditional expecta-
tion of x(t, -) given & for each te D.

(2) Observe that S is closed with respect to linear operations
in the sense that if z,(¢, ®), +-+, 2,({, ) €S, ¢, +++, ¢, € Rand x (t, ®) =

oy ei(t, @), (t, w)e D x 2, then x(t, w) e S.

(3) S is also closed with respect to dominated convergence
in a certain sense. To show this let {x,({, w),n=1,2 -.-}C8S,
x(t, ), w(t, w)e L{(Dx2), and suppose that 2(f, w) = lim,_. x,({, ®)
for all (¢, w)eD x 2, and also that |u,(¢ ®)| < w(t, @) for all
(t,w)eDx 2, n=12 +--.. It is now shown that x€S. For each
n=12 ---,let Elx,( )| Z |(0) be a & x F-measurable stochastic
process on (2, o4 P) and D which is also a conditional expectation
of x,(t, -) given & for each te D. Now for each te D,

Elat, )| 5 )(@) = lim Elo,(t, ) | 5 ](@)

for P-a.e. we 2 [2, p. 23]. Let z(t, ) be defined on D x 2 by

(lim Efz,(t, )| % |(w) , when this limit exists
2(t, @) = {n-e ]
[ 0 , otherwise .

Then z({, w) is a <& x F-measurable stochastic process on (2, .27, P)
and D, and, for each te D, z(t, w) is a conditional expectation of
x(t, «) given #. Thus xv€ S.

(4) Let@ ={Fe<Z x .&;x-€8}). From (1), it follows that &
contains the measurable rectangles, in <& x .o/ and (2) then implies
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that & contains the field generated by the measurable rectangles in
F x o From (8) it follows that & is a monotone class, and
consequently, by the monotone class lemma, &€ = & x .4

(5) Let xeL{(D x ). Then there exists a sequence of simple
functions {z,,n =1,2, -} L(D x 2) such that z;({, ) ] 2(t, w)
2, 0) v (t, w), as n— oo, for all ({, w)e D x 2. From (2), (4) it
follows that {x,,n=1,2, ---}c S, and (3) then implies xS, which
proves the lemma.

The next result is a Fubini-type theorem for conditional ex-
pectation.

LEMMA 2.3. Let & C .7 be a sigma-field, let x€ L(DX2), and
let Elxz(t, <) & |(w) be a Z x F-measurable conditional expecta-
tion of w(t, «) given F for m-a.e. t€ D. Then

E| | at, ymi@n | 5 |@ = | Bl ) |7 l@m
for P-a.e. we Q.
Proof. Immediate consequence of Fubini’s theorem.

LEMMA 2.4. Let D,c D be countable, and suppose that F, =
o{Uvw F,} for each te D\D,. Then for each A€ ., there ewists a-
B X S-measurable conditional expectation of iy, with respect to

{#, te D}.

Proof. Let S§"C D be countable and dense in D and let S =
S"UD,U{a}. Then Sc D is also countable and dense in D. Let
S = {s, 8, *++} be an arbitrary denumeration of S for which s, = a,
and for each teD put s{t, n) = max{s;eS;s;<¢t,1=1,2, ---n},
n=12, .-

Let A€ .o and for each te D let u(t, w) be a conditional ex-
pectation of yx, given .#,. Then for each te D it is clear that
Ju(t, w)| < 1 for P-a.e. we Q.

Let u,(t, ®)=u(s(t, n), W), (t, w)e D x 8, n=1, 2, ---, and observe
that {u,, n =1, 2, --+} is a sequence of <& X .%-measurable functions
on D x Q. Furthermore, for each n = 1,2, «««, te D, u,(¢, ) is F;-
measurable since s(t, n) < t.

Now if £€ S, then s(t, n) = t for n sufficiently large, and hence
lim,_. u,(t, @) = u(t, ®) for all ®e 2. On the other hand, if te D\S,
then s(t, n) [t as # — <o, and thus

U -%(t,n) = U Fr
n=1 t'<t



38 R. A. BROOKS
Therefore, by hypothesis,

F7 = o0 Fiem} »
and consequently, [2, Theorem 4.3, p. 331],

u(t, @) = lim u,(t, ®)

for P-a.e. we 2. Hence for each te D
(2) u(t, @) = limu,(t, ®)

for P-a.e.we Q.
By the Bounded Convergence theorem, it follows that for each
teD

lim 50 | u(t, @) — u(t, )| Pdw) =0 ,

n—r00

and hence

lim SQ | usl(t, @) — wn(t, ®) | Pd®) = 0 .

k,m—oc0

For each te D, n=1,2, -, let
0,(t) = sup § | i(t, ©) — w,(t, @) | P(dw) .

Then {v,, » = 1,2, ---} is a sequence of .Z-measurable functions on
D, and |v,(t)| £2, te D, n =12, --« Thus, applying the Bounded
Convergence theorem once more, it follows that

lim SD v(Om(dt) = 0,

n—00

and consequently,

(3)  Jim |l @) - wt @)| (mx P ) = 0.

Now let & ={FeZ x ; F,.e€ %, teD}, where F, =
{we2; (t, w)e F}, te D. It is readily verified that & is a sigma-
field, and it is also clear that {u,, n =1,2, ---} is a sequence of
Smeasurable functions on D X 2. Thus, by the Riesz-Fischer
theorem, it follows from (3) that there exists a .S“measurable func-
tion we Ly(D X 2) such that

lim g lw(t, ©) — u,(t, )| (m x P)(d(t, @) = 0,

N—r00
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and hence there exists a subsequence {n,} C {n} such that

w(t, w) = limu,,(t, ®)
k—oo

for m x P-a.e.(t, w)€ D x 2. Therefore, for m-a.e. te D,

w(t, w) = limw, (t, )
k—oo

for P-a.e.we®, and from (2) it follows that, for m-a.e.te D,
w(t, ®) = u(t, ) for P-a.e.we 2. The S~measurability of w implies
w(t, -) is F,-measurable for each t€ D, and consequently w is a
B X S-measurable conditional expectation of ¥, with respect to
{#,, te D}.

3. Main results. Let %(¢, ®) be a stochastic process on
(2, o7 P) and R, let

Y(t, ) = [y, 0), 7 <t], (t, ) e R X2,
and for each te R, let
7, = o{Y(t, )} .
LEmMA 3.1. 2, = o{U, <« 24}, t€ R.

Proof. Since %, is a sigma-field and (U, <. Z)C 24, it follows
that o{U.«. .} C %, for each te R.

Let te R be fixed. Then for each 7 < ¢, the random variable
y(z, -) is measurable with respect to 2/, for each ¢’ > 7, and hence
y(z, +) is measurable with respect to o{U,; 2’»}. Thus

7 =ollu, ), e < heofU 20},
and this proves the lemma.

THEOREM 3.2. Let x€ L(D X 2). Then there exvists a & X 7~
measurable conditional expectation of & with respect to {#,, te D).

Proof. From Lemmas 2.4 and 3.1, it follows that the theorem
holds for z = y,, Ae. % By an argument which parallels the proof
of Lemma 2.2, it can be shown that the theorem holds for all
xe L(D x 9Q).

Now let .7 c & x &7 be the sigma-field defined by
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A ={Ge F# x X;G,.ez, for all te D},

and observe that Theorem 3.2 implies that for each xe L,(D X Q)
there exists an _#“measurable conditional expectation of & with
respect to {2/, teD}. Let H be the Hilbert space of m X P-
equivalence classes in L,D X 2), with innerproduct denoted by
{+, >, let ScCH be the collection of m X P-equivalence classes
generated by the _#‘measurable elements in L,(D X 2), and let Pg
be the projection of H onto S.

THEOREM 3.3. Let x€ Ly(D X 2) and let Elx(t, +)| 2,]J(w) be an
A-measurable conditional ewpectation of x with respect to {Z,, t€ D}.
Then

(Pso)(t, @) = Ela(t, +) | 2.](®)

for m X P-q.e.(t, w)e D x Q.

Proof. The existence of an _#-measurable conditional expecta-
tion of x with respect to {%,, t€ D} follows from Theorem 3.2, since
LD x Q)c L(D x Q).

Let Me _ and observe that
| [Pt @) — Blatt, -) | Zl@](m x P(d(t, o)
= P 1y — | || Blat, -) | 21() Pldo)m(d
= <o = | ], olt, ) Pdomit
= | att, @)m x P, ) = | att, 0)(m x Pa(t, @)
=0.
From the arbitrariness of Me _, it follows that
(P@)(t, ®) = Elalt, -) | (@)
for m x P-a.e.(t, w)e D x Q.

4, Extensions. The theorem which follows extends some of
the results obtained in §§2, 3, and it has application in the study
of the class of stochastic optimization problems defined in § 1.

THEOREM 4.1. Let (D', <&') be a copy of (D, &), let m' be an
arbitrary finite measure on (D', &&'), and let xe L(D' x D X Q).
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Then there exists o B’ X B X S7-measurable real-valued function
defined on D' X D x Q, denoted by El[x(s, t, -)| 2%](w), which for
m-a.e.t€ D, is a conditional ewpectation of u(s,t, <) given 2/, for
every s€ D' such that x(s, t, -) € L (2). Furthermore, for every te D,
Elxz(s, t, )| Z(w) s &' X Z,-measurable on D' X Q, and, for
m-a.e.te D,

E[| o6t w2 @) = | Elots, ¢, )| Z)@m@s)

for P-ae.wef.

Proof. The existence of E[xz(s, ¢, -)| 2,](w) with the stated
conditional expectation and measurability properties is established
by an extension of the proof of Lemma 2.2, and the validity of
interchanging conditional expectation and integration is guaranteed
by Lemma 2.3.
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